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Abstract

Model combining (mixing) methods have been proposed in recent years to deal with uncertainty
in model selection. Even though advantages of model combining over model selection have been
demonstrated in simulations and data examples, it is still unclear to a large extent when model com-
bining should be preferred. In this work, firstly, an instability measure to capture the uncertainty
of model selection in estimation, named PIE, is proposed based on perturbation of the sample. It is
demonstrated that estimators from model selection can have large PIE values and model combining
substantially reduces the instability for such cases. Secondly, we propose a model combining method,
ARMS, and derive a theoretical property. In ARMS, a screening step is taken to narrow down the
list of candidate models before combining, which not only saves computing time but also can im-
prove estimation accuracy. Thirdly, we compare ARMS with EBMA (an empirical Bayesian model
averaging) and model selection methods in a number of simulations and real data examples. The
comparison shows that model combining produces better estimators when the instability of model
selection is high and ARMS performs better than EBMA in most such cases in our simulations. With
respect to the choice between model selection and model combining, we propose a rule of thumb
in terms of PIE. The empirical results support that PIE is a sensible indicator of model selection
instability in estimation and is useful for understanding whether model combining is a better choice
over model selection for the data at hand.

KEY WORDS: Adaptive regression by mixing; Bayesian model averaging; Model combining;
Model selection; Model uncertainty; Instability index; PIE.

1 Introduction

In statistical data analysis, it is very unlikely that only one model needs to be considered. When multiple

plausible models are present, the traditional approach is to take a reasonable model selection process

(formally or informally) to find a single, hopefully the “best” model, from which one makes the final

statistical estimation and/or prediction.

A large amount of work has been done on the topic of model selection. Various model selection

methods are available based on different guiding principles and/or specific theoretical/empirical con-

siderations, such as AIC (Akaike (1973)), BIC (Schwarz (1978)), cross-validation (Allen (1974), Stone

(1974)) and MDL (e.g., Rissanen (1984) and Barron, Rissanen and Yu (1998)). Appropriate convergence

properties (such as consistency of the selected model and convergence of the corresponding estimator)

have been well established in a variety of settings.
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Despite the theoretical and methodological advancement on model selection, potential problems have

long been recognized. In recent years, serious concerns about the general approach of model selection have

been strongly voiced. The main concern is that the uncertainty in model selection is basically ignored

once a final model is found (see, e.g., Draper (1995) and Chatfield (1995)). A possible consequence is

that the inference based on the final model may give an overly optimistic or misleading answer due to

the under-estimation of the uncertainty associated with the whole estimation procedure (in which model

selection is a non-negligible part).

Methods to address the issue have been proposed from different perspectives, including Bayesian

model averaging (BMA) (or empirical Bayesian model averaging, EBMA) and weighting based on boot-

strap or perturbation (see, e.g., Breiman (1996a, 1996b) and Buckland, Burnham and Augustin (1997)

and references therein). The commonality is that these methods avoid selecting one model by averaging

or combining the candidate models, and they have been demonstrated empirically to perform better

than model selection in certain aspects for some examples.

From a Bayesian point of view, BMA is a natural approach. When a number of candidate predictors

are available, a complete Bayesian solution presents challenges in terms of computation. Madigan and

York (1995) proposed a Markov Chain Monte Carlo approach (called MC3) to directly approximate the

exact solution. The readers are referred to a review paper by Hoeting, Madigan, Raftery and Volinsky

(1999) for details and many references on the active research in BMA.

Apart from computational challenges, there are other difficult issues for BMA. With a large number

of candidate models (e.g., in the context of all subset regression with a number of predictors but a

relatively small or moderate number of observations), the assignment of priors on the candidate models

can be highly sensitive (cf. Fernández, Ley and Steel (2001)). For such cases, the role and meaning of the

calculated posterior probabilities of the models are not quite clear, and examining frequentist properties

of the BMA methods is viewed by many to be valuable (cf. George (2000)). In addition, when all the

models are mis-specified (which some researchers would argue to be almost always the case), the small

sample effect of weighting by the posterior probability calculated from the incorrectly specified models

(and priors) seems even less clear. Thus having a set of weights (posterior probabilities) on the models

does not necessarily mean that the uncertainty in model selection is properly or sufficiently taken care

of. For example, when the posteriors are used to construct prediction intervals, for a crime data set,

Raftery, Madigan and Hoeting (1997) applied EBMA to obtain a better predictive performance than

model selection methods, but the predictive coverage was only about 80%, which was substantially lower

than the intended 90% level.

More recently, Yang (2001, 2003) proposed a model combining method ARM (adaptive regression

by mixing). It was shown that under some conditions, the resulting estimator performs optimally in
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rate of convergence under a global L2 loss without knowing which of the original procedures works the

best. Simulations were conducted to compare ARM with model selection and BMA in Yang (2003) for

a few settings. It was shown that ARM performed better than AIC, BIC and a BMA method based

on BIC approximation. Regarding the convergence of BMA, unlike ARM, Yang (2004b) showed that

even in simple linear regression, BMA estimators of the regression function cannot be minimax-rate

optimal. Other recent non-Bayesian model averaging methods include FMA by Hjort and Claeskens

(2003), where limiting distributions and risk properties of the combined estimators were established

under a local asymptotic framework; and also include a very interesting method based on unbiased risk

estimation by Leung and Barron (2004), which yields sharp risk bounds without requiring data splitting.

