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a b s t r a c t

Bandable covariance matrices are often used to model the dependence structure of

variables that follow a nature order. It has been shown that the tapering covariance

estimator attains the optimal minimax rates of convergence for estimating large bandable

covariance matrices. The estimation risk critically depends on the choice of the tapering

parameter.We develop a Stein’s Unbiased Risk Estimation (SURE) theory for estimating the

Frobenius risk of the tapering estimator. SURE tuning selects the minimizer of SURE curve

as the chosen tapering parameter. An extensiveMonte Carlo study shows that SURE tuning

is often comparable to the oracle tuning and outperforms cross-validation. We further

illustrate SURE tuning using rock sonar spectrum data. The real data analysis results are

consistent with simulation findings.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Supposewe observe independent and identically distributed p-dimensional randomvariablesX1, . . . , Xn with covariance
matrix Σp×p. The usual sample covariance matrix is an excellent estimator for Σp×p in the conventional setting where p is
small and fixed and the sample size n diverges to infinity. Nowadays, massive high-dimensional data are more and more
common in scientific investigations, such as imaging, web mining, microarrays, risk management, spatial and temporal
data, and so on. In high-dimensional settings, the sample covariancematrix performs very poorly; see Johnstone (2001) and
references therein. To overcome the difficulty imposed by high dimensions, many regularized estimates of large covariance
matrices have been proposed in the recent literature. These regularization methods include Cholesky-based penalization
(Huang et al., 2006; Lam and Fan, 2007; Rothman et al., 2010), thresholding (Bickel and Levina, 2008a; El Karoui, 2008;
Rothman et al., 2009), banding (Bickel and Levina, 2008b; Wu and Pourahmadi, 2009) and tapering (Furrer and Bengtsson,
2007; Cai et al., 2010). In particular, the tapering estimator is shown to beminimax rate optimal for estimating the bandable
covariance matrices that are often used to model the dependence structure of variables that follow a nature order (Cai
et al., 2010; Cai and Zhou, 2010). Much of the published theoretical work assumes the data follow a normal distribution,
although some have relaxed the normality assumption to a tail probability condition such as sub-Gaussian distribution
assumption. Nevertheless, the lower bound results in the minimax estimation theory were actually established for a family
of multivariate normal distributions (Cai et al., 2010; Cai and Zhou, 2010). In this paper, we consider the tapering estimator
under the normal distribution assumption.

We begin with some notation and definitions. Let ‖A‖F =
√∑

i

∑
j a

2
ij denote the Frobenius norm of A. Let ‖A‖q denote

the ℓq operator norm of A. When q = 1, the ℓ1 norm is maxi
∑

j |aij|; when q = 2, the ℓ2 norm is equal to the largest singular
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value of A. Consider the following parameter spaces:

Fα =

{
Σ : max

j

∑

i

{|σij| : |i− j| > k} ≤ Mk−α for all k, and λmax(Σ) ≤ M0

}
,

F
′
α =

{
Σ : max

j

∑

i

{|σij| : |i− j| > k} ≤ Mk−α for all k, and max
i

σii ≤ M0

}
,

where α,M,M0 are positive constants. The parameter α specifies the rate of decay of the off-diagonal elements ofΣ as they
move away from the diagonal. A larger α parameter indicates a higher degree of ‘‘sparsity’’. Thus we can also regard α as a
sparsity index of the parameter space. Let Σ̃ = 1

n

∑n

i=1 XiX
T
i − X̄ X̄T be the MLE of Σ . The tapering estimator (Cai et al., 2010)

is defined as

Σ̆ (k) = (σ̆
(k)
ij )1≤i,j≤p = (w

(k)
ij σ̃ij)1≤i,j≤p,

where, for a tapering parameter k,

w
(k)
ij =





1, when |i− j| ≤ k/2

2−
|i− j|

k/2
, when k/2 < |i− j| < k

0, otherwise.

(1.1)

Tapering is a generalization of banding where σ̂
B(k)
ij = I(|i − j| ≤ k)σ̃ij. We assume p ≥ n and log(p) = o(n) in the sequel.

We cite the following results (Cai et al., 2010; Cai and Zhou, 2010):

inf
Σ̂

sup
Fα

p−1
E‖Σ̂ −Σ‖2F ≍ n−(2α+1)/(2α+2), (1.2)

inf
Σ̂

sup
Fα

E‖Σ̂ −Σ‖22 ≍ n−2α/(2α+1) +
log(p)

n
, (1.3)

inf
Σ̂

sup
F
′
α

E‖Σ̂ −Σ‖21 ≍ n−α/(α+1) +
log(p)

n
, (1.4)

where an ≍ bn if there are positive constants c1 and c2 independent of n such that c1 ≤ an/bn ≤ c2. Furthermore, define
three tapering parameters as following

kF = n1/(2α+2), k2 = n1/(2α+1) (1.5)

k1 = min{n1/(2α+2), (n/ log(p))1/(2α+1)}.

Then the tapering estimator with k = kF , k = k2 and k = k1 attains the minimax bound in (1.2)–(1.4), respectively.

The minimax rate optimal choices of k shed light on the importance of choosing the right tapering parameter. However,
there are at least two difficulties in using the minimax theory to construct the tapering parameter. First, the minimax
tapering estimators depend on α. If α is unknown, which is often the case in reality, then the minimax optimal tapering
‘‘estimators’’ are not real estimators. Second, the minimax rate optimal tapering estimators can be conservative for
estimating some covariance matrices. For instance, assume that the data are generated from a normal distribution with
aMA(1) covariance where σij = I(i = j)+0.5I(|i− j| = 1). Although this covariancematrix is inFα for α > 0, the optimal k
should be 2 no matter which matrix norm is used. Therefore, it is desirable to have a reliable data-driven method to choose
the tapering parameter. Tuning is usually done by first constructing an estimate of the risk for each k and then picking the
minimizer of the estimated risk curve. Cross-validation and Bootstrap are the popular nonparametric techniques for that
purpose. Bickel and Levina (2008a,b) discussed the use of two-fold cross-validation for selecting the banding parameter
of the banding estimator. They claimed that although cross-validation estimates the risk very poorly, it can still select the
banding parameter quite well.

In this paper, we suggest a different tuning method by borrowing the idea in Stein’s unbiased risk estimation (SURE)
theory (Stein, 1981; Efron, 1986, 2004). Compared with cross-validation, the SURE approach is computationally less
expensive and provides a much better estimate of the Frobenius risk. The explicit form of SURE formula is derived in
Section 2. Here we demonstrate the effectiveness of SURE tuning in Fig. 1 where we compare the true Frobenius risk curve
(as a function of k) and the SURE curves. We generated the data from the simulation model used in Cai et al. (2010). Two α
values were used: α = 0.1 corresponds to a dense covariancemodel and α = 0.5 corresponds to a sparse covariancemodel.
Fig. 1 clearly shows three important points. First, the average of 100 SURE curves is virtually identical to the Frobenius risk
curve, which agrees with the SURE theory as shown in Section 2. Second, the minimizer of each SURE curve is very close to
the minimizer of the true risk curve. Third, the minimizer of each cross-validation curve is also close to the minimizer of the
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Fig. 1. Comparing the true risk curve, the SURE curve and the CV curve under the Frobenius norm. The data are generated from the simulation model 1 in

Section 3 with n = 250, p = 500, α = 0.1 and 0.5. In the second row we plot 10 SURE curves (dashed lines) and the average of 100 SURE curves (the solid

line). Similar plots are shown in the third row for cross-validation.

true risk curve, but the cross-validation estimator of the Frobenius risk is way too large. The true risk is within [100, 500]
while the cross-validation risk is within [5000, 5500]. In practice we not only want to select a good model but also want
to understand how well the model performs. Efron (2004) did a careful comparison between SURE and cross-validation
and concluded that with minimal modeling SURE can significantly outperform cross-validation. Fig. 1 suggests that Efron’s
conclusion continues to hold in the covariance matrix estimation problem.

2. Stein’s unbiased risk estimation in covariance matrix estimation

In this section, we develop a SURE theory for estimating the Frobenius risk of aweightedMLE, denoted by Σ̂ (k), which has

the expression Σ̂
(k)
ij = w

(k)
i,j σ̃ij where w

(k)
i,j only depends on i, j, k. The tapering and banding estimators are special examples

of the weighted MLE. Tapering weights are defined in (1.1). The banding estimator (Bickel and Levina, 2008b) uses simpler

weights w
(k)
i,j = I(|i− j| ≤ k).

The basic idea in SURE can be traced back to the James–Stein estimator of multivariate normal mean. Efron (1986,
2004) studied the use of SURE in estimating prediction error and he named it covariance penalty method. Shen and Ye
(2002) applied the covariance penalty idea to perform adaptive model selection. Donoho and Johnstone (1995) developed
SureShrink for adaptivewavelet thresholding. Efron et al. (2004) and Zou et al. (2007) applied SURE to Lassomodel selection.

2.1. SURE identity

For an arbitrary estimator Σ̂ of the covariance matrix, the Frobenius risk (E‖Σ̂ − Σ‖2F ) is equivalent to the squared ℓ2

risk for estimating the vector (σ11, . . . , σ1p, . . . , σp1, . . . , σpp)
T . As the first step of SURE, we derive a covariance penalty

identity for the matrix Frobenius risk of an arbitrary estimator of Σ .
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Lemma 1. Let Σ̃ s = n

n−1
Σ̃ be the usual sample covariance matrix. For an arbitrary estimator of Σ , denoted by Σ̂ = (σ̂ij), its

Frobenius risk can be written as

E‖Σ̂ −Σ‖2F = E‖Σ̂ − Σ̃ s‖2F −

p∑

i=1

p∑

j=1

var(σ̃ s
ij)+ 2

p∑

i=1

p∑

j=1

cov(σ̂ij, σ̃
s
ij). (2.1)

The second term in the right hand of (2.1) is the same for all estimators of Σ . Thus, if we only care of comparing the
Frobenius risk of different estimators, the second term can be dropped and we can write

PR(Σ̂) = E‖Σ̂ − Σ̃ s‖2F + 2

p∑

i=1

p∑

j=1

cov(σ̂ij, σ̃
s
ij)

= Apparent error+ Optimism, (2.2)

where PR stands for prediction risk andwe have borrowed Efron’s terminology ‘apparent error’ and ‘optimism’ (Efron, 2004).
The optimism is expressed by a covariance penalty term. Since ‖Σ̂−Σ̃ s‖2F is an automatic unbiased estimate of the apparent
error, it suffices to construct a good estimate of the optimism in order to estimate PR.

For the weighted MLE, we observe that cov(σ̂
(k)
ij , σ̃ s

ij) = w
(k)
ij

n−1
n

var(σ̃ s
ij). The next lemma provides a nice unbiased

estimator of var(σ̃ s
ij).

Lemma 2. If {Xi}
n
i=1 is a random sample from N(µ, Σ), then

var(σ̃ s
ij) =

σ 2
ij + σiiσjj

n− 1
, (2.3)

and an unbiased estimate of var(σ̃ s
ij) is given by v̂ar(σ̃ s

ij) which equals

n2(n2 − n− 4)

(n− 1)2(n3 + n2 − 2n− 4)
σ̃ 2
ij +

n3

(n− 1)(n3 + n2 − 2n− 4)
σ̃iiσ̃jj. (2.4)

From (2.3) we see the MLE for var(σ̃ s
ij) is

σ̃ 2
ij
+σ̃iiσ̃jj

n−1
, which is almost identical to the unbiased estimator in (2.4). We prefer

to use an exact unbiased estimate of the optimism. In addition, the unbiased estimator in (2.4) is the UMVUE of var(σ̃ s
ij).

Lemma 2 shows that an unbiased estimator for PR(Σ̂ (k)) is given by

P̂R(k) = ‖Σ̂ (k) − Σ̃ s‖2F +
∑

1≤i,j≤p

(
2w

(k)
ij

n− 1

n

)
v̂ar(σ̃ s

ij). (2.5)

Similarly, an unbiased estimator for E‖Σ̂ (k) −Σ‖2F is given by

SURE(k) = ‖Σ̂ (k) − Σ̃ s‖2F +
∑

1≤i,j≤p

(
2w

(k)
ij

n− 1

n
− 1

)
v̂ar(σ̃ s

ij)

=
∑

1≤i,j≤p

(
n

n− 1
− w

(k)
ij

)2

σ̃ 2
ij +

∑

1≤i,j≤p

(
2w

(k)
ij −

n

n− 1

)
(anσ̃

2
ij + bnσ̃iiσ̃jj) (2.6)

with an =
n(n2−n−4)

(n−1)(n3+n2−2n−4)
and bn =

n2

n3+n2−2n−4
.

2.2. SURE tuning

Once the tapering estimator is constructed, the SURE formula automatically provides a good estimate of its Frobenius

risk. Naturally we use k̂sure as the tapering parameter under the Frobenius norm where

k̂sure = argmin
k

SURE(k). (2.7)

Unfortunately we do not have a direct SURE formula for the matrix ℓq norm, q = 1, 2. We suggest using k̂sure as the
tapering parameter for both ℓ1 and ℓ2 norms as well. We list several good reasons for using this selection strategy.

1. One can expect the optimal tapering parameter should be the same under different matrix norm if the underlying
covariance matrix is an exactly banded matrix, i.e., there is a constant k0 such that σij = 0 whenever |i − j| > k0.
Hence, it is reasonable to expect that the optimal choices of the tapering parameter under the Frobenius norm and the
matrix ℓ1, ℓ2 norms stay close if the underlying covariance model is very sparse.
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2. Cai and Zhou (2010) showed that as long as log(p) ≤ n1/(2α+2), the minimax optimal tapering parameters under the ℓ1

norm and the Frobenius norm are the same. This can be easily seen from (1.5).

3. The ℓ2 norm is the most popular matrix operator norm. We argue that minimizing the Frobenius norm leads to a good
estimator, although may not be the best, under the ℓ2 norm. From Cai et al. (2010) we know that

sup
Fα

E‖Σ̆ (k) −Σ‖22 ≤ C

[
k−2α +

k+ log(p)

n

]
≡ C · R2(k).

Letting k = kF = n1/(2α+2) yields

R2(kF ) = O(n−α/(α+1) + log(p)/n).

Compare the rate to the minimax optimal rate n−2α/(2α+1) + log(p)/n.

4. As shown in simulation, SURE selection is very stable, although it is biased under the ℓ1, ℓ2 norms. Selection stability is
a very important concern in model selection (Breiman, 1996). In contrast, even the oracle tuning under the ℓ1, ℓ2 norms
can show very high variability when the underlying covariance matrix is not very sparse.

3. Monte Carlo study

In this section, we conduct extensive simulation to compare SURE tuning with cross-validation and oracle tuning.

3.1. Models and tuning methods

The data are generated from N(0, Σ). Six covariance models are considered.

Model 1. This model is adopted from Cai et al. (2010). The covariance matrix has the form

σij =

{
1, 1 ≤ i = j ≤ p

ρ|i− j|−(α+1) 1 ≤ i 6= j ≤ p.

We let ρ = 0.6, α = 0.1, 0.5, n = 250 and p = 250, 500, 1000.

Model 2. The covariance matrix has the form σij = ρ|i−j|, 1 ≤ i, j ≤ p. We let ρ = 0.95, 0.5, n = 250 and
p = 250, 500, 1000. This is a commonly used autoregressive covariance matrix for modeling spatial–temporal
dependence.

Model 3. This simulation model is a truncated version of model 1. The covariance matrix has the form

σij =

{
1, 1 ≤ i = j ≤ p

ρ|i− j|−(α+1)I(|i− j| ≤ 6) 1 ≤ i 6= j ≤ p.

We let ρ = 0.6, α = 0.1, 0.5, n = 250 and p = 250, 500, 1000. Model 3 represents an exactly banded covariance
matrix. It is the sparest among all three simulation models.

Model 4. The covariance matrix has the form

σij =

{
1, 1 ≤ i = j ≤ p

ρ|i− j|−(α+1)(−1)|i−j| 1 ≤ i 6= j ≤ p.

We let ρ = 0.6, α = 0.1, 0.5, n = 250 and p = 250, 500, 1000. This model is similar to Model 1 but has negative
correlations.

Model 5. σij has the form of σij = ρ|i−j|(−1)|i−j|, 1 ≤ i, j ≤ p. We let ρ = 0.6, α = 0.1, 0.5, n = 250 and
p = 250, 500, 1000. This model is similar to Model 2 but has negative correlations.

Model 6. The covariance matrix has the form

σij =

{
1, 1 ≤ i = j ≤ p

ρ|i− j|−(α+1)I(|i− j| ≤ 6)(−1)|i−j| 1 ≤ i 6= j ≤ p.

We let ρ = 0.6, α = 0.1, 0.5, n = 250 and p = 250, 500, 1000. This model is similar to Model 3 but has negative
correlations.

For each covariance model, the theoretical optimal tapering parameters are defined as k
opt
a = argmink E‖Σ̆ (k) − Σ‖2a,

where a = F , 1, 2. In our simulation study the risk curves can be computed numerically, and thus we can find the numerical
values of k

opt
a for a = F , 1, 2.

We considered three tuning techniques in the simulation study: SURE, cross-validation and oracle tuning. The oracle
tuning is defined as

k̂oraclea = argmin
k
‖Σ̆ (k) −Σ‖2a
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Table 1

Simulation model 1: tapering parameter selection. We report the average value of 100 replications. Corresponding standard errors are shown in

parentheses.

Model 1: Tapering parameter selection

p α kopt k̂oracle k̂sure k̂cv

F ℓ1 ℓ2 F ℓ1 ℓ2 F, ℓ1, ℓ2 F ℓ1 ℓ2

250 0.1 11 9 30 10.70 10.46 36.29 10.63 9.66 18.34 48.97

(0.56) (3.03) (8.52) (1.18) (1.02) (9.50) (27.15)

250 0.5 6 5 9 5.99 5.88 10.56 6.15 5.46 10.28 20.41

(0.41) (1.60) (2.21) (0.73) (0.67) (6.24) (11.8)

500 0.1 11 9 39 10.83 9.96 44.57 10.52 9.35 19.75 50.56

(0.43) (2.60) (8.37) (0.88) (0.73) (10.40) (23.76)

500 0.5 6 5 10 6.04 5.52 10.64 6.11 5.29 12.08 21.08

(0.28) (1.72) (2.02) (0.60) (0.46) (5.48) (11.30)

1000 0.1 11 9 51 10.92 9.60 55.91 10.65 9.22 18.67 70.68

(0.31) (2.37) (8.02) (0.64) (0.54) (10.09) (29.88)

1000 0.5 6 5 10 6.00 5.24 11.03 6.14 5.17 10.74 28.25

(0.14) (1.45) (1.83) (0.47) (0.38) (5.67) (14.88)

where a = F , 1, 2. The idea of oracle tuning is intuitive. Suppose that we could use an independent validation data set of
size m (m ≥ n) for tuning. The chosen k is then found by comparing Σ̂ (k) and Σ̃m under a given matrix norm, where Σ̃m

is the MLE of Σ using the independent validation set. Now imagine m could be as large as we wish. The oracle tuning is
basically the independent-validation-set tuning with infinitely many data. The oracle tuning is not realistic but serves as a
golden benchmark to check the performance of practical tuning methods.

Cross-validation is a commonly-used practical tuning method. Randomly split the training data into V parts. For v =

1, . . . , V , we leave observations in the vth part as validation data and compute a MLE of Σ , denoted by Σ̃v . Let Σ̆
(k)
−v denote

the tapering estimator computed on the rest V − 1 parts. Then the cross-validation choices of k under the Frobenius norm

and the matrix ℓ1, ℓ2 norm are defined as k̂cva = argmink
1
V

∑V

v=1 ‖Σ̆
(k)
−v − Σ̃v‖

2
a where a = F , 1, 2, denoting the Frobenius,

ℓ1, ℓ2 norms. Five-fold cross-validation was used in our simulation.
We also considered an unconventional cross-validation called cv-F that always uses Frobenius-norm for tuning even

when the ℓ1 or ℓ2 norm is used to evaluate the risk of the tapering estimator. Note that cv-F is a direct analogue of SURE
tuning. Since CV is good at capturing the shape of Frobenius risk although the magnitude is too large, cv-F is expected to
perform similarly to SURE. But cv-F is still computationally more expensive than SURE.

3.2. Results and conclusions

For eachmodelwe compared the chosen taperingparameters by oracle, SURE and cross-validation to the optimal tapering
parameter and compared the estimation risk of the three tuned tapering covariance estimators. Tables 1–12 summarize the
simulation results. We have the following remarks.

1. Under the Frobenius norm, SURE works as well as the oracle tuning. Cross-validation is slightly worse than SURE. SURE
and cv-F have very similar performance as expected.

2. Cross-validation completely fails under the ℓ1, ℓ2 norms. We can understand the failure of cross-validation under the
ℓ1, ℓ2 norms by looking at its selection variability. Even the oracle tuning exhibits high variability when the covariance
matrix is dense. Under the ℓ1, ℓ2 norms, SURE and cv-F still perform quite well comparable to the oracle tuning. Note
that SURE and cv-F are very stable.

3. The performance of tuning depends on the degree of sparsity of the underlying covariance model. When the covariance
matrix is sparse (models 1,4 with α = 0.5, models 2,5 with ρ = 0.5 and models 3,6), SURE and cv-F are closer to the
oracle tuning. This is not surprising because it is relatively easier to estimate a sparse covariance matrix than a dense
one.

4. Rock sonar spectrum data

In this section, we use the sonar data to illustrate the efficacy of SURE tuning and to further demonstrate the conclusions
made in the simulation study. The sonar data is publicly available from the UCI repository of machine learning databases
(Frank and Asuncion, 2010).We consider its subset consisting of 97 sonar spectra bounced off from rocks. Each spectrumhas
60 frequency band energy measurements. Although the dimension is 60, this is still a relatively large dimension scenario,
because the sample size is 97.We examined the entries of sample covariancematrix and found there is a quite obvious decay
pattern as the entries move away from the diagonal. Hence we used tapering to regularize the sample covariance matrix.
SURE and cross-validation were used to select the tapering parameter. Bootstrap was used to assess the variability of each
tuning procedure.
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Table 2

Simulation model 1: Frobenius, ℓ1 ℓ2 risk. We report the average value of 100 replications. Corresponding standard errors are shown in parentheses.

Model 1: Estimation risk

p α Oracle SURE CV CV-F

Frobenius norm 250 0.1 26.04 (0.11) 26.23 (0.11) 26.30 (0.10) 26.30 (0.10)

250 0.5 13.63 (0.07) 13.77 (0.07) 13.83 (0.07) 13.83 (0.07)

500 0.1 53.33 (0.14) 53.54 (0.14) 53.82 (0.14) 53.82 (0.14)

500 0.5 27.48 (0.11) 27.65 (0.11) 27.87 (0.11) 27.87 (0.11)

1000 0.1 108.11 (0.21) 108.29 (0.22) 109.15 (0.21) 109.15 (0.21)

1000 0.5 55.03 (0.14) 55.25 (0.14) 55.04 (0.15) 55.04 (0.15)

ℓ1 norm 250 0.1 14.17 (0.12) 14.78 (0.15) 17.84 (0.50) 14.78 (0.15)

250 0.5 3.67 (0.05) 3.87 (0.06) 5.22 (0.34) 3.86 (0.05)

500 0.1 18.94 (0.14) 19.58 (0.17) 24.20 (0.71) 19.51 (0.15)

500 0.5 4.22 (0.04) 4.43 (0.06) 5.62 (0.22) 4.40 (0.05)

1000 0.1 24.08 (0.13) 24.88 (0.17) 29.85 (0.88) 24.73 (0.16)

1000 0.5 4.64 (0.04) 4.87 (0.05) 6.49 (0.24) 4.78 (0.04)

ℓ2 norm 250 0.1 2.96 (0.05) 5.35 (0.07) 4.29 (0.16) 5.71 (0.07)

250 0.5 0.88 (0.01) 1.09 (0.02) 1.48 (0.08) 1.19 (0.02)

500 0.1 4.26 (0.05) 7.87 (0.07) 5.27 (0.16) 8.45 (0.06)

500 0.5 0.99 (0.01) 1.23 (0.01) 1.59 (0.07) 1.37 (0.01)

1000 0.1 5.82 (0.05) 10.56 (0.06) 7.36 (0.19) 11.40 (0.05)

1000 0.5 1.08 (0.01) 1.33 (0.01) 2.09 (0.10) 1.52 (0.01)

Table 3

Simulation model 2: tapering parameter selection. We report the average value of 100 replications. Corresponding standard errors are shown in

parentheses.

Model 2: Tapering parameter selection

p ρ kopt k̂oracle k̂sure k̂cv

F ℓ1 ℓ2 F ℓ1 ℓ2 F, ℓ1, ℓ2 F ℓ1 ℓ2

250 0.95 71 71 76 70.79 72.84 77.36 71.23 68.64 80.07 88.24

(4.53) (11.93) (17.32) (12.45) (12.92) (28.30) (33.14)

250 0.50 5 5 5 5.00 4.84 5.13 5.03 5.00 7.87 13.18

(0.00) (0.93) (1.02) (0.17) (0.00) (6.09) (11.93)

500 0.95 70 68 69 70.10 69.50 72.51 70.76 68.04 88.77 107.52

(3.08) (12.17) (17.00) (6.14) (6.41) (30.46) (33.82)

500 0.50 5 5 5 5.00 4.89 5.17 5.00 5.00 8.60 16.68

(0.00) (0.90) (1.00) (0.00) (0.00) (4.55) (15.84)

1000 0.95 69 67 71 69.71 69.83 73.83 70.66 67.48 92.29 117.41

(2.16) (11.95) (11.68) (3.86) (3.83) (30.56) (33.84)

1000 0.50 5 5 5 5.00 4.73 5.00 5.00 5.00 8.85 21.08

(0.00) (0.93) (0.94) (0.00) (0.00) (6.04) (20.90)

Table 4

Simulation model 2: Frobenius, ℓ1, ℓ2 risk. We report the average value of 100 replications. Corresponding standard errors are shown in parentheses.

Model 2: Estimation risk

p α Oracle SURE CV CV-F

Frobenius norm 250 0.95 118.09 (2.66) 125.00 (2.88) 126.19 (2.86) 126.19 (2.86)

250 0.50 9.88 (0.06) 9.91 (0.07) 9.88 (0.06) 9.88 (0.06)

500 0.95 250.53 (3.54) 256.94 (3.62) 258.10 (3.59) 258.10 (3.59)

500 0.50 19.10 (0.08) 19.81 (0.08) 19.81 (0.08) 19.81 (0.08)

1000 0.95 512.13 (4.90) 517.94 (4.92) 519.26 (4.90) 519.26 (4.90)

1000 0.50 39.72 (0.11) 39.72 (0.11) 39.72 (0.11) 39.72 (0.11)

ℓ1 norm 250 0.95 142.91 (5.17) 158.36 (5.80) 176.09 (8.29) 159.29 (5.79)

250 0.50 1.33 (0.03) 1.39 (0.03) 2.29 (0.27) 1.37 (0.03)

500 0.95 183.55 (5.21) 198.28 (5.97) 233.56 (9.67) 197.97 (5.79)

500 0.50 1.43 (0.02) 1.46 (0.03) 2.54 (0.17) 1.46 (0.03)

1000 0.95 210.56 (3.98) 223.65 (4.76) 279.71 (12.01) 222.86 (4.58)

1000 0.50 1.58 (0.03) 1.64 (0.03) 3.04 (0.33) 1.64 (0.03)

ℓ2 norm 250 0.95 36.90 (1.61) 42.98 (1.95) 44.87 (2.02) 43.77 (1.98)

250 0.50 0.47 (0.01) 0.49 (0.01) 0.89 (0.07) 0.49 (0.01)

500 0.95 47.09 (1.41) 54.45 (2.06) 66.64 (2.96) 54.82 (2.04)

500 0.50 0.51 (0.01) 0.53 (0.01) 1.18 (0.10) 0.53 (0.01)

1000 0.95 56.70 (1.40) 62.31 (1.79) 78.59 (2.85) 62.76 (1.80)

1000 0.50 0.59 (0.01) 0.61 (0.01) 1.58 (0.14) 0.61 (0.01)
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Table 5

Simulation model 3: tapering parameter selection. We report the average value of 100 replications. Corresponding standard errors are shown in

parentheses.

Model 3: Tapering parameter selection

p α kopt k̂oracle k̂sure k̂cv

F ℓ1 ℓ2 F ℓ1 ℓ2 F, ℓ1, ℓ2 F ℓ1 ℓ2

250 0.1 8 7 7 7.91 7.21 7.56 7.93 7.35 11.15 17.19

(0.29) (0.77) (1.12) (0.26) (0.48) (5.81) (12.54)

250 0.5 6 5 5 5.97 5.57 5.91 6.13 5.47 8.76 13.79

(0.41) (1.30) (1.14) (0.68) (0.64) (4.64) (9.34)

500 0.1 8 7 7 8.00 7.06 7.29 7.93 7.22 11.21 19.49

(0.00) (0.81) (1.09) (0.26) (0.42) (5.87) (18.70)

500 0.5 6 5 5 5.97 5.49 5.59 6.18 5.41 9.95 15.39

(0.17) (1.10) (1.01) (0.59) (0.59) (8.39) (10.43)

1000 0.1 8 7 7 8.00 6.77 6.99 8.00 7.12 11.26 21.79

(0.00) (0.90) (1.12) (0.61) (0.33) (6.10) (17.94)

1000 0.5 6 5 5 6.00 5.13 5.31 6.13 5.20 8.96 18.24

(0.00) (1.28) (1.20) (0.37) (0.40) (5.72) (13.66)

Table 6

Simulation model 3: Frobenius, ℓ1 ℓ2 risk. We report the average value of 100 replications. Corresponding standard errors are shown in parentheses.

Model 3: Estimation risk

p α Oracle SURE CV CV-F

Frobenius norm 250 0.1 13.89 (0.09) 13.93 (0.09) 14.09 (0.09) 14.09 (0.09)

250 0.5 11.63 (0.07) 11.75 (0.07) 11.82 (0.07) 11.82 (0.07)

500 0.1 27.68 (0.13) 27.73 (0.13) 28.08 (0.13) 28.08 (0.13)

500 0.5 23.42 (0.10) 23.59 (0.11) 23.78 (0.10) 23.78 (0.10)

1000 0.1 55.79 (0.22) 55.79 (0.22) 56.68 (0.22) 56.68 (0.22)

1000 0.5 46.95 (0.16) 47.06 (0.16) 47.70 (0.14) 47.70 (0.14)

ℓ1 norm 250 0.1 1.98 (0.04) 2.10 (0.04) 3.42 (0.30) 2.05 (0.04)

250 0.5 1.47 (0.03) 1.60 (0.03) 2.38 (0.18) 1.59 (0.03)

500 0.1 2.18 (0.04) 2.36 (0.05) 3.79 (0.34) 2.26 (0.04)

500 0.5 1.65 (0.02) 1.78 (0.03) 3.62 (0.55) 1.75 (0.03)

1000 0.1 2.49 (0.04) 2.72 (0.05) 4.34 (0.48) 2.55 (0.05)

1000 0.5 1.88 (0.03) 2.07 (0.05) 3.34 (0.30) 1.98 (0.04)

ℓ2 norm 250 0.1 0.67 (0.01) 0.72 (0.02) 1.33 (0.09) 0.71 (0.02)

250 0.5 0.53 (0.01) 0.58 (0.01) 0.94 (0.06) 0.57 (0.01)

500 0.1 0.78 (0.02) 0.85 (0.02) 1.66 (0.16) 0.82 (0.02)

500 0.5 0.59 (0.01) 0.63 (0.01) 1.18 (0.08) 0.62 (0.01)

1000 0.1 0.88 (0.01) 0.98 (0.02) 2.02 (0.14) 0.93 (0.02)

1000 0.5 0.69 (0.01) 0.76 (0.02) 1.54 (0.10) 0.73 (0.01)

Table 7

Simulation model 4: tapering parameter selection. We report the average value of 100 replications. Corresponding standard errors are shown in

parentheses.

Model 4: Tapering parameter selection

p α kopt k̂oracle k̂sure k̂cv

F ℓ1 ℓ2 F ℓ1 ℓ2 F, ℓ1, ℓ2 F ℓ1 ℓ2

250 0.1 11 9 31 10.76 10.49 36.88 10.44 9.50 18.03 46.96

(0.55) (2.94) (8.62) (1.21) (0.97) (9.28) (24.06)

250 0.5 6 5 9 5.99 5.63 10.64 6.04 5.44 10.11 20.84

(0.44) (1.40) (2.29) (0.76) (0.64) (5.86) (14.70)

500 0.1 11 9 38 10.78 9.66 44.15 10.47 9.36 18.88 56.91

(0.46) (2.29) (8.37) (0.85) (0.70) (10.07) (24.31)

500 0.5 6 5 10 6.01 5.51 10.76 6.11 5.29 11.35 20.58

(0.22) (1.58) (2.22) (0.63) (0.50) (6.81) (13.10)

1000 0.1 11 9 51 10.92 9.10 56.00 10.79 9.26 19.12 63.46

(0.27) (2.73) (7.28) (0.46) (0.57) (12.11) (31.95)

1000 0.5 6 5 10 6.00 5.20 10.41 6.05 5.19 10.31 27.61

(0.14) (1.44) (2.03) (0.46) (0.39) (6.04) (19.52)
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Table 8

Simulation model 4: Frobenius, ℓ1 ℓ2 risk. We report the average value of 100 replications. Corresponding standard errors are shown in parentheses.

Model 4: Estimation risk

p α Oracle SURE CV CV-F

Frobenius norm 250 0.1 26.07 (0.09) 26.28 (0.09) 26.38 (0.10) 26.38 (0.10)

250 0.5 13.59 (0.07) 13.75 (0.07) 13.80 (0.07) 13.80 (0.07)

500 0.1 53.36 (0.14) 53.54 (0.15) 53.81 (0.14) 53.81 (0.14)

500 0.5 27.57 (0.11) 27.76 (0.11) 27.99 (0.11) 27.99 (0.11)

1000 0.1 108.44 (0.21) 108.51 (0.21) 109.35 (0.20) 109.35 (0.20)

1000 0.5 55.42 (0.18) 55.63 (0.18) 56.22 (0.17) 56.22 (0.17)

ℓ1 norm 250 0.1 14.14 (0.10) 14.64 (0.12) 17.62 (0.47) 14.58 (0.11)

250 0.5 3.59 (0.04) 3.80 (0.05) 4.95 (0.24) 3.76 (0.05)

500 0.1 18.74 (0.11) 19.35 (0.14) 23.31 (0.63) 19.34 (0.12)

500 0.5 4.24 (0.05) 4.47 (0.06) 6.38 (0.51) 4.41 (0.06)

1000 0.1 24.15 (0.13) 24.97 (0.17) 30.44 (1.15) 24.80 (0.16)

1000 0.5 4.60 (0.04) 4.87 (0.06) 6.31 (0.24) 4.74 (0.04)

ℓ2 norm 250 0.1 2.98 (0.05) 5.49 (0.07) 4.21 (0.15) 5.84 (0.07)

250 0.5 0.88 (0.01) 1.11 (0.02) 1.44 (0.09) 1.20 (0.02)

500 0.1 4.23 (0.05) 7.90 (0.06) 5.55 (0.18) 8.45 (0.06)

500 0.5 1.01 (0.01) 1.26 (0.01) 1.57 (0.09) 1.39 (0.01)

1000 0.1 5.66 (0.04) 10.44 (0.05) 7.07 (0.20) 11.34 (0.05)

1000 0.5 1.10 (0.01) 1.36 (0.01) 2.18 (0.13) 1.52 (0.01)

Table 9

Simulation model 5: tapering parameter selection. We report the average value of 100 replications. Corresponding standard errors are shown in

parentheses.

Model 5: Tapering parameter selection

p ρ kopt k̂oracle k̂sure k̂cv

F ℓ1 ℓ2 F ℓ1 ℓ2 F, ℓ1, ℓ2 F ℓ1 ℓ2

250 0.95 71 71 76 70.79 72.84 77.36 71.01 68.59 80.93 89.33

(4.53) (11.93) (17.32) (12.38) (12.80) (28.25) (33.80)

250 0.50 5 5 5 5.00 4.99 5.18 5.02 5.00 8.93 12.34

(0.00) (0.92) (0.97) (0.14) (0.00) (6.76) (10.86)

500 0.95 70 70 71 70.39 71.40 74.86 70.32 67.13 87.43 110.37

(3.17) (12.76) (18.99) (7.15) (7.23) (31.87) (39.78)

500 0.50 5 5 5 5.00 4.80 5.11 5.00 5.00 8.97 15.95

(0.00) (0.90) (1.05) (0.00) (0.00) (4.88) (13.79)

1000 0.95 69 68 72 69.87 68.65 75.06 70.31 67.37 90.49 119.22

(2.48) (11.11) (12.49) (4.23) (4.42) (28.50) (38.16)

1000 0.50 5 5 5 5.00 4.65 4.86 5.00 5.00 8.03 19.02

(0.00) (0.97) (0.92) (0.00) (0.00) (5.65) (17.53)

Table 10

Simulation model 5: Frobenius, ℓ1, ℓ2 risk. We report the average value of 100 replications. Corresponding standard errors are shown in parentheses.

Model 5: Estimation risk

p ρ Oracle SURE CV CV-F

Frobenius norm 250 0.95 118.09 (2.66) 124.96 (2.88) 126.19 (2.87) 126.19 (2.87)

250 0.50 9.92 (0.06) 9.93 (0.06) 9.92 (0.06) 9.92 (0.06)

500 0.95 247.49 (3.90) 254.18 (4.22) 256.02 (4.17) 256.02 (4.17)

500 0.50 19.81 (0.08) 19.81 (0.08) 19.81 (0.08) 19.81 (0.08)

1000 0.95 511.21 (6.22) 519.52 (6.53) 520.79 (6.34) 520.79 (6.34)

1000 0.50 39.80 (0.12) 39.80 (0.12) 39.80 (0.12) 39.80 (0.12)

ℓ1 norm 250 0.95 142.91 (5.17) 158.30 (5.80) 174.46 (7.75) 159.24 (5.82)

250 0.50 1.31 (0.02) 1.36 (0.03) 2.66 (0.33) 1.36 (0.03)

500 0.95 184.75 (5.36) 201.05 (6.86) 236.85 (10.41) 201.38 (6.72)

500 0.50 1.62 (0.03) 1.68 (0.03) 2.74 (0.18) 1.50 (0.03)

1000 0.95 209.75 (4.26) 225.51 (5.81) 275.02 (11.77) 223.53 (5.29)

1000 0.50 1.62 (0.03) 1.68 (0.03) 2.80 (0.34) 1.68 (0.03)

ℓ2 norm 250 0.95 36.90 (1.61) 43.01 (1.95) 45.23 (2.05) 43.74 (1.99)

250 0.50 0.45 (0.01) 0.48 (0.01) 0.83 (0.06) 0.47 (0.01)

500 0.95 48.20 (1.72) 55.50 (2.33) 68.21 (3.84) 56.20 (2.31)

500 0.50 0.51 (0.01) 0.54 (0.01) 1.15 (0.08) 0.54 (0.01)

1000 0.95 57.00 (1.56) 63.66 (2.00) 82.40 (3.70) 63.86 (1.90)

1000 0.50 0.59 (0.01) 0.62 (0.01) 1.48 (0.11) 0.62 (0.01)
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Table 11

Simulation model 6: tapering parameter selection. We report the average value of 100 replications. Corresponding standard errors are shown in

parentheses.

Model 6: Tapering parameter selection

p α kopt k̂oracle k̂sure k̂cv

F ℓ1 ℓ2 F ℓ1 ℓ2 F, ℓ1, ℓ2 F ℓ1 ℓ2

250 0.1 8 7 7 7.91 7.01 7.57 7.89 7.28 10.78 16.28

(0.29) (0.77) (1.08) (0.31) (0.45) (7.22) (11.39)

250 0.5 6 5 5 5.99 5.59 5.96 5.99 5.34 8.93 14.78

(0.41) (1.22) (1.37) (0.70) (0.57) (4.90) (10.48)

500 0.1 8 7 7 7.97 7.15 7.18 7.92 7.19 10.59 19.79

(0.17) (0.86) (0.98) (0.27) (0.39) (3.94) (16.91)

500 0.5 6 5 5 6.00 5.53 5.64 6.07 5.36 9.50 16.49

(0.25) (1.34) (1.38) (0.62) (0.56) (7.25) (14.40)

1000 0.1 8 7 7 7.99 6.93 6.98 7.99 7.11 11.43 24.50

(0.10) (0.88) (1.06) (0.10) (0.31) (6.87) (20.40)

1000 0.5 6 5 5 5.99 5.13 5.52 6.07 5.22 9.86 20.23

(0.10) (1.21) (1.19) (0.46) (0.42) (6.15) (15.90)

Table 12

Simulation model 6: Frobenius, ℓ1 ℓ2 risk. We report the average value of 100 replications. Corresponding standard errors are shown in parentheses.

Model 6: Estimation risk

p α Oracle SURE CV CV-F

Frobenius norm 250 0.1 13.89 (0.09) 13.95 (0.09) 14.09 (0.09) 14.09 (0.09)

250 0.5 11.61 (0.07) 11.76 (0.07) 11.82 (0.07) 11.82 (0.07)

500 0.1 27.82 (0.14) 27.90 (0.14) 28.25 (0.14) 28.25 (0.14)

500 0.5 23.35 (0.10) 23.54 (0.10) 23.77 (0.10) 23.77 (0.10)

1000 0.1 56.08 (0.21) 56.10 (0.21) 56.95 (0.21) 56.95 (0.21)

1000 0.5 46.96 (0.16) 47.13 (0.17) 47.74 (0.15) 47.74 (0.15)

ℓ1 norm 250 0.1 1.99 (0.04) 2.13 (0.05) 3.51 (0.43) 2.05 (0.05)

250 0.5 1.46 (0.03) 1.58 (0.03) 2.46 (0.20) 1.56 (0.03)

500 0.1 2.18 (0.04) 2.35 (0.05) 3.42 (0.20) 2.26 (0.04)

500 0.5 1.66 (0.03) 1.79 (0.04) 3.23 (0.45) 1.77 (0.04)

1000 0.1 2.41 (0.04) 2.64 (0.05) 4.53 (0.48) 2.49 (0.04)

1000 0.5 1.85 (0.03) 2.03 (0.04) 3.64 (0.35) 1.96 (0.03)

ℓ2 norm 250 0.1 0.70 (0.02) 0.74 (0.02) 1.25 (0.08) 0.73 (0.02)

250 0.5 0.53 (0.01) 0.57 (0.01) 0.98 (0.06) 0.56 (0.01)

500 0.1 0.78 (0.02) 0.84 (0.02) 1.66 (0.14) 0.82 (0.02)

500 0.5 0.62 (0.01) 0.67 (0.02) 1.24 (0.10) 0.67 (0.01)

1000 0.1 0.86 (0.01) 0.97 (0.02) 2.17 (0.16) 0.91 (0.02)

1000 0.5 0.68 (0.01) 0.73 (0.02) 1.61 (0.10) 0.71 (0.01)

In Fig. 2 we plot SURE and cross-validated estimates of the Frobenius risk and also show the bootstrap histogram of the
selected tapering parameter by SURE and cross-validation. Some interesting phenomena are evident in the figure. First, the
two bootstrap histograms clearly show that SURE tuning is less variable than cross-validation. Second, SURE tuning selected
the high peak of the SURE bootstrap histogram but cross-validation selected a left tail value of its bootstrap histogram. Third,
the cross-validation estimate of the Frobenius risk is much larger than the SURE estimate.

Fig. 3 shows the cross-validation tuning results under the ℓ1, ℓ2 norms. The selected tapering parameters under the ℓ1, ℓ2

norms are not very different from those under the Frobenius norm. The significant difference is that cross-validation tuning
under the ℓ1, ℓ2 norms has much flatter bootstrap histograms, indicating much larger variability in selection.

We also repeated the above analysis on the other subset consisting of 111 sonar spectra bounced off frommetal cylinders
and the conclusions are basically the same. For the sake of space consideration, we opt to present the analysis results and
figures in a technical report version of this paper.

In conclusion, what we have observed in this real data example is consistent with the simulation results.

5. Discussion

There are two important issues in any regularized estimation procedure: (1) how to select the regularization parameter?
and (2) how to estimate the accuracy of a regularized estimator? In traditional vector-estimation problems such as
nonparametric regression or classification, cross-validation is a routinely used method for answering both questions and
perform well in general. Efron (2004) has shown that SURE can be more accurate than cross-validation for estimating the
risk of a vector estimator. In this paper, we have found that cross-validation does not perform satisfactorily for tuning the
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Fig. 2. Rock sonar spectrum data: SURE and cross-validation tuning under the Frobenius norm. The right panels display the bootstrap histograms of the

selected tapering parameter by SURE and cross-validation.

Fig. 3. Rock sonar spectrumdata: cross-validation tuning under the ℓ1, ℓ2 norms. The right panels display the bootstrap histograms of the selected tapering

parameter by cross-validation.

tapering covariance estimator when the objective loss function is the matrix ℓ1 or ℓ2 norm. Cross-validation can capture
the shape of the Frobenius risk, but the cross-validated estimate of the Frobenius risk tends to be too large to be a good
estimate. Our empirical study suggests that the Frobenius norm is better for tuning a covariance matrix estimator even
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when the objective loss is the ℓ1 or ℓ2 norm. To that end, the proposed SURE formula is very useful: it is computationally
economic, stable and provides a reliable estimate of the Frobenius risk.
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Appendix

Proof of Lemma 1. We start with Stein’s identity (Efron, 2004)

(σ̂ij − σij)
2 = (σ̂ij − σ̃ s

ij)
2 − (σ̃ s

ij − σij)
2 + 2(σ̂ij − σij)(σ̃

s
ij − σij). (A.1)

Taking expectation at both side of (A.1) and summing over i, j = 1 yield

E‖Σ̂ −Σ‖2F = E‖Σ̂ − Σ̃ s‖2F −

p∑

i=1

p∑

j=1

var(σ̃ s
ij)+ 2

p∑

i=1

p∑

j=1

cov(σ̂ij, σ̃
s
ij).

Note that E[(σ̂ij − σij)(σ̃
s
ij − σij)] = cov(σ̂ij, σ̃

s
ij) because Eσ̃ s

ij = σij. �

Proof of Lemma 2. The estimators under consideration are translational invariant. Without loss of generality, we can let
µ = E(x) = 0. By straightforward calculation based on bivariate normal distribution, we have

E(x2i x
2
j ) = σiiσjj + 2σ 2

ij , (A.2)

which holds for both i = j and i 6= j.

E((σ̃ s
ij)

2) = E


(n− 1)−2

(
n∑

k=1

xk,ixk,j − nx̄ix̄j

)2



= (n− 1)−2



E



(

n∑

k=1

xk,ixk,j

)2

− 2n−1

n∑

k=1

E(nx̄inx̄jxk,ixk,j)+ n2
E(x̄2i x̄

2
j )



 . (A.3)

We also have

E



(
n−1

n∑

k=1

xk,ixk,j

)2

 =

1

n
var(xixj)+ (E(xixj))

2

=
1

n
(σiiσjj + 2σ 2

ij − σ 2
ij )+ σ 2

ij

=
1

n
σiiσjj +

1+ n

n
σ 2
ij . (A.4)

Note that X̄ ∼ N(0, Σ/n). Using (A.2) we have

n2
E(x̄2i x̄

2
j ) = 2σ 2

ij + σiiσjj. (A.5)

E(nx̄inx̄jxk,ixk,j) =
∑

1≤l,l′≤n

{
I(l = l′ 6= k)E(xl,ixl,jxk,ixk,j)+ I(l = l′ = k)E(x2k,ix

2
k,j)
}

= (n− 1)σ 2
12 + (σiiσjj + 2σ 2

ij ). (A.6)

Substituting (A.4)–(A.6) into (A.3) gives

E((σ̃ s
ij)

2) =
nσ 2

ij + σiiσjj

n− 1
. (A.7)

Thus, var(σ̃ s
ij) = E((σ̃ s

ij)
2)− σ 2

ij =
σ 2
ij
+σiiσjj

n−1
.

We now show (2.4) by deriving an expression for E(σ̃ s
ii σ̃

s
jj).

(n− 1)2E(σ̃ s
ii σ̃

s
jj) =

∑

1≤k,k′≤n

E(x2k,ix
2
k′,j)−

∑

1≤k′≤n

E(x̄2i x
2
k′,j)−

∑

1≤k≤n

E(x̄2j x
2
k,i)+ n2

E(x̄2i x̄
2
j ). (A.8)
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Repeatedly using (A.2) we have

∑

1≤k,k′≤n

E(x2k,ix
2
k′,j) = n2σiiσjj + 2nσ 2

ij , (A.9)

n2
E(x̄2i x

2
k′,j) =

∑

1≤l,l′≤n

{
I(l = l′ 6= k′)E(x2l,ix

2
k′,j)+ I(l = l′ = k′)E(x2k′,ix

2
k′,j)

}

= nσiiσjj + 2σ 2
ij , (A.10)

n2
E(x̄2j x

2
k,i) = nσiiσjj + 2σ 2

ij . (A.11)

Substituting (A.5) and (A.9)–(A.11) into (A.8) gives

E(σ̃ s
ii σ̃

s
jj) =

n+ 1

n− 1
σiiσjj +

2(n+ 2)

n(n− 1)
σ 2
ij . (A.12)

Combining (A.7) and (A.12) gives (2.4). �
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