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• Regular k-fold cross-validation (CV) has three major weaknesses
• An electoral-college-style voting CV provides more reliable info on the candidate procedures
• Multiple data splitting ratios in CV yield a profile of performances of the candidates
• The new profile electoral-college CV selects the best candidate with high probability, while offering valuable

insight unavailable in previous CV methods
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ABSTRACT
Cross-validation (CV), while being extensively used for model selection, may have three major
weaknesses. The regular 10-fold CV, for instance, is often unstable in its choice of the best model
among the candidates. Secondly, the CV outcome of singling out one candidate based on the
total prediction errors over the different folds does not convey any sensible information on how
much one can trust the apparent winner. Lastly, when only one data splitting ratio is considered,
regardless of its choice, it may work very poorly for some situations. In this work, to address
these shortcomings, we propose a new averaging-voting based version of cross-validation for
better comparison results. Simulations and real data are used to illustrate the superiority of the
new approach over traditional CV methods.

1. Introduction1

Cross-validation (CV) is one of the most widely used strategies for model/procedure selection. Basically, part2

of the data is used for training each competing model or procedure, and the rest of the data is used to assess their3

performances. The process is repeated multiple times and the candidate with the best overall performance is chosen.4

Given a data splitting ratio (DSR), both exhaustive data splitting (i.e., considering all possible data splittings at the5

ratio) [1, 26] and partial data splitting [14] have been studied. The latter saves the computation cost and includes k-fold6

CV [8], balanced incomplete CV [24], and repeated learning-testing (RLT) [8, 9, 34]. See [3] for a comprehensive and7

informative review on the general topic of cross-validation.8

CV has been extensively applied and theoretically examined in many contexts. The two main aspects linked to the9

adequacy of a learning model, bias and variance, have been investigated in detail (see, e.g., [6, 20, 22, 16]). However,10

there are closely related but subtly different goals of using CV, and a lack of proper differentiation may have contributed11

to several widely seen misconceptions on CV [35]. In particular, accurate estimation of the prediction errors is not12

necessarily aligned with the goal of finding out the best candidate, which leads to the “cross-validation paradox” that13

better training (with more data) and better evaluation (with more data) actually can significantly worsen the wrong14

selection probability [30, 35, 12]. A bottom line is that when the goal is to identify the best candidate, the evaluation15

data proportion has to be large enough, which offers two-fold benefits, namely, 1) obviously there are more data points16

to evaluate the candidate models/procedures, a direct benefit; 2) the reduced sample size of training, as long as it does17

not tip over the ranking of the candidates, may magnify the differences of the close competitors to bless the evaluation18

step, an indirect benefit. In this work, we will focus on the task of using CV to pick the best competitor, and the other19

goals of CV (e.g., [35, 4]) will not be much addressed.20

In this paper, we argue that the current standard practice of CV can be much improved by bringing in two important21

aspects. One is that the current CV approach does not present a proper quantification of how different the competitors22

are. Note that heuristic standard errors of CV in the literature, such as used in one-standard-error rule for tuning23

parameter selection, that depend on variance estimation based on multiple CV errors from different data splittings, are24

actually not valid due to obvious dependence of the CV errors from different folds/data splittings (see, e.g., [30]). As25

shown in [6], there does not exist generally applicable unbiased variance estimator of the CV prediction error. When26

the candidate learning procedures are highly adaptive and data-driven, the task of estimating the variability of CV27

prediction error becomes really complicated – so much so that there has not been any reasonably general success, to28

the best of our knowledge.29
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As a solution, we propose the use of voting in multiple data splittings to offer insight on how close the competitors30

are. In theory, with a large sample, the best candidate should have winning fraction approaching 1. For the specific31

data, with the limited information, the winning frequencies of the competitors properly describe how distinct the32

performances of the candidates are relative to the sample size, and this quantification naturally sheds light on how33

much to trust the comparison of the candidates at the given DSR.34

The other important aspect is that no single DSR is generally sufficient for a reliable CV comparison. For the35

purpose of estimation (instead of model identification), in the context of density estimation using least squares pro-36

jection estimators into linear subspaces, Arlot and Lerasle [4] derived non-asymptotic oracle inequalities for k-fold37

CV, which supports that 5-fold or 10-fold may be good choices for optimal density estimation. For our goal of model38

identification, we propose the use of a profile of voting frequencies at multiple DSRs to reach a much more reliable and39

insightful conclusion on who is the best candidate. Also, we integrate the averaging of the prediction errors (as is done40

in regular CV) into the voting system for more effective/stable results. With these distinctive features, our new version41

is called profile electoral college CV, or PEC-CV in short. Furthermore, the same strategy may be applicable to other42

modified CV methods (see, e.g., [27] for covariate shift adaptation, [29] for selection of the number of clusters, [33]43

for penalized high dimensional linear model and [19] for kernel-based algorithms) by properly modifying the criterion44

function.45

Clearly, our proposed new CV strategy is computationally more demanding due to the use of multiple DSRs. For46

applications where the CV is used to quickly choose one reasonable (instead of the best) candidate in a time-sensitive47

manner, it is perhaps enough or even preferred to use, e.g., regular 10-fold CV. However, for applications where48

insight and interpretation are sought based on the selected procedure, the extra computation cost may be worthwhile.49

The use of our profile CV may much improve stability and predictability of the outcome, as will be demonstrated50

later in this paper. When variable selection methods are compared by CV, for instance, the profile CV may also51

improve interpretability of the variable selection outcome. Note that stability, predictability and interpretability are52

key principles of learning from data [32].53

In this paper, wewill focus on regressionwith a continuous response, but themethodologyworksmore generally for54

classification and other generalized linear modeling frameworks where the accuracy of the prediction of the response55

can be properly assessed via a loss function. An example of classification will be given to illustrate this point.56

The rest of the paper is organized as follows. In Section 2, we highlight several weaknesses of the commonly used57

k-fold CV, as represented by the regular 10-fold CV. The new EC-CV procedures are defined in Section 3. Then, the58

construction and regular patterns of PEC-CV for model selection are presented in Section 4. Properties of the new CV59

methods are stated in Section 5. In Section 6, an illustration based on real data is given. Concluding remarks are in60

Section 7. The proof of the theorem is in the appendix. Some details for the numerical work and additional supporting61

materials are provided in a supplementary file.62

2. Problems with the regular 10-fold CV63

In this section, with illuminating simulation examples, we illustrate several major weaknesses of a regular k-fold64

CV. Since 10-fold CV is widely suggested in the literature, it will be used as a representative, although other choices65

will be considered as well. The standard k-fold CV starts with a partitioning of the data into k sub-samples of (roughly)66

equal size. Each of these sub-samples in turn plays the role of evaluation/assessment sample, while the rest are used to67

train the candidate procedures. For each candidate procedure, the k assessment results from the folds are then totaled68

to produce a single performance quantification. The procedure with the best performance is selected. In the literature,69

10-fold CV is the favorite to use [17] (see, e.g., [35] for cautionary views).70

We identify three weaknesses of the regular k-fold CV.71

2.1. Instability of the regular 10-fold CV72

The instability of regular k-fold CV has been pointed out in the literature (see, e.g., [22, 35, 16]) and a repeated73

k-fold CV can alleviate the problem. However, the message needs to be emphasized more from the model selection74

perspective (in addition to prediction error estimation), with strong examples.75

With the data given, prediction performance estimate by the regular 10-fold CV has uncertainty due to the ran-76

domness of partitioning the sample into ten folds. It turns out that in many situations, this uncertainty is large enough77

to make the final selection result unnecessarily volatile. It often can easily be biased by cherry-picking a specific data78
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Table 1
CV selection of the better model

Proportion
5−1-fold 0.93

Repeated 5−1-fold 1.00
2-fold 0.56

Repeated 5-fold 1.00
3-fold 0.57

Repeated 2-fold 1.00
5-fold 0.69

Repeated 5-fold 1.00
10-fold 0.77

Repeated 10-fold 1.00

splitting to possibly favor a candidate model/procedure.79

80

Example 1: Here the data, with sample size n = 100, are generated from a linear model, and the true model is81

compared with an overfitting model. In this example, five k-fold CV are considered: 2-fold, 3-fold, 5-fold, 10-fold and82

the reverse 5-fold, denoted as 5−1-fold, which means that each time one fold is used for training and the rest 4 folds83

are used for evaluation. The repeated CV method conducted here averages the prediction errors over r repetitions of84

the regular k-fold CV for some r to be described below.85

When the k-fold CV is implemented with one random data splitting (as is usually done in most practices), among86

100 replications of this, the fraction of selecting the true model is 0.93, 0.56, 0.57, 0.69, 0.77 for k = 5−1, 2, 3, 5, 1087

respectively. In contrast, when the k-fold CV is repeated (with random data partitions) 48 times, 120 times, 80 times,88

48 times, 24 times, respectively for k = 5−1, 2, 3, 5, 10 (so that the total number of training-evaluation steps is the same89

for all of them for comparability), the frequency of selecting the true model based on the winning frequencies of the90

competitors over the data splittings are all substantially increased to 1. This example clearly shows in Table 1 that the91

k-fold CV, when implemented only once, can be quite unstable, and the repeated k-fold CV with voting substantially92

improves in such cases. Note that the fact that 5−1-fold performs better than 10-fold is not surprising in this case, which93

is in line with the cross-validation paradox (see, [24, 30]). The details of the example are in the supplementary file.94

2.2. The regular 10-fold CV is not informative95

Another problem related to the 10-fold CV is that the summing up over ten folds gives only one number by av-96

eraging the results. But it is unclear if the CV winner has a decisive edge over the others or not, and one does not97

have a good sense of how reliable the comparison is. As mentioned already, the commonly seen “standard errors" of98

CV errors are actually unreliable and thus cannot be used to address these issues. We illustrate this point by an example.99

100

Example 2: In this example, (detailed are in the supplementary file), we compare a true model with a wrong model101

in two situations. In the first situation, the wrong model is severely wrong, but in the second situation, the wrong model102

is just slightly wrong. Two data sets were generated from the true model respectively and the 10-fold CV is used to103

choose between the true and the wrong models. It turns out that in both cases, the true model is selected. The standard104

application of CVwould stop here, declaring the true model to be the winner. There is no hint on howmuch confidence105

we have in the claim and if the winner has won the competition easily.106

In contrast, for the to-be-proposed EC-CV method, it gives the frequency of winning of the true model over the107

wrong model by CV over multiple random data splittings. The results are presented in Table 2 based on r = 100 data108

splittings. The table is very informative and shows a drastic contrast between the two situations: In the first situation,109

the true model is clearly much better (at least for the DSR), but in the second, it is still better, but not dominatingly so.110

Thus the new EC-CV provides crucial info on the comparison of the candidate procedures.111

To illustrate the usefulness of the info brought up by the EC-CV, we replicate the above experimentN = 100 times112

and report the number of times that the true model wins by the regular 10-fold CV in Table 3. It clearly shows that in113

the first situation, the true model was selected every time, but in the second, the true model was incorrectly declared114

worse 29 times. Therefore the winning frequency of EC-CV offers a proper measure on how comfortably the winner115

tops the other candidate models/procedures.116
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Table 2
The winning frequency of repeated 10-fold CV in model selection: Severely wrong v.s. Less wrong

Severely wrong Less wrong
true model wrong model true model wrong model

100 0 65 35

Table 3
The results of 10-fold CV in model selection based on N = 100 replicated data generating process: Severely wrong v.s.
Less wrong

Severely wrong Less wrong
true model wrong model true model wrong model

100 0 71 29

2.3. No DSR can be the best generally117

There are different recommendations on the DSR for CV [24, 17, 2, 22, 4]. Yang [30, 31] and Zhang and Yang118

[35] have provided a theoretical understanding that the choice of DSR for CV needs to care for two possibly conflicting119

directions for selection consistency: More observations for evaluation are needed to distinguish the close competitors;120

At the same time, the training size cannot be too small so as to avoid a possible change of the relative ranking of the121

candidate procedures. These results suggest that the optimal DSR is associated with the nature of the target regression122

function, the noise level, the sample size, and the natures of the candidate estimators.123

In one direction of the spectrum of optimal DSR, we have the cross-validation paradox mentioned in [30] that124

pushes for most observations for the evaluation. Suppose a specific data splitting (e.g., 10-fold) scheme does a good job125

in comparing two slightly different good parametric models. Now suppose we have more independent and identically126

distributed data, and we maintain the splitting ratio. With the improved estimation capability, we expect better results127

in comparing the two models. In reality, surprisingly, the probability of selecting the better model is decreased. In128

contrast, if we increase the proportion of the evaluation part as the sample size increases, the CV comparison of the two129

procedures works better and better, approaching the perfect decision. When comparing models that are close to each130

other, the large size of observations for the evaluation set smoothes out the fluctuations of the CV errors and increases131

the capability to distinguish the close competitors. On the contrary, increasing training size narrows the estimation132

accuracy difference between the close competitors and makes the procedures more difficult to be distinguished.133

In the other direction of the spectrum of optimal DSR, for instance, in the context of comparing a parametric134

estimator and a kernel estimator, it is actually better to have more observations (but not too many) for training. The135

reason is that the two estimators behave very differently, having easily distinguishable rates of convergence, and the136

nonparametric estimator typically relies on a large training size to be effective, showing its advantage. Too small a137

training size would lead to misleading performance of the kernel method when it is actually much better at the full138

sample size.139

From the above, there is nomagic single data splitting approach that works generally. An illustration is given below.140

141

Example 3: There are two scenarios here, both with n = 120. In Scenario 3.1, like Example 1, a true model142

and an overfitting model are considered as the candidates. In Scenario 3.2, data are generated from another model.143

Random Forest (RF) [7] and Support Vector Machine (SVM) [11] are compared. Here EC-CV at 5−1-fold, 2-fold,144

3-fold, 5-fold and 10-fold are used. In addition, leave-one-out (LOO), which is an extreme case of k-fold CV with only145

one observation for evaluation, is included for comparison.146

Table 4 presents the simulated probabilities of selecting the better estimator (the one with smaller prediction error147

given the data, see Section 4.1 for a precise definition) based on N = 100 replications. Apparently, 5−1-fold EC-CV148

is superior to the other DSRs in Scenario 3.1 but is inferior in Scenario 3.2. Note also that LOO may perform very149

poorly for comparing different models/procedures due to its use of a single observation in evaluating each model in150

every data splitting. The simulation clearly demonstrates that even with the strengthened EC-CV, it is not good to151

indiscriminately recommend one DSR, such as 10-fold. We note that most of the differences between the selection152

probabilities of the CV methods in Table 4 are statistically significant at level 0.05. Details on this and other aspects153

of the example are given in the supplementary file.154
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Table 4
Selections of the better procedure by EC-CV at 5 fold choices and LOO based on N = 100 replicated data generating
process

DSR Scenario 3.1 Scenario 3.2
5−1-fold 0.90 0.02
2-fold 0.70 0.56
3-fold 0.71 0.81
5-fold 0.69 0.88
10-fold 0.73 0.90
LOO 0.42 0.86

155

3. The electoral college CV156

We here propose a new CV method called electoral college cross-validation (EC-CV). Its construction intends to157

address the first two weaknesses of the regular k-fold CV as stated in the previous section (the third weakness will158

be dealt with in the next section). First, some repetitions of the random data splitting are needed to stabilize the159

selection result. Second, a repeated k-fold simply by averaging the prediction errors over the repeated random data160

splittings would not address the second weakness. Our solution is to stabilize a regular k-fold by voting based on161

a number of repeated k-fold comparisons. Specifically, for each random data splitting, the candidate with the best162

overall performance based on the k-fold CV receives one vote. After a number of random data splittings, the candidate163

that receives the most votes is declared the final winner. This way, the winning fraction of the winner conveys a clear164

sense of competitiveness of the candidate models. The winning fraction of nearly 1 presents a totally different picture165

compared to the winning fraction of 55% for instance.166

This kind of CV is, in some spirit, similar to the electoral college voting system of the United States. For each state167

(analogous to each data splitting), after the counts in the different precincts (analogous to different folds) are totaled,168

the resulting state-wise winner receives the electoral votes; and the state votes (analogous to winning frequencies of169

the candidate procedures over the data splittings) are tallied to decide the overall winner. Hence the name EC-CV.170

In summary, in EC-CV, we first adopt the k-fold CV process with averaging (or totaling) over the k-folds, and then171

sum up the results of r data splittings by voting. We will use the notation EC-CV(r) to indicate the number of data172

splittings.173

There can be other ways to do a repeated CV. Some obvious choices are: 1. With r data splittings, there are r × k174

prediction errors for each candidate, and we can do averaging over the r × k prediction errors; 2. Instead of averaging175

over the k-folds, for each data splitting, we can decide the winner based on frequencies of minimizing the prediction176

errors over the k-folds, and then vote based on the multiple data splittings; 3. We can do voting directly based on the177

r × k comparisons; 4. RLT is a kind of CV that several subsets are chosen randomly and independently from the data178

[8]. However, RLT may be inefficient due to pure randomness of selected observations in the training samples. Here179

we also consider a version of voting based RLT: The data are randomly put into training and testing at the DSR and the180

candidate with smaller prediction error on the test data receives one vote; After a number of repetitions of this process,181

the candidate with most votes is the final winner. These alternative versions of CV will be referred to as Averaging,182

Voting-Voting, Voting, Voting RLT, respectively.183

Generally speaking, our EC-CV is typically more efficient than the Voting-Voting, Voting and Voting RLT versions184

of CV because the averaging-voting has a desirable stabilizing effect with the first averaging step. The pure Averaging185

may in fact perform significantly better than the pure voting-based methods (Voting-Voting, Voting and Voting RLT),186

but it may also lose substantially to the voting methods sometimes as will be seen in Table 5. Overall, the EC-CV that187

combines averaging and voting seems to be the best performer. Again, in contrast to EC-CV, Averaging (i.e., averaging188

over both folds and data splittings) would not offer a sensible measure on reliability of the CV selection outcome.189

We illustrate the aforementioned advantage of EC-CV over the pure voting based CVmethods as well as the simple190

repeated CV in the following example.191

192

Example 4: There are two scenarios here. In Scenario 4.1, the data, with n = 120, are generated the same way193

as in Scenario 3.1 and the two candidate procedures to be compared stay the same as well. In Scenario 4.2, data with194
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Table 5
CV selection proportion of the better procedure

DSR Averaging-Voting (EC) Voting-Voting Voting Voting RLT Averaging

Scenario 4.1

5−1-fold 0.90 0.84 0.82 0.80⋆ 0.85
2-fold 0.77 0.63⋆ 0.62⋆ 0.57⋆ 0.75
3-fold 0.73 0.54⋆ 0.55⋆ 0.50⋆ 0.74
5-fold 0.74 0.40⋆ 0.45⋆ 0.48⋆ 0.71
10-fold 0.71 0.34⋆ 0.36⋆ 0.38⋆ 0.73

Scenario 4.2

5−1-fold 0.84 0.81 0.81 0.80 0.78
2-fold 0.82 0.82 0.83 0.80 0.68⋆

3-fold 0.80 0.81 0.79 0.76 0.69⋆

5-fold 0.78 0.72 0.72 0.74 0.67⋆

10-fold 0.77 0.75 0.76 0.78 0.72

n = 120 are generated from a linear model with 10 outliers in response, and linear regression with ordinary least195

squares is compared with least squares regression after excluding the outliers in training data (see the supplementary196

file for details).197

We compare EC-CV, the three versions of voting based CV methods with k = 5−1, 2, 3, 5, 10 and the Aver-198

aging CV (note that for the Voting RLT, delete-ne with ne = 0.8n, 0.5n, 0.33n, 0.2n, 0.1n matches the k-fold with199

k = 5−1, 2, 3, 5, 10, respectively). Given the data, for the comparison to be fairer, 240 data splittings are done for the200

Voting RLT, 240∕k (or 240k for k = 5−1) for the other methods so that they all have the same number of procedure201

training and prediction evaluations. In particular, EC-CV(48), EC-CV(120), EC-CV(80), EC-CV(48), and EC-CV(24)202

are applied under k = 5−1, 2, 3, 5, 10, respectively. We replicate the data generating process N = 100 times, and the203

proportions that the conditionally better procedure (see Section 4.1 for a precise definition) wins are of interest. The204

results are shown in Table 5. Note that the symbol ⋆ indicates that EC-CV produces significantly better selection205

than the other method based on one-sided paired t-test (� = 0.05). The proposed EC-CV (Averaging-Voting CV)206

outperforms the other CV methods in an overall sense.207

With the data being randomly generated, EC-CV can occasionally lead to an unwarranted support to a procedure208

(perhaps similar to the EC voting system in the real election?). Later, theoretical results will show that under proper209

conditions, EC-CV does select the better candidate with probability going to one.210

4. The profile EC-CV211

Now we address the third weakness of the regular k-fold CV stated in Section 2 that a single choice of k cannot212

be generally suitable for procedure comparisons. A natural approach is to consider multiple DSRs and obtain a profile213

of competitiveness of the candidate regression procedures at different DSRs. This profile provides rich information214

on the relative performances of the candidates and reliability of the final selection. We call this profile EC-CV, or215

PEC-CV.216

Specifically, we may consider 5−1-fold, 4−1-fold, 3−1-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 10-fold and 12-fold217

for PEC-CV. In practice, to save the computational cost, 5−1-fold, 2-fold, 4-fold, and 10-fold are usually good enough218

to delineate the profile to make a sound decision.219

220

4.1. Two notions to compare the candidate procedures221

In the earlier examples of comparing different models/procedures, one candidate is based on the true model or the222

other is clearly inferior (see the supplementary file for details). In a general situation, care is needed to define which223

candidate is the best. There are two valid notions that can be used and we formally define them below.224

Let �1 and �2 be two procedures to estimate a target regression function f . Based on data n = (Xi, Yi)ni=1 with n225

iid observations drawn from a distribution �, �1 and �2 produce estimators f̂n,1 and f̂n,2, respectively. Let (X, Y ) be226

an independent copy from �. Let L(Y , f̂ (X)) denote the prediction loss of interest when using an estimator f̂ (X) to227

predict Y at given X. We will focus on the square loss: L(Y , f̂ (X)) = (Y − f̂ (X))2. Consider a CV method 
 that228

chooses between �1 and �2 based on n.229

230
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Definition: Let �1 and �2 be the procedures to be compared.231

1. Given the observed data n, �1 is said to be conditionally better than �2 if
E(X,Y )∼�L(Y , f̂n,1(X)) < E(X,Y )∼�L(Y , f̂n,2(X)),

whereE(X,Y )∼� denotes expectation taken with respect to the randomness of (X, Y ) drawn from � independently232

of the data n.233

2. For the data generating distribution �, �1 is said to be (unconditionally) better than �2 if
En,(X,Y )∼�L(Y , f̂n,1(X)) < En,(X,Y )∼�L(Y , f̂n,2(X)),

where En,(X,Y )∼� denotes expectation taken with respect to the randomness of both n and (X, Y ) indepen-234

dently drawn from �.235

From the definition, the two notions focus on behaviors of the candidate procedures for the present realized data or236

in repeated applications with data generated from the specified distribution. Ideally, we want to select the conditionally237

better procedure, but it is a more challenging goal to achieve than selecting the unconditionally better procedure.238

Now for a CV method 
 , its performance can be naturally measured in terms of its probability of selecting the239

conditionally or unconditionally better procedure between �1 and �2. Since these probabilities under the two notions240

above are typically analytically intractable, one relies on simulations for their calculations. Specifically, we drawM241

(large, say 10000) iid observations, (Xm, Ym)Mm=1 from � independently of the data Dn. Then we obtain Monte Carlo242

approximations of E(X,Y )∼�L(Y , f̂n,j(X)) by 1∕M∑M
m=1 L(Ym, f̂n,j(Xm)), j = 1, 2. Consequently the conditionally243

better procedure is determined.244

To find which procedure is unconditionally better, we replicate the data generation process of n a large number245

of times (say 100 or 1000) and obtain the average losses of the two procedures as Monte Carlo approximations to246

En,(X,Y )∼�L(Y , f̂n,j(X)), j = 1, 2, and decide accordingly. Note that for regression, the square loss is usually used,247

but for classification, the 0-1 loss is more appropriate. The above approach is applied when comparing the candidate248

procedures in the numerical studies in this work. More specifically, in each simulation setting, probabilities of choosing249

the conditionally or unconditionally better model/procedure are calculated for a CV method: The data are generated250

a large number of times and the proportion that the CV method chooses the conditionally better procedure and that it251

chooses the unconditionally better procedure are returned.252

4.2. Common patterns of PEC-CV253

We have done a number of simulations comparing various regression procedures and have summarized the fol-254

lowing frequently occurring and representative patterns. Several figures will be presented, which are obtained for255

simulated data and for each k, 240∕k random data splittings are considered for calculating the voting frequencies of256

the candidate procedures. The frequencies of having smaller prediction errors are plotted in the figures. Details of257

the data generation and the candidate procedures can be found in the supplementary file. We should point out that258

these patterns are not meant to be exhaustive and there certainly can be more. Note that in all the following examples,259

method 1 (solid line with purple color) is truly conditionally better than method 2.260

• Pattern 1 (Dominating). As shown in Fig. 1 (as an extreme case), one method wins the competition decisively261

at all DSRs. This happens when one candidate is just superior to the other at sample sizes reasonably close to262

that of the data at hand. The PEC-CV plot correctly endorses it with really high confidence.263

264

• Pattern 2 (Indifferent). As illustrated in Fig. 2, the gaps between the winning frequencies of the two methods are265

rather small at the different DSRs, and can be both positive and negative. Here method 2 has a slightly higher266

winning frequency at DSR 11:1, but as we have explained before, when the evaluation size is small, a marginally267

higher winning frequency is not a piece of strong evidence in support of the method. This profile indicates the268

candidates perform very similarly, and one should not attach much confidence on the final selection between the269

two.270

271
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Figure 1: Common pattern 1 of PEC-CV: Dominating
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Figure 2: Common pattern 2 of PEC-CV: Indifferent
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Figure 3: Common pattern 3 of PEC-CV: Marginally better

• Pattern 3 (Marginally better). As shown in Fig. 3, consistently at all the different DSRs, one method is clearly272

above the 50% line, but to a limited degree, especially towards the end. This profile suggests that we are quite273

confident that one method is generally better, but only marginally so.274

275

• Pattern 4 (Strong switching). This is illustrated in Fig. 4. Here, the winning frequency of one method (denoted276

as method 1) is below 50% in the beginning but increases substantially (passing 50% line eventually) as the277
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Figure 4: Common pattern 4 of PEC-CV: Strong switching
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Figure 5: Common pattern 5 of PEC-CV: Marginal switching

training sample size increases. The switching can happen early or late, but the winning frequency of method278

1 is close to 1 towards the end. This situation may happen when the estimation process of method 1 is more279

complex than method 2, and therefore, method 1 suffers from the low sample size more than method 2. When280

the training size gets large enough, method 1 becomes clearly more competitive than method 2. This profile281

shows that the selection of method 1 at the full sample size is a confident one (but method 2 may be preferred at282

a smaller sample size).283

284

• Pattern 5 (Marginal switching). As depicted in Fig. 5, method 2 has transitioned to be better as the number of285

folds increases, but its advantage over method 1 is not quite certain. Here when k gets larger, the number of ob-286

servations used to assess the predictive performance becomes smaller, making the comparison of the candidates287

less certain for a tough situation (which is the reason behind the cross-validation paradox). For this delicate288

case, if we just use the regular 10-fold CV, the selection outcome is quite random and unreliable, and we have to289

handle it with kid gloves. The profile CV provides a bigger picture and it suggests that method 2 might be better290

than method 1 with more training samples, but the confidence level on this is low. Since method 1 is actually291

better, the decision to choose method 2 by focusing only on 10-fold or 12-fold would be wrong. The PEC-CV292

profile can clearly warn against simply trusting the selection outcome by the popular 10-fold. Furthermore, the293

PEC-CV may actually prefer method 1 as the winner when integrating together the performances at the different294

DSRs (see Section 4.3).295

296

• Pattern 6 (V-shape). As shown in Fig. 6, method 1 has winning frequencies above 50%, but it roughly has a297
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V-shape: the winning frequency of method 1 is high at both ends but lower in the middle. The profile suggests298

that the choice of method 1 is most likely safe at the full sample size. We note that sometimes it may be possible299

that the winning frequency of method 1 can drop close to or even slightly below 0.5 in the middle. Note that300

such a profile can occur when comparing model selection methods. For example, when using BIC [23] or Least301

Absolute Shrinkage and Selection Operator (LASSO) [28] to select among linear regression models, when the302

true coefficients have different magnitudes, it has been observed in the literature that when the training sample303

size is small, LASSO performs better, but when the sample size gets larger, BIC performs better, and when the304

sample size gets much larger, LASSO wins back the competition [18].305

306
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Figure 6: Common pattern 6 of PEC-CV: V-shape

• Pattern 7 (Asymmetric). This pattern is unique in some sense. Sometimes, the two competing methods may307

give identical regression estimates. For instance, in the comparison of BIC and BICc [15, 35], they may actu-308

ally select the same model, in which case no one wins the competition. Thus their winning frequencies do not309

necessarily add to 1 and it is no longer the case that one wanes while the other waxes. As shown in Fig. 7, the310

winning frequency curves are asymmetrical about the line of 0.5. The profile plot suggests that the two methods311

agree frequently, but it is quite clear in this case that method 1 should be selected.312

313
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Figure 7: Common pattern 7 of PEC-CV: Asymmetric

As explained above, the PEC-CV plots provide much richer and more reliable info on relative performances of the314

competitors compared to the regular CV. We have highlighted several common patterns, based on which more robust315

and accurate decisions can be made. Of course, due to randomness of the data, sometimes the PEC-CV plot may falsely316
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recommend a candidate. But, very importantly, in most such cases, we would humbly admit we are not confident about317

the selection outcome when the PEC-CV plot shows it is a tough call in the comparison of the procedures. In contrast,318

the regular CV does not offer such insight.319

4.3. A summary measure based on PEC-CV320

As we have shown, the PEC-CV contains much more info about the behaviors of the regression procedures in321

consideration than the regular 10-fold CV. The visual and intuitive representation assists decision making handily.322

Since it involves multiple DSRs at which the relative performances of the candidates can be quite different, sometimes323

we may want to have an overall measure that summarizes the winning frequencies of the candidates. Needless to324

say, there are various ways to do this, e.g., by considering different averagings (for instance, geometric mean versus325

algorithmic mean), possibly with a weight. Some theoretical results will be given in the next section.326

In this subsection, we illustrate the use of one simple measure as an example to demonstrate the finite sample327

performance of the proposed approach. For various specific scenarios, other tailored measures may be more effective.328

Here, for each competing procedure, at each DSR, if its winning frequency is below 50%, it is replaced by zero, and329

then a simple average of the modified winning frequencies is taken. The candidate with a higher average is declared the330

winner. The modification helps to separate close competitors when we need to choose one. Again, the full PEC-CV331

plot provides info on strength of this resulted decision. Here, we consider three different model settings. Note that the332

first setting is chosen to be on classification and the square loss for regression is replaced by the 0-1 loss (classification333

error). In fact, the PEC-CV approach works generally for the generalized linear modeling frameworks where prediction334

accuracy of the response can be assessed based on the predictive negative log-likelihood or a sensible loss function335

such as 0-1 loss for classification.336

337

Setting 1338

At the sample size n = 100, 200, 500, for 0.6n samples with Y = 0, the covariate vector (X1, X2, X3) followsN(0,Σ),339

where Σ is a 3 × 3 identity matrix; for the remaining 0.4n samples with Y = 1, we generate X1, X2, X3 independently340

withN(0.4, 1), N(0.3, 1), N(0, 1), respectively. We use CV methods to compare the Fisher’s linear discriminant anal-341

ysis (LDA) [13] based on X1 and X2 with LDA based on all of the three predictors. To tell which procedure is truly342

better in classification, an independent testing data of size 50000 is used. Here naturally we consider the classification343

error (0-1 loss) instead of the square prediction error.344

345

Setting 2346

The model used to generate data has the nonlinear expression:347

Y = X2
1 +X

3
2 +X3 + ". (1)

At the sample size n = 100, 200, 500, we draw the covariates (X1, X2, X3) from N(0,Σ) with Σ = (0.4|i−j|)3i,j=1. For348

", we consider bothN(0, 1) and t(3) distributions. We apply CV methods to compare RF with SVM based on the data349

generated by (1). Also, to tell which procedure is truly better in prediction, an independent testing data of size 50000350

is used.351

352

Setting 3353

We consider the following model for data generation:354

Y = �0 + �1X1 + �2X2 +⋯ + �7X7 + ".

In order to have realistic covariates, at the sample size n = 100, 200, 500, we randomly draw the covariates (X1,⋯ , X8)355

from an air quality data set (https://archive.ics.uci.edu/ml/datasets/Air+Quality). The dataset contains356

9358 instances of hourly averaged responses from an array of 5 metal oxide chemical sensors embedded in an Air357

Quality Chemical Multisensor Device in an Italian city. We consider attributes PT08.S1-PT08.S5, Temperature, Rel-358

ative Humidity and Absolute Humidity as the independent variables. For the random error ", independent of X, we359

consider both N(0, 1) and t(3) distributions. We take (�0, �1,⋯ , �7) = (0.5, 1,−1, 0.5,−0.5, 0.25,−0.25, 0.1) as an360

example where there are effects of different sizes. Note thatX8 is not needed for predicting Y . An independent testing361

data of size 5000 is extracted from the air quality data set to determine the truly better model. We apply CV methods362

to select between the linear regression model based on X1,⋯ , X7 and that based on all of the eight predictors.363
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Setting 4364

The data in this example are generated by365

Y = �0 + �1X1 + �2X2 +⋯ + �10X10 + ",

where (�0, �1,⋯ , �10) = (0.5, 0.2,−0.5, 0.5,−1, 1,−1.5, 2, 0.5,−0.5, 1). The covariate vector (X1,⋯ , X16) follows366

N(0,Σ) with Σ = (0.2|i−j|)16i,j=1, and error term " followsN(0, 1). The sample size of this setting is 100, 200, 500.367

Here we investigate the capabilities of the different CVs when the performance difference between the candidate368

methods varies. Besides the true mode (which correctly uses the first 10 variables), the model to compare (MTC) with369

is one of the following: 1) Y ∼ X1+X2+X3+⋯+X16 (severely overfitting), 2) Y ∼ X1+X2+⋯+X14 (overfitting),370

3) Y ∼ X2 +⋯+X12 (less overfitting), 4) Y ∼ X4 +⋯+X11 (marginally overfitting). Clearly, the different choices371

of MTC here yield different degrees of competitiveness with respect to the true model. To verify that the true model372

is indeed better in prediction, an independent testing data of size 10000 is used.373

374

We compare three methods: regular 10-fold CV, 10-fold EC-CV(24) and PEC-CV with the summary measure375

stated earlier. Here for EC-CV(r) involved in the calculation of PEC-CV, as in Example 4, we take r = 240∕k for k-376

fold with 4 choices: 5−1-fold, 2-fold, 4-fold, and 10-fold. Both conditional and unconditional probabilities of choosing377

the better model are considered. For the conditional selection probability, each time we randomly draw the specified378

number of observations (n) of the covariates and response Y , and one of the two competing models is deemed to379

perform better based on the squared prediction error or classification error on the independent test data. If a CV380

method chooses this better model, it is regarded to have made the correct decision. Note that in Setting 3, although the381

smaller model is used to generate the data, it actually performs worse than the larger model sometimes. We replicate382

the data generation and selection processN = 1000 times and record the number of times each CVmethod chooses the383

conditionally better model. For unconditional selection, as explained earlier, we define the better model to be the one384

that minimizes the expected squared prediction error or the expected classification error on the test cases, which in our385

settings are the classifier based onX1 andX2, RF and the true model, respectively. Clearly selecting the conditionally386

better model is more difficult. The selection results of Setting 1 to Setting 3 for unconditional and conditional better387

models are presented in Table 6 and Table 7. Similar results of Setting 4 are presented in Table 8 and Table 9. For388

Setting 4, in addition, we present the root mean square error (RMSE) of the candidate models (their standard errors389

are in the range 0.001 to 0.009) and their proportions of performing better in Table 10.390

Note that the mean 0-1 loss of LDA based on the true model is 0.380 and that of LDA based on the larger model391

is 0.386. The difference may seem small, but a paired t-test shows that the performances are statistically significant at392

level 0.05. The results for Setting 4 show that in a range of competitiveness of the candidate models, the CV methods393

perform differently, from perfectly identifying the better model to selecting the worse model up to 34% in the worst394

case.395

From these tables, we conclude that EC-CV improves over regular CV, but the performance of PEC-CV with the396

chosen averaging scheme is the best in terms of the proportion of identifying the better procedure (conditionally or397

unconditionally). Furthermore, our proposed methods can be used for classification as well, and are effective not only398

for the linear regression models, but also for the non-linear regression models with machine learning procedures as399

candidates.400

5. Theoretical properties401

In 1993, Shao [24] showed that surprisingly when comparing linear regression models, in order to identify the best402

model with high probability, the evaluation data size in CV must be dominating. When comparing general regression403

procedures, in 2007, Yang [31] showed that may not be necessary and the training data size can sometimes be domi-404

nating, depending on how competitive the candidates are (see [35] for further extensions). In this section, we mainly405

focus on cases where at least one of the candidate procedures is nonparametric with convergence rate (under squared406

error) slower than the parametric rate 1∕n. When only parametric models are considered, besides CV, we advocate the407

use of information criteria, proper testings, goodness of fit assessments, and model diagnostics for reaching a more408

reproducible and reliable conclusion (see, e.g., [21]).409

Consider the regression setting:
Yi = f (Xi) + "i, 1 ≤ i ≤ n, (2)
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Table 6
Settings 1-3: Simulation results for unconditional winning proportion over N = 1000 replications. ⋆ indicates that PEC-CV
performs significantly better than the other method at level 0.05.

Setting Distribution Method n = 100 n = 200 n = 500

Setting 1 −
PEC-CV 0.818 0.778 0.782

10-fold EC-CV 0.686⋆ 0.754 0.658⋆

10-fold CV 0.612⋆ 0.574⋆ 0.498⋆

Setting 2

N(0, 1)
PEC-CV 0.886 0.900 0.873

10-fold EC-CV 0.802⋆ 0.807⋆ 0.772⋆

10-fold CV 0.770⋆ 0.780⋆ 0.764⋆

t(3)
PEC-CV 0.810 0.871 0.841

10-fold EC-CV 0.724⋆ 0.772⋆ 0.744⋆

10-fold CV 0.698⋆ 0.760⋆ 0.740⋆

Setting 3

N(0, 1)
PEC-CV 0.933 0.872 0.874

10-fold EC-CV 0.865⋆ 0.854 0.873
10-fold CV 0.823⋆ 0.806⋆ 0.818⋆

t(3)
PEC-CV 0.954 0.874 0.861

10-fold EC-CV 0.888⋆ 0.852 0.868
10-fold CV 0.822⋆ 0.816⋆ 0.820⋆

Table 7
Settings 1-3: Simulation results for conditional winning proportion over N = 1000 replications. ⋆ indicates that PEC-CV
performs significantly better than the other method at level 0.05.

Setting Distribution Method n = 100 n = 200 n = 500

Setting 1 −
PEC-CV 0.662 0.606 0.586

10-fold EC-CV 0.554⋆ 0.534⋆ 0.524
10-fold CV 0.490⋆ 0.510⋆ 0.438⋆

Setting 2

N(0, 1)
PEC-CV 0.829 0.851 0.821

10-fold EC-CV 0.750⋆ 0.754⋆ 0.724⋆

10-fold CV 0.721⋆ 0.726⋆ 0.717⋆

t(3)
PEC-CV 0.774 0.754 0.802

10-fold EC-CV 0.680⋆ 0.670⋆ 0.704⋆

10-fold CV 0.659⋆ 0.640⋆ 0.697⋆

Setting 3

N(0, 1)
PEC-CV 0.683 0.629 0.637

10-fold EC-CV 0.621⋆ 0.621 0.636
10-fold CV 0.585⋆ 0.580⋆ 0.594⋆

t(3)
PEC-CV 0.711 0.651 0.610

10-fold EC-CV 0.656⋆ 0.632 0.610
10-fold CV 0.609⋆ 0.611⋆ 0.577⋆

where (Xi, Yi)ni=1 are independent observations with Xi iid taking values in a d-dimensional Borel set  ⊂ Rd for410

some d ≥ 1, f is the true regression function and "i is the error term that satisfies E("i|Xi) = 0 and E("2i ) is finite.411

Let �1 and �2 be two regression procedures that are to be compared. Let f̂n,1(x) and f̂n,2(x) denote the estimated
regression function by the two procedures, respectively, at sample size n. For a chosen 1 < n2 < n and n1 = n − n2,we split the data (Xi, Yi)ni=1 into two parts Z1 = (Xi, Yi)

n1
i=1, Z2 = (Xi, Yi)ni=n1+1. Then �1 and �2 are trained on Z1 to

obtain f̂n1,1 and f̂n1,2 and we record the prediction errors

CV (f̂n1,j) =
n
∑

i=n1+1

(

Yi − f̂n1,j(Xi)
)2
, j = 1, 2. (3)
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Table 8
Setting 4: Simulation results for unconditional winning proportion over N = 1000 replications. ⋆ indicates that PEC-CV
performs significantly better than the other method at level 0.05.

Setting Distribution Method n = 100 n = 200 n = 500

MTC 1

N(0, 1)
PEC-CV 1.000 1.000 1.000

10-fold EC-CV 1.000 1.000 1.000
10-fold CV 1.000 1.000 1.000

t(3)
PEC-CV 1.000 1.000 1.000

10-fold EC-CV 1.000 1.000 1.000
10-fold CV 1.000 1.000 1.000

MTC 2

N(0, 1)
PEC-CV 0.970 0.963 0.955

10-fold EC-CV 0.905⋆ 0.903⋆ 0.916⋆

10-fold CV 0.887⋆ 0.885⋆ 0.888⋆

t(3)
PEC-CV 0.976 0.972 0.963

10-fold EC-CV 0.928⋆ 0.903⋆ 0.921⋆

10-fold CV 0.908⋆ 0.901⋆ 0.899⋆

MTC 3

N(0, 1)
PEC-CV 0.924 0.919 0.893

10-fold EC-CV 0.851⋆ 0.866⋆ 0.852⋆

10-fold CV 0.844⋆ 0.858⋆ 0.841⋆

t(3)
PEC-CV 0.928 0.911 0.899

10-fold EC-CV 0.851⋆ 0.866⋆ 0.865⋆

10-fold CV 0.852⋆ 0.836⋆ 0.854⋆

MTC 4

N(0, 1)
PEC-CV 0.865 0.859 0.864

10-fold EC-CV 0.829⋆ 0.830⋆ 0.845
10-fold CV 0.814⋆ 0.814⋆ 0.841⋆

t(3)
PEC-CV 0.873 0.858 0.854

10-fold EC-CV 0.827⋆ 0.830⋆ 0.830⋆

10-fold CV 0.817⋆ 0.816⋆ 0.815⋆

Now, given an integer k ≥ 2, we split the data into equal-size (as much as possible) k parts. Then each part is taken412

as Z2 in turn, while the rest as Z1 to obtain the above prediction errors for �1 and �2.413

We sum up the total prediction errors over the k folds for each of �1 and �2, and denote the total prediction errors
as

TPEk(j), j = 1, 2. (4)
We emphasize that here in obtaining TPE we tally up the prediction errors of different folds. Then let

Wk =

{

1 if TPEk(1) ≤ TPEk(2),
0 otherwise. (5)

That is, with the prediction errors tallied, �1 gets one vote if it has performed better for this specific k-fold data splitting.414

Now let Π be a collection of permutations of the data, and let Wk(�) be the voting result based on the permuted
data with � ∈ Π. Then we count the total votes for �1 and calculate its ratio of winning (ROW ):

ROWk =
1
|Π|

∑

�∈Π
Wk(�). (6)

If ROWk is close to 1, it shows that �1 performs consistently better (over the data permutations) than �2 at the DSR415

(k − 1) ∶ 1 (training:evaluation).416

Now let us consider the reverse k-fold CV, denoted as k−1-fold. The only difference from the above is that each417

time we use one fold for training and the remaining k − 1 folds for evaluation. Then the DSR is 1 ∶ (k − 1) (train-418

ing:evaluation). The reason to consider a much smaller portion for training is that it in fact can be advantageous when419
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Table 9
Setting 4: Simulation results for conditional winning proportion over N = 1000 replications. ⋆ indicates that PEC-CV
performs significantly better than the other at level 0.05.

Setting Distribution Method n = 100 n = 200 n = 500

MTC 1

N(0, 1)
PEC-CV 1.000 1.000 1.000

10-fold EC-CV 1.000 1.000 1.000
10-fold CV 1.000 1.000 1.000

t(3)
PEC-CV 1.000 1.000 1.000

10-fold EC-CV 1.000 1.000 1.000
10-fold CV 1.000 1.000 1.000

MTC 2

N(0, 1)
PEC-CV 0.949 0.957 0.951

10-fold EC-CV 0.884⋆ 0.897⋆ 0.912⋆

10-fold CV 0.866⋆ 0.879⋆ 0.884⋆

t(3)
PEC-CV 0.961 0.969 0.962

10-fold EC-CV 0.904⋆ 0.925⋆ 0.920⋆

10-fold CV 0.893⋆ 0.898⋆ 0.898⋆

MTC 3

N(0, 1)
PEC-CV 0.837 0.865 0.873

10-fold EC-CV 0.764⋆ 0.812⋆ 0.832⋆

10-fold CV 0.757⋆ 0.804⋆ 0.821

t(3)
PEC-CV 0.832 0.863 0.873

10-fold EC-CV 0.779⋆ 0.803⋆ 0.839⋆

10-fold CV 0.758⋆ 0.788⋆ 0.828⋆

MTC 4

N(0, 1)
PEC-CV 0.699 0.730 0.769

10-fold EC-CV 0.667⋆ 0.701⋆ 0.750
10-fold CV 0.658⋆ 0.687⋆ 0.0.746⋆

t(3)
PEC-CV 0.711 0.718 0.783

10-fold EC-CV 0.687⋆ 0.687⋆ 0.759⋆

10-fold CV 0.661⋆ 0.678⋆ 0.744⋆

comparing close competitors (see, [24, 31, 35]). In this reverse k-fold case, the ratio of winning for �1 is denoted420

ROWk−1 .421

The above is the newly proposed method of electoral college CV (note again that the electoral college system422

shares the spirit of totaling up over precincts in a state but then voting at the state level). As we have pointed out, it423

is beneficial to consider multiple DSRs to have a more comprehensive understanding of the comparison of the two424

procedures. Let 1 and 2 be two finite sets of positive integers. Let  = {k, k ∈ 1} ∪ {k−1 ∶ k ∈ 2}. Then for425

s ∈ , if s = k ∈ 1, we obtain ROWk; if 1∕s = k ∈ 2, we obtain ROWk−1 = ROWs. The ROW profile over426

s ∈  provides much information on the two competing procedures. Direct graphs of the profile can visually offer an427

intuitive understanding, as we have shown. We may also numerically summarize the ROW values, as done below.428

We define the average repeated ratio of winning (ARROW ):
ARROW = 1

||

∑

s∈
ROWs. (7)

Another way to summarize the comparison results at the different splitting ratios goes as follows: let
ARROW ′ = 1

||

∑

s∈,ROWs≥0.5
ROWs. (8)

Note that for an s ∈  with ROWs < 0.5, the winning frequency of �1 at this DSR is simply ignored in ARROW ′.429

This version emphasizes more the degree of winning. For instance, if �1 is only slightly worse than �2 such that at430

each DSR, ROWs for �1 is about 45%. Then the earlier ARROW value is about 45%, correctly indicating that �1 is431

worse, but only slightly so. The ARROW ′ statistic, however, has value 0, properly conveying the information that for432

the selection procedure, we are quite confident to choose �2 as the better one, regardless of how close behind �1 may433

be. So both versions of ARROW provide useful info.434
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Table 10
Setting 4: Simulation results of RMSE of the candidate models and their proportions of performing better over N = 1000
replications.

True MTC 1 True MTC 2 True MTC 3 True MTC4

N(0, 1)

n = 100 RMSE 0.345 0.469 0.345 0.416 0.345 0.363 0.345 0.354
Better proportion 1.000 0.000 0.979 0.021 0.832 0.168 0.734 0.266

n = 200 RMSE 0.237 0.295 0.237 0.281 0.237 0.248 0.237 0.240
Better proportion 1.000 0.000 0.994 0.004 0.871 0.129 0.756 0.244

n = 500 RMSE 0.147 0.184 0.147 0.174 0.147 0.154 0.147 0.254
Better proportion 1.000 0.000 0.996 0.004 0.905 0.095 0.807 0.193

t(3)

n = 100 RMSE 0.570 0.794 0.570 0.683 0.570 0.600 0.570 0.581
Better proportion 1.000 0.000 0.985 0.015 0.836 0.164 0.810 0.190

n = 200 RMSE 0.402 0.484 0.402 0.479 0.402 0.422 0.402 0.415
Better proportion 1.000 0.000 0.997 0.003 0.860 0.140 0.829 0.171

n = 500 RMSE 0.247 0.308 0.247 0.263 0.247 0.259 0.247 0.251
Better proportion 1.000 0.000 0.999 0.001 0.929 0.071 0.901 0.099

More generally, we may allow a weighting of the ROW values (e.g., large k values receive higher weights due to
their being closer to the full sample size). Letw = (ws ∶ s ∈ ) be a weighting vector (i.e,ws ≥ 0 and∑s∈ws = 1).Then define

ARROW (w) =
∑

s∈
wsROWs. (9)

While there are different ways to summarize the ROW values, we focus below on ARROW for our main theoret-435

ical result, which follows [31] for technical derivation.436

Define the Lq norm

‖f‖q =
{

(

∫ |f (x)|qPX(dx)
)1∕q for 1 ≤ q <∞

esssup|f | for q = ∞,
where PX denotes the probability distribution of X1. For the two competing procedures, we assume f̂n,1 and f̂n,2converge exactly at rate pn and qn under the ‖‖2 loss, respectively, with max(pn, qn) converging more slowly than the
parametric rate 1∕√n. Without loss of generality, we assume �1 is asymptotically better than �2 under the L2 loss:
pn = O(qn) and for ∀ 0 < " < 1, ∃ a constant c", such that when n is large enough

P
(

‖f̂n,2 − f‖2 ≥ (1 + c")‖f̂n,1 − f‖2
)

≥ 1 − ".

The following conditions are needed.437

Condition 1. The error variances E("2i |Xi) are upper bounded by a constant �2 > 0 almost surely for all i ≥ 1.438

Condition 2. For j = 1, 2,
‖

‖

‖

f − f̂n,j
‖

‖

‖∞
= Op(1). (10)

Condition 3:
‖

‖

‖

f − f̂n,j
‖

‖

‖4
‖

‖

‖

f − f̂n,j
‖

‖

‖2

= Op(1), j = 1, 2. (11)

Theorem 1. Under the previous conditions, for every choice of1 and2, for any number of data splittings and any
weighting vector w, we have

ARROW (w)→ 1 in probability as n→ ∞. (12)
The same convergence holds for ARROW ′ and ARROW (w).439
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Table 11
Specifications of datasets

Datasets Type p n ntest RELM SVM

C C 


Housing Reg 14 337 169 28 2−2 20

Energy-cooling Reg 8 512 256 210 28 20

Energy-heating Reg 8 512 256 221 29 20

Mg Reg 6 923 462 210 22 2−1

Abalone Reg 9 2784 1393 215 20 2−1

Liver Class 7 230 115 22 22 20

Breast cancer Class 11 455 228 21 2−1 2−1

Australian Class 15 460 230 22 22 2−1

German Class 25 666 334 24 20 20

Bank note Class 5 914 458 21 22 20

Cpusmall Reg 12 500 5000 212 25 20

Svmuide1 Class 5 500 2000 24 25 26

Thus, under the mild conditions stated, the ARROW measures will be on target with probability going to 1, i.e.,440

they will be close to 1 if �1 is better (and they will be close to 0 if �2 is better). Therefore, with a sufficiently large sample441

size, we should expect the PEC-CV to clearly show out the better procedure. Of course, in reality, the sample size may442

not be enough to distinguish two competitors decisively, and our ARROW statistics provide sensible quantifications443

on the relative performances of �1 and �2.444

6. Empirical study445

To thoroughly evaluate the performances of the PEC-CV and EC-CV, benchmark datasets from the UCI machine446

learning Repository [5] and LIBSVM [10] are selected. The PEC-CV is compared to other kinds of CV (10-fold EC-447

CV(24), 10-fold CV, LOO). Here the CV methods are used to compare the performances of RELM [25] and SVM.448

To be consistent with previous ELM papers, the input weights are randomly generated from the range [−1, 1] and the449

biases from [0, 1]. We employ Gaussian Radial Basis Functions (RBF) as the activation function. For large data sets450

(Cpusmall and Svmguide1), we split the data into two parts, a final testing sample size of ntest and the rest for selecting451

the training samples. At the sample size of n = 500, each time, we randomly extract n observations from the training452

part. For small data sets, we directly split the data into two parts, a final testing sample of size ntest and a data set of453

size n, and a random data permutation is performed before each splitting of data. A total ofN = 100 trials are carried454

out for each data set. The training and testing data sets are divided as indicated in Table 11. The tuning parameters455

of the RELM are the same as in [25], which are also reported in Table 11. Note that winning proportion is called for456

short.457

Table 12 presents the comparisons of the regular 10-fold CV, 10-fold EC-CV(24), and a version of PEC-CV as458

explained in Section 4, under conditional and unconditional selections respectively. Here for EC-CV(r) involved in459

the calculation of PEC-CV, as in Example 4, we take r = 240∕k for k-fold with 4 choices: 5−1-fold, 2-fold, 4-fold, and460

10-fold. The results show that 10-fold EC-CV improves over the regular 10-fold CV, but PEC-CV further improves461

the performances.462

To conclude, the real data example has illustrated that the PEC-CV can lead to significantly improved performance463

over the regular CV. Another real example with similar findings can be found in the supplementary file.464
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Table 12
Real data analysis results using PEC-CV, 10-fold EC-CV, 10-fold CV and LOO over N = 100 replications.

Datasets Type PEC-CV 10-fold EC-CV 10-fold CV LOO
Mean RMSE WP WP WP WP

RELM SVM cond uncond cond uncond cond uncond cond uncond
Housing Reg 0.076 0.087 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Energy-cooling Reg 0.071 0.079 1.000 1.000 1.000 1.000 0.950 0.950 0.800 0.800
Energy-heating Reg 0.074 0.088 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Mg Reg 0.134 0.135 0.710 0.750 0.640 0.660 0.610 0.650 0.570 0.610
Abalone Reg 0.078 0.076 0.650 0.710 0.650 0.710 0.520 0.550 0.520 0.550
Cpusmall Reg 0.055 0.059 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Mean Accuracy WP WP WP WP
RELM SVM cond uncond cond uncond cond uncond cond uncond

Liver Class 0.713 0.643 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Breast cancer Class 0.970 0.960 0.830 0.930 0.820 0.910 0.65 0.710 0.800 0.900
Australian Class 0.857 0.852 0.760 1.000 0.680 0.910 0.590 0.840 0.570 0.820
German Class 0.734 0.725 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Bank note Class 1.000 0.987 0.860 1.000 0.860 1.000 0.730 0.930 0.730 0.930
Svmguide1 Class 0.966 0.954 0.750 0.800 0.750 0.800 0.650 0.700 0.710 0.730

7. Conclusion and discussion465

CV remains the most widely used tool to choose a supervised learning procedure. Here the goal is to single out the466

candidate that has the best prediction accuracy for future applications. The traditional k-fold CV, the popular 10-fold467

in particular, has three major drawbacks in terms of stability, a lack of a reliability measure/index, and inability to468

reflect the dynamic relative performances of the competing learning procedures and the assessments as the sample size469

changes. The proposed PEC-CV addresses these difficulties by repeated data splittings at multiple data splitting ratios470

and an integration of averaging (of prediction errors over different folds for each k-fold data partition) and voting.471

The averaging part enhances the prediction accuracy measure and the voting part provides the previously unavailable472

valuable information on competitiveness of the candidates. Under sensible conditions, the winning frequencies of the473

best candidate should stand out, approaching 1 theoretically as the sample size increases. The profile of the winning474

frequencies yields much insight on the choice of the best candidate as we have illustrated in the paper. In contrast,475

a pure averaging (e.g., repeated k-fold) suffers from a lack of reliable quantification of how much better the winning476

procedure is over the others.477

As we mentioned in the introduction, our proposed CV method is computationally more demanding due to the use478

of multiple DSRs. It is nice that there are some modified CV methods like the approximated cross-validation based on479

Bouligand influence function (BIF) in [19] being computed efficiently for certain kernel-based methods, and we can480

apply our PEC-CV strategy to this approximated BIF based criterion function by replacing TPEk(j), j = 1, 2 in this481

paper with BIF rk(j), j = 1, 2 in [19]. In this way, we can save time at each DSR, thereby reducing the total running482

time for using CV with kernel-based algorithms.483

It should be emphasized that our focus in the paper is on choosing the best candidate. The conclusions do not484

necessarily apply to prediction error estimation itself (see, e.g., [6, 20, 22, 35]).485

A. Appendix: Proof of Theorem 1486

PROOF OF THEOREM 1. Themain idea and technical derivation follow from [31], which handles a purely voting-based487

CV at a single DSR. We give a sketched proof and more details can be found in [31].488

Under the conditions given, from [31], we know that for each fixed DSR n2∕n1, as is true for the k-fold and k−1-fold489

versions,490

P
(

CV (f̂n1,1) ≤ CV (f̂n1,2
)

→ 1 in probability.
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Let CV (f̂ (l)n1,j) denote the sum of prediction errors when the l-th fold is used as the evaluation part, j = 1, 2. Then491

P
(

TPEk(1) > TPEk(2)
)

= P

( k
∑

l=1
CV (f̂ (l)n1,1) >

k
∑

l=1
CV (f̂ (l)n1,2)

)

≤ P

( k
⋃

l=1

{

CV (f̂ (l)n1,1) > CV (f̂
(l)
n1,2
)
}

)

≤ kP
(

CV (f̂n1,1) > CV (f̂n1,2)
)

→ 0 as n→∞.

Clearly, the same argument applies to the k−1-fold case.492

Thus, we have shown that for every k (and k−1),Wk → 1 in probability. Consequently, since 0 ≤ Wk ≤ 1 almost493

surely, we must have EWk → 1 as n→ ∞. Then494

E

(

1
|Π|

∑

�∈Π
Wk(�)

)

= EWk → 1.

Again, because 0 ≤ 1
|Π|

∑

�∈Π
Wk(�) ≤ 1 almost surely, the above convergence implies495

1
|Π|

∑

�∈Π
Wk(�)→ 1 in probability,

i.e, ROWk → 1 in probability.496

Since this holds for each k-fold or k−1-fold, we conclude ARROW → 1 in probability, and the same conclusion497

also holds for ARROW ′ and ARROW (w) for every weighting vector w. This completes the proof of the theorem.498
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