The reported empirical success of model combining shows its great potential and also calls for more

work on the topic. Some of the issues that are important and of interest to us are given below.

1. Is model combining always better than model selection? If not, when is combining better than

selection? Some researchers seem to suggest that since model averaging techniques (e.g., BMA)

take into account the uncertainty in model selection, therefore model averaging is superior. We

feel that the issue is much more complicated than that and needs to be systematically studied.

2. How should we measure the uncertainty in model selection objectively? What do we mean exactly

by uncertainty in model selection? Obtaining a set of weights (or probabilities) on the models does

not automatically mean that the uncertainty in finding the right model is correctly captured. Also,

it seems desirable to have uncertainty measures that are specific to the objectives of the analysis.

For example, if our interest is prediction, if several models have pretty much the same prediction

performance, then which of them is selected is not the real concern at all.

3. Does there exist a clear relationship between a proper uncertainty measure of model selection and

the relative performance of model combining over model selection? If so, the uncertainty measure

can be used to guide us for deciding which way to go: combining or selection.

4. Should a screening step be used to eliminate poor models before combining? What are the effects

of such a screening? A theoretical understanding would be helpful.

In our view, even though the concept of uncertainty in model selection is now widely recognized,

the current practice of simply relying on a final model from an automated model selection by many

statistics users will be improved only when the basic issues on measuring model selection uncertainty

and comparison between model selection and model combining are well understood.

There is no doubt that identifying the important variables is useful for many statistical applications.

It seems clear that the question of which variables are important cannot be separated from the task of
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building a sensible estimator/predictor of a quantity of interest, whether a parametric or a nonparametric

approach is taken. As many researchers have already pointed out, we agree, for subset selection with

a large number of predictors and a small or moderate sample size, the goal of finding a single set of

“important variables” is not a feasible task in general.

In this paper, we will focus on estimating the regression function with subset models and will not

address issues such as confidence bands, which model is more likely to be the true one, or which set of

variables is most important.

The objective of this paper is three-fold. First, we propose an instability measure to quantify the

instability of model selection based on data perturbation. The idea is to have a sensible measure that

can help one decide if model selection is having difficulty (hence alternatives to model selection should

be considered). It is demonstrated that combining models indeed can substantially reduce instability

due to model selection. A rule of thumb for using this measure is also given at the end of simulation

results. Second, a combining method, ARMS, is proposed. It has a model screening step, which narrows

down the list of candidate models and thus not only saves computation time but also removes very poor

models that would hurt the combined estimator. A theoretical result on AMRS is presented. Third,

relative performance among model combining methods and model selection methods and its relation to

model selection instability are investigated in various specific cases and random settings in simulations

and also some real data examples.

There are two distinct goals in combining models/procedures, one is performing as well as the best

candidate model/procedure and the other is improving on the best candidate model/procedure. Our

focus in this work is the former. For some discussion and references on the latter, see Yang (2003, 2004a)

and references therein. Clarke (2003) gave numerical comparisons of methods with the different goals

when none of the candidate models is correct.

The paper is organized as follows. We set up the problem in Section 2. In Section 3, we propose a

model selection instability index (PIE) and study which factors affect it. In Section 4, we propose the

ARMS algorithm with model screening before combining models and give a theoretical result. In Section

5, we compare ARMS with an empirical Bayesian model averaging (EBMA) approach and model selection

methods via simulation, and propose a rule of thumb for using PIE to decide whether to combine or to

select. In Section 6, we compare ARMS with EBMA, AIC and BIC in real data examples. Conclusions

are in Section 7. Section 8 contains the proof of the theorem in Section 4 and a brief description of the

real data sets used in the empirical study in this work.
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2 Problem setup

Consider the regression problem with n observations:

Yi = f(Xi) + εi, i = 1, ..., n,

where Y is the response variable, X = (X1, ..., Xd) is the explanatory variable of dimension d, f(·) is

the true regression function, and ε is the random error, assumed to be normally distributed with mean

0 and variance σ2 in this work. Throughout the paper, the observations Xi, 1 ≤ i ≤ n are assumed to

be independent of each other. For the theoretical result, the explanatory variables are further assumed

to be iid and independent of the errors. For estimating f, suppose that K linear models are considered

as candidates for fitting the data. The model j is

Yi = fj(Xi; θj) + εi, i = 1, ..., n,

where fj(x; θj) =
∑mj

l=1 θj,lϕj,l(x) with mj being the number of linear terms in model j, ϕj,l(x) (1 ≤

l ≤ mj) being the basis functions and θj,l being the linear coefficients. Let Γ denote the set of all the

candidate models being considered.

Note that the model combining method to be proposed in Section 4 actually works more generally

for both linear and nonlinear models. Indeed, Theorem 1 in Section 4 (the main theoretical result in

this paper) is not limited to the linear model case. However, for a focused investigation, together with

the fact that subset selection is a frequently encountered problem in data analysis, the rest of the paper

(especially the empirical studies) will mainly deal with the subset models from d variables (i.e., all the

linear models with the terms in a subset of {X1, X2, ..., Xd}). Clearly, there are 2d such subset models

(including the trivial model Yi = intercept + εi).

In this paper, for the theoretical work and simulations, the comparison of different estimators is

under the squared L2 loss. The squared L2 risk of an estimator f̂ is

R(f, f̂) = E ‖ f − f̂ ‖2= E

∫ (
f(x) − f̂(x)

)2

PX(dx),

where PX denotes the distribution of X and the second expectation is taken with respect to the data

Zn = (Xi, Yi)
n
i=1 under the true model.

For the empirical comparison of model selection and model combining using real data sets, we consider

a random data splitting and use a predictive mean squared error (PMSE) as an objective measure of an

estimation procedure (see Section 6 for details).

3 Measuring model selection instability

Clearly, regression analysis can have different goals. One possible interest is the estimation of the

regression function, as is the focus of this paper. Another direction is the identification of important
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explanatory variables. It seems clear that a single selected model, if reliable, is more informative than

a combined estimate from different models. If there is little instability/uncertainty in a well-grounded

model selection process, the selected model is most likely trustworthy; on the other hand, if there is

much instability/uncertainty in model selection, the goal of identifying the “correct model” may not

be realistic and insisting on simple interpretability does not seem to be appropriate. Following this

consideration, an appropriate measure or index of model selection instability/uncertainty that can help

one decide which scenario the data set is in is very valuable for a good statistical analysis.

It is natural to use bootstrap resampling methods to get a sense of instability in model selection (see,

e.g., Breiman (1996a), Buckland et al. (1997) and references therein). In this paper, following Breiman

(1996b), we consider an alternative based on data perturbation.

3.1 Perturbation instability in estimation (PIE)

The idea of perturbation instability is very simple: if a statistical model selection procedure is stable,

a minor perturbation of the data should not change the outcome drastically. After all, there are ran-

dom errors in the observed responses. Breiman (1996b) used perturbations to compare instabilities of

regression procedures and also get different versions of estimators to be aggregated into a final estima-

tor/predictor for better performance. Our use of perturbation here focuses on measuring the instability

of a regression procedure quantitatively.

Consider a model selection criterion in the linear regression framework. We generate a new set of

perturbation errors Wi iid from N(0, ρ2σ̂2), where ρ is between 0 and 1, and σ̂2 is an estimate of σ2

based on the selected model. Note that ρ is the perturbation size, indicating the noise level of the

added errors relative to the (estimated) original one. Now consider Ỹi = Yi + Wi for 1 ≤ i ≤ n and

apply the model selection criterion to the perturbed data set (Ỹi,Xi), 1 ≤ i ≤ n. If the model selection

criterion is stable for the original data, then when ρ is small, the newly selected model is most likely the

same as before and the corresponding estimate of f should not change too much either. At each ρ, we

generate perturbation errors {Wi}n
i=1 a large number of times (say 100) independently and apply the

model selection procedure for each set of perturbed data. While there are different possible directions

for defining perturbation instability, we here focus on perturbation instability in estimation called PIE.

At each perturbation size ρ, compute the average deviation of the new estimates of the regression

function at the observed explanatory variable values from the original estimates (which are obtained

from the initially selected model) based on a large number (say M) of replications:

I(ρ) =
1

M

M∑

j=1

(∑n
i=1

(
f̃j(Xi) − f̂(Xi)

)2

/n

)1/2

σ̂
, (1)

where f̂ and σ̂ are obtained from the original data (based on the selection model) and f̃j is obtained by
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applying the selection procedure again on the j-th perturbed data set. Note that all the estimates are

evaluated at the original Xi’s. The expression is similar in some aspects to Cook’s distance for assessing

local influence (e.g., Cook and Weisburg (1982), Cook (1986)). From the definition, I(ρ) reasonably

reflects the effect of perturbation on estimating f using the model selection method. Note also that the

choice of the instability evaluation in (1) is only one among many possibilities. If one is interested in

estimating f at a point, for example, a corresponding modification can be made. How fast the quantity

I(ρ) in (1) increases in ρ is a suitable instability measure of the estimation process. We plot I(ρ) versus

the perturbation size ρ.

Definition 1: The perturbation instability in estimation (PIE) is defined to be the slope of the

perturbation plot at ρ = 0, (i.e., I ′(ρ)|ρ=0).

An interpretation of PIE is that if the selected model is trustworthy, when the original noise level σ

is increased to about
√

1 + ρ2σ, the regression estimate changes by PIE · σ̂ · ρ (in an average deviation

sense). Note that the standard error (at least for estimating a functional) of a parametric estimator is

roughly a multiple of σ̂/
√

n. Thus when PIE is large, it indicates that the model selection process has

produced a change at a scale more than expected, which consequently provides evidence against the

reliability of the model selection procedure.

For computing PIE, we consider equally spaced ρ values with width 0.05 between 0 and 1 and then

use linear regression through origin to estimate the slope of the function I(ρ) at zero.

Note that the concept of PIE is not limited to model selection. As long as a regression procedure

provides an estimate of σ, we can compute PIE of the procedure in the same way as above.

In the following two subsections, we study PIE with simulation and examples.

3.2 Which factors may affect PIE?

For a focused presentation, we here choose BIC as a representative of model selection methods. By our

experience, the patterns for some other model selection criteria (e.g., AIC) are more or less similar. In

the simulations in the following subsections, unless stated otherwise, 1) PIE refers to the perturbation

instability in estimation for BIC; 2) there are 10 independent candidate predictors that are uniformly

distributed on [−1, 1]; 3) σ2 = 1; 4) the default sample size is 100. The PIE value for each case is the

average over 50 replications.

3.2.1 Error variance σ2

We consider two cases at various variance levels.

• Case 3.2.1.1. 8 predictors in the true model:

Y = 0.9 + 1.5X1 + 1.6X2 + 1.7X3 + 1.5X4 + 0.4X5 + 0.3X6 + 0.2X7 + 0.1X8 + ε (2)
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• Case 3.2.1.2.: 5 predictors in the true model:

Y = 1.0 + 1.0X1 + 1.0X2 + 1.0X3 + 1.0X4 + 1.0X5 + ε (3)

The PIE values are reported in Table 1. To give a sense of variability of PIE in different replications,

the standard deviations of PIE in the 50 replications are also reported in the parentheses.

σ2 = 0.01 0.1 0.5 1.0 2.25 4.0

Case 3.2.1.1
0.032

(0.004)
0.117

(0.023)
0.326

(0.069)
0.499

(0.100)
0.747

(0.163)
0.865

(0.210)

Case 3.2.1.2
0.029

(0.005)
0.084

(0.014)
0.214

(0.046)
0.309

(0.071)
0.535

(0.119)
0.840

(0.155)

Table 1: PIE and Error Variance: Cases 3.2.1.1 and 3.2.1.2

The table clearly shows that PIE increases as error variance σ2 increases, which matches the intuition

that model selection instability becomes larger when error variance is higher. Note that, not surprisingly,

the standard deviations (in the parentheses) also increase as σ2 increases.

3.2.2 Model complexity

In linear regression, both the number of candidate predictors and the number of predictors in the true

model seem to be related to the complexity of a model selection process. We consider several cases

accordingly.

The number of candidate predictors

• Case 3.2.2.1. Assume there are only 3 candidate predictors (X1, X2 and X3) and the true model

is:

Y = 1.0 + 1.0X1 + 1.0X2 + 1.0X3 + ε. (4)

• Case 3.2.2.2. The true model is the same as above, but the candidate predictors are X1, ..., X10.

The value of PIE is 0.192 for Case 3.2.2.1 and is 0.272 for Case 3.2.2.2. As expected, the instability

index of the case with more candidate predictors is bigger than that with fewer candidate predictors.

The number of predictors in the true model

• Case 3.2.2.3. 8 predictors in the true model:

Y = 1.0 + 1.0X1 + 1.0X2 + 1.0X3 + 1.0X4 + 1.0X5 + 1.0X6 + 1.0X7 + 1.0X8 + ε (5)

• Case 3.2.2.4. 5 predictors given by (3).

• Case 3.2.2.5. 3 predictors given by (4).

The values of PIE are 0.375, 0.309, 0.272 for the three cases respectively.
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3.2.3 Sample size

Consider the true model in (3) with error variance 2.25. When n = 100, PIE is 0.535; and when n is

reduced to 30, PIE is 0.756. The result agrees with the intuition that a data set with smaller sample

size tends to have a bigger instability in model selection.

3.2.4 Real data examples

Here we compute PIE for several real data examples. Data sets A and B were used in the examples in

several BMA papers. Short descriptions of the data sets are in Appendix 8.2. We only mention that

data set A has 15 candidate predictors and 47 observations; B has 13 candidate predictors and 251

observations; C has two predictors (the original predictor and the quadratic term) and 222 observations;

D has 4 candidate predictors and 32 observations; E has 7 candidate predictors and 19 observations.

The data set B
′

contains 50 observations randomly selected from the original ones in B. The second and

third rows of Table 2 give the PIE values of BIC and AIC for the data sets.

A B B
′

C D E
BIC 0.819 0.574 0.729 0.317 0.434 0.740
AIC 0.784 0.559 0.707 0.319 0.427 0.728

ARMS 0.518 0.409 0.476 0.331 0.381 0.493
EBMA 0.537 0.417 0.524 0.322 0.388 0.539

Table 2: PIE of AIC, BIC, ARMS, and EBMA for the Real Data Sets

From the table, data set B
′

has a significantly larger PIE value than B, and C and D have smallest

PIE values.

The perturbation instability plots for A and D (as examples) are in Figures 1 and 2, respectively.
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Figure 1: Perturbation Instability in Estimation for Data Set A
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Figure 2: Perturbation Instability in Estimation for Data Set D

3.3 Combining models reduces PIE

In the previous subsection, we have seen larger instability in model selection for some cases. Here we

show that combining models appropriately can reduce the instability caused by model selection. We use

ARMS (to be proposed in Section 4) and EBMA (see Section 5) as model combining methods. The PIE

values of ARMS and EBMA for the real data sets are given in the last two rows in Table 2. Note that

for ARMS and EBMA, we estimate σ2 by averaging those from different models using the corresponding

weights (posterior probabilities for EBMA).

Table 2 shows that ARMS and EBMA both substantially reduce the instability for data sets A, B′

and E, where the PIE values of the model selection methods are relatively high; they significantly reduce

the instability for the data set B, where PIE values of BIC and AIC are moderate; and slightly increased

or decreased PIE values in data sets C and D, where the PIE values of model selection are relatively

small. As will be seen in simulations and data examples later in Sections 5 and 6, model combining

tends to be advantageous for cases with high PIE values.

4 Combining models by ARMS

4.1 The algorithm of ARMS with model screening

Yang (2001) proposed a method ARM (adaptive regression by mixing) to combine multiple regression

models (or procedures). He examined its theoretical convergence properties and empirically demon-

strated its adaptation ability in nonparametric estimation with a small number of candidate procedures.

In this work, to deal with a large number of candidate parametric models, we propose an improvement

of ARM with model screening. That is, we do not include all candidate models for combining. Instead,
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model selection criteria AIC and BIC are used to find good candidate models for combining. This

modification is based on both theoretical and practical considerations. The reduction of the number of

models to be combined substantially reduces the computation cost and it can also have an advantage

from a theoretical point of view (see the next subsection).

There are three main steps involved in the assignment of weights of the models for the new version

of ARM. At the first step, half of the sample is used to estimate the parameters for each model j. At

the second step, model selection criteria AIC and BIC are used to select a number of most promising

candidate models and only these models are to be combined. At the third step, the remaining half of the

response values are predicted based on the fitted models and the predictions are assessed by comparing

the predicted values with the true ones. Then the models are appropriately weighted according to the

performance assessment. We call this method ARMS (ARM with model Screening). For simplicity,

assume that the sample size n is even. Let m be a pre-specified integer. The following is the ARMS

algorithm.

• Step 1. Split the data into two parts Z(1) = (Xi, Yi), 1 ≤ i ≤ n/2 and Z(2) = (Xi, Yi), n/2 + 1 ≤

i ≤ n.

• Step 2. Estimate θj by θ̂j using the least squares method based on Z(1) for each candidate model

j and compute an estimate of σ2 (also based on Z(1)), say σ̂2
j . Let f̂j(x) = f̂j(x; θ̂j).

• Step 3. Compute the model selection criterion values of AIC and BIC for each model j based on

Z(1) and keep the top m models under each of the two criteria. Let Γs denote the set of these

models (note that the size of Γs may be less than 2m).

• Step 4. Assess the accuracies of the models using the remaining half of the data Z (2). For each

model j ∈ Γs, predict Yi by f̂j(Xi) for n/2+1 ≤ i ≤ n. Compute an overall measure of discrepancy:

Dj =

n∑

i=n/2+1

(Yi − f̂j(Xi))
2.

• Step 5. Compute the weight for model j:

Wj =
(σ̂j)

−n/2
exp

(
−σ̂−2

j Dj/2
)

∑
k∈Γs

(σ̂k)
−n/2

exp
(
−σ̂−2

k Dk/2
) .

Note that
∑

j∈Γs
Wj = 1.

• Step 6. Randomly permute the order of the data N − 1 times. Repeat the above steps and let

Wj,r denote the weight of model j computed at the r-th permutation for 0 ≤ r ≤ N − 1. Let

Ŵj = 1
N

∑N−1
r=0 Wj,r
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• Step 7. Let

f̂n(x) =
∑

j∈Γs

Ŵj f̂j(x) (6)

be the final ARMS estimator of the true regression function f. Note that it is a convex combination

of the original estimators using the models in the reduced list Γs.

Screening by AIC and BIC can remove some very poor models which would hurt the combined

estimator. While various approaches can be considered for the choice of m (possibly data dependent),

we will simply take m to be 40 in the empirical studies in this paper.

Note that after screening, the weights in Step 5 for the models in Γs can be interpreted as posterior

probabilities of the models after observing the second part of the data with the uniform prior on the

regression estimates from the first part of the data (Yang (2003, p. 787)).

4.2 A risk bound on ARMS

Regarding the ARM method of combining models/procedures, Yang (2001) gave a risk bound for the

original version and an improvement was made in Yang (2003). The focus here is the theoretical con-

sequence of the screening step. As far as we know, no risk bounds have been obtained to account for

effect of model screening in the literature.

As in Yang (2001), for the theoretical result, we study a slightly different estimator from that given

in (6). Let Γs be a reduced list of candidate models based on any consideration using the first half of the

data (in this subsection, Γs is not necessarily obtained via AIC and BIC as in the previous subsection).

For i = n/2 + 1, let Wj,i = 1/K for j ∈ Γs and for n/2 + 1 < i ≤ n, let

Wj,i =

(σ̂j)
−(i−n/2−1)

exp

(
− 1

2σ̂2

j

∑i−1
l=n/2+1

(
Yl − f̂j(Xl)

)2
)

∑
k∈Γs

(σ̂k)−(i−n/2−1) exp

(
− 1

2σ̂2

k

∑i−1
l=n/2+1

(
Yl − f̂k(Xl)

)2
) .

Then define

W̃j =
1

n/2

n∑

i=n/2+1

Wj,i

and let

f̃(x) =
∑

j∈Γs

W̃j f̂j(x) (7)

be the combined estimator. The reasons for using (6) in practice instead of (7) are that the former is

much simpler in computation and that we found the two formulas to be similar in performance in our

experience.

We need basically the same two conditions on the models as in Yang (2003).
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Condition 1: There exists a constant τ > 0 such that with probability one, we have

sup
j∈Γ

‖ f̂j − f ‖∞≤
√

τσ.

Condition 2: There exist constants 0 < ξ1 ≤ 1 ≤ ξ2 < ∞ such that

ξ1 ≤
σ̂2

j

σ2
≤ ξ2

with probability 1 for j ∈ Γ.

Let K and Ks denote the size of Γ and Γs respectively (note that Ks may be random). Let j∗ denote

the model in Γ that minimizes the risk E ‖ f̂j−f ‖2. Let C(ξ1, ξ2) = (1/ξ2 − 1 + log ξ2) /
(
ξ2
1(1/ξ2 − 1)2

)
.

Theorem 1: Assume that the errors are Gaussian and that Conditions 1 and 2 are satisfied. Then

for any j ∈ Γ, the risk of the combined regression estimator using ARMS satisfies

E ‖ f̃ − f ‖2 ≤ τσ2P (j /∈ Γs) +

(1 + ξ2 + 9τ/2)

(
2σ2E log Ks

n
+

1

ξ1
E ‖ f̂j − f ‖2 +

C(ξ1, ξ2)

σ2
E(σ̂2

j − σ2)2
)

. (8)

In particular, when Ks is upper bounded by a constant K0, we have

E ‖ f̃ − f ‖2 ≤ τσ2P (j∗ /∈ Γs) +

(1 + ξ2 + 9τ/2)

(
2σ2 log K0

n
+

1

ξ1
E ‖ f̂j∗ − f ‖2 +

C(ξ1, ξ2)

σ2
E(σ̂2

j∗ − σ2)2
)

. (9)

Note that when Γs = Γ (i.e., there is no screening), the risk bound (9) stays the same as in Yang

(2003). Otherwise, the new risk bound is significantly distinct: the additional term τσ2P (j∗ /∈ Γs)

reflects the price paid for screening; and the reduction from 2σ2 log K
n in the risk bound in Yang (2003) to

2σ2 log K0

n in (9) (or 2σ2E log Ks

n in (8)) suggests a potential advantage of screening in reducing the negative

influence of poor models. In addition to the computational gain, this advantage, especially when K is

large and Ks or K0 is much smaller (while P (j∗ /∈ Γs) being properly controlled), also supports the use

of the screening step before combining.

The screening can be done in different ways, formally or informally (e.g., through graphical inspec-

tions) to eliminate poor models. Clearly, quantifying the effect of screening is very important. Even

within the approach of using model selection criteria for screening, in addition to the method of choosing

a fixed number of top models in terms of model selection criterion values as used in the algorithm in the

previous subsection, one can also screen out models with obviously inferior criterion values, for which

case the size of Γs is random. Ideally, how far to go in screening should be done in a way to balance the

probability of capturing the best model (or one of the best) and the size of Γs.

The probability P (j∗ /∈ Γs) can be appropriately bounded using results/techniques in the literature,

e.g., Zhang (1993) and Guyon and Yao (1999) for parametric cases, Yang and Barron (1998), and

Barron, Birgé, and Massart (1999) for nonparametric settings. The application of Theorem 1 to a

specific screening will be given in the next subsection.
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4.3 Screening out variables via a model selection criterion

Consider a subset model in the linear regression context. It is said to be an under-fitting model if at

least one variable in the true model with non-zero coefficient is not included in the model.

When considering subset models, a model selection rule is said to be exponentially-inclusive if the

probability of selecting any under-fitting model is exponentially small, i.e., the probability of not in-

cluding any variable in the true model is upper bounded by c1e
−c2nβ

for some positive constants c1, c2,

and β. The familiar model selection rules (e.g., AIC and BIC) are exponentially-inclusive. Indeed, for

a model selection criterion of the form −log-likelihood + λnk, where k is the model dimension and λn is

the penalty constant, Guyon and Yao (1999) showed that under some mild conditions, the criterion is

exponentially-inclusive as long as λn/n is upper bounded by a constant. Basically, for an exponentially-

inclusive model selection rule, the probability of under-fitting is asymptotically negligible compared to

that of over-fitting.

Let ̂ be the selected model based on a model selection rule, and let A denote the set of variables

in the model ̂. Then let Γs be the collection of all the linear models with variables selected from A.

Clearly, this screening step (from all the subset models to the reduced list Γs) just eliminates all the

variables that are not viewed to be important by the model selection criterion.

When the model selection rule is exponentially-inclusive, we have P (j∗ /∈ Γs) ≤ c1e
−c2nβ

for some

positive constants c1, c2, and β. Thus from Theorem 1, this screening method pays a small price. In

contrast, a screening with a pre-determined small number of models can be overly aggressive and miss

the true model with much higher probability. In practice, the aforementioned approach of screening can

save computation substantially. For example, if the original number of variables is 20, and AIC selects a

model with 7 terms, then for screening with AIC, there are only 27 many models to be combined instead

of a much larger number of 220. Note that AIC tends to overfit and thus the terms not in the model

selected by AIC are unlikely to be very helpful.

Since screening of models before a “formal” analysis is routinely done in practice, in our opinion, the

effects of different approaches of screening need to be carefully studied for guiding real world statistical

applications.

5 Simulation studies

Some limited simulations and data examples comparing ARM, BMA and model selection were reported

in Yang (2003). The empirical results in this paper are different in several aspects. The simulations in

Yang (2003) were done with only up to 5 predictors and no screening of models was conducted. Also

the BMA method chosen there is based on BIC approximation while the BMA method based on MC3

used in this work for comparison is regarded to be better.
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σ2 = 0.1 0.5 1.0 2.25 4.0

ARMS
0.0135

(0.0006)
0.0615

(0.0027)
0.113

(0.0048)
0.210

(0.010)
0.392

(0.018)

BIC
0.0133

(0.0007)
0.0700

(0.0035)
0.128

(0.0056)
0.251

(0.014)
0.479

(0.024)

AIC
0.0127

(0.0006)
0.0614

(0.0030)
0.121

(0.0061)
0.254

(0.015)
0.496

(0.028)
Risk reduction −6% 0% 7% 16% 18%

EBMA
0.0134

(0.0006)
0.0635

(0.0030)
0.119

(0.0053)
0.236

(0.012)
0.441

(0.022)
Risk reduction∗ −1% 3% 5% 11% 11%

Table 3: Comparing ARMS with AIC, BIC, and EBMA: Case 5.1.1

In this section, unless stated otherwise, there are 10 candidate predictors that are independent and

uniformly distributed between [−1, 1]. The global squared L2 loss of a regression estimator is simulated

as the average squared difference between the estimate and the true function at 1000 new independently

drawn X values. For model screening, up to 80 promising candidate models are obtained using AIC and

BIC (each recommends the top 40 models according to the criterion value). The sample size is 100 and

the number of random permutations for ARMS is set to be 100. The values in the following tables are

the simulated global squared L2 risks based on 100 replications. The numbers in the parentheses are

the corresponding standard errors. In the tables, “risk reduction” refers to the risk reduction of ARMS

compared to the best of the model selection methods and “risk reduction∗” refers to the risk reduction

of ARMS relative to EBMA.

The BMA program based on MC3 used in this work for comparison is in Splus written by Jen-

nifer Hoeting (available at http://www.stat.colostate.edu/∼jah/software). As mentioned earlier,

MCMC is used for computing the posterior distribution in the program. In this BMA approach, conju-

gate priors are used for the parameters (normal for the coefficients and inverse-gamma for the variance).

To determine the hyper-parameters in the prior, summary statistics of the data are used. Since the priors

actually depend on the data, this is not a formal Bayes procedure in a strict sense and it seems unclear

whether the the properties that hold for a formal Bayes procedure continue to hold approximately or

not. From now on we call it empirical BMA (EBMA).

5.1 Comparing ARMS with AIC, BIC and EBMA

Case 5.1.1 (with small coefficients) The true model is:

Y = 0.9 + 1.5X1 + 1.6X2 + 1.7X3 + 1.5X4 + 0.4X5 + 0.3X6 + 0.2X7 + 0.1X8 + ε

This model includes 8 predictors with four small and four large coefficients. The four predictors with

small coefficients are difficult to identify by model selection methods when σ2 is not small. The results
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in Table 3 show that ARMS is superior in terms of L2 risk over both model selection and EBMA when

error variance σ2 is bigger than 0.5.

Case 5.1.2 (all large coefficients) The true model is:

Y = 1.00 + 1.00X1 + 1.00X2 + 1.00X3 + 1.00X4 + 1.00X5 + ε

σ2 = 0.1 0.5 1.0 2.25 4.0

ARMS
0.0098

(0.0005)
0.0434

(0.0026)
0.0924

(0.0044)
0.200

(0.013)
0.358

(0.026)

BIC
0.0090

(0.0006)
0.0413

(0.0031)
0.0888

(0.0048)
0.215

(0.019)
0.483

(0.038)

AIC
0.0105

(0.0006)
0.0552

(0.0034)
0.1009

(0.0058)
0.210

(0.015)
0.390

(0.031)
Risk reduction −9% −5% −4% 4% 8%

EBMA
0.0096

(0.0005)
0.0417

(0.0025)
0.0930

(0.0042)
0.202

(0.013)
0.369

(0.025)
Risk reduction∗ −2% −4% 1% 1% 3%

Table 4: Comparing ARMS with AIC, BIC, and EBMA: Case 5.1.2

Since this model does not have small coefficients, we expect that model selection has less difficulty in

identifying the predictors and performs well as long as the error variance is not large. Indeed, as shown

in Table 4, model selection does a better job than ARMS when σ2 ≤ 1. In addition, the result of ARMS

is not much different from EBMA. EBMA and ARMS both have no advantage in this case when σ2 is

not large.

Case 5.1.3 (large model) The true model is:

Y = 1.0 + 1.8X1 + 1.9X2 + 2.0X3 + 1.2X4 + 1.5X5 + 0.9X6 + 0.8X7 + 0.4X8 + 0.3X9 + 0.1X10 + ε

σ2 = 0.1 0.5 1.0 2.25 4.0

ARMS
0.0136

(0.0006)
0.0713

(0.0035)
0.140

(0.0064)
0.269

(0.011)
0.509

(0.024)

BIC
0.0142

(0.0006)
0.0788

(0.0040)
0.161

(0.0074)
0.322

(0.016)
0.660

(0.031)

AIC
0.0134

(0.0006)
0.0701

(0.0035)
0.136

(0.0066)
0.281

(0.012)
0.540

(0.025)
Risk reduction −1% −2% −3% 4% 6%

EBMA
0.0135

(0.0006)
0.0756

(0.0036)
0.159

(0.0067)
0.330

(0.014)
0.595

(0.027)
Risk reduction∗ −1% 6% 12% 18% 14%

Table 5: Comparing ARMS with AIC, BIC, and EBMA: Case 5.1.3

For this case, AIC has an advantage over BIC since the true model is the full model and AIC has no

chance to overfit. ARMS is not expected to be advantageous when error variance is not large. Indeed,
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from Table 5, ARMS performs worse than AIC when σ2 is less than 2. EBMA performs not very well

compared to ARMS for this large model. The maximum risk ratio of EBMA over ARMS reaches 1.18

when σ2 = 2.25.

Case 5.1.4 (small model) The true model is:

Y = 1.0 + 0.8X1 + 0.9X2 + ε

σ2 = 0.1 0.5 1.0 2.25 4.0 6.25

ARMS
0.0055

(0.0004)
0.0282

(0.0010)
0.0585

(0.0044)
0.141

(0.011)
0.262

(0.015)
0.349

(0.020)

BIC
0.0050

(0.0005)
0.0268

(0.0012)
0.0573

(0.0057)
0.156

(0.012)
0.322

(0.022)
0.411

(0.027)

AIC
0.0071

(0.0006)
0.0354

(0.0016)
0.0641

(0.0061)
0.169

(0.015)
0.347

(0.020)
0.432

(0.027)
Risk reduction −10% −5% −2% 10% 19% 15%

EBMA
0.0052

(0.0004)
0.0267

(0.0009)
0.0556

(0.0042)
0.135

(0.011)
0.258

(0.014)
0.350

(0.020)
Risk reduction∗ −6% -6% −5% −4% −2% 0%

Table 6: Comparing ARMS with AIC, BIC, and EBMA: Case 5.1.4

This model only includes two predictors with no small coefficients. Hence, when the error variance

is not large, BIC has no difficulty to select the correct model. But from Table 6, ARMS has a smaller

risk than BIC and AIC when σ2 is over 1 as the model selection instability increases. Not surprisingly, a

very simple true model with a high noise level still has large instability in model selection, which makes

model combining a better choice. In this case, EBMA is similar to BIC when σ2 is small and is slightly

better than ARMS when σ2 is larger. When σ2 reaches 6.25, however, ARMS has caught up with EBMA

(in fact, for a higher σ2, ARMS becomes better).

5.2 Random model case

The above cases were chosen to represent different scenarios. We next consider a random setting with

n = 100 and σ = 1.5. The process is done as follows.

Case 5.2.1.

• Step 1. Generate the number of predictors in the true model uniformly between 1 and 10;

• Step 2. The coefficient of each predictor is independently generated from Uniform (0, 2);

• Step 3. Then generate data from the model;

• Step 4. Compute the simulated global squared L2 risks for the estimation procedures;

• Step 5. Repeat the whole process 50 times and obtain the average risk over the 50 models.
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The results are summarized in Table 7, with the percentages of risk reduction of ARMS over the

other procedures given. The box plot of the risks of the different methods is given in Figure 3.
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Figure 3: Random Model with Uniform Weight on the Number of Terms

AIC BIC EBMA ARMS

Average risk
0.2252

(0.0094)
0.2230
(0.098)

0.2111
(0.0082)

0.1995
(0.0075)

Risk reduction 11% 11% 5.5% —

Table 7: Comparing ARMS with AIC, BIC, and EBMA: Case 5.2.1

To gain more insight on the relative performance of the methods, we consider two modified scenarios.

For convenience, models with 1 to 5 predictors are called small models and models with 6 to 10 predictors

are called large models. For both of the two cases below, each size in {1, .., 5} has equal probability to

be selected and the same is true for {6, ..., 10}.

• Case 5.2.2. Randomly generate models with 3/4 weight on the small models and 1/4 weight on

the large models.

• Case 5.2.3. Randomly generate models with 1/4 weight for small models and 3/4 weight for large

models.

The risks for the two cases are given in Tables 8 and 9. The box-plots for the two cases are given in

Figure 4 and Figure 5.

To summarize the simulation in this subsection, both EBMA and ARMS improve over model selection
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Figure 4: 3/4 Weight for Small models and 1/4 Weight for Large Models

AIC BIC EBMA ARMS

Average risk
0.2122

(0.0111)
0.2041

(0.0095)
0.1886

(0.0071)
0.1856

(0.0068)
Risk reduction 13% 9% 1.5% —

Table 8: Comparing ARMS with AIC, BIC, and EBMA: Case 5.2.2

when the true models tend to be (relatively) small and they perform similarly. When the models tend

to be larger, ARMS is superior to AIC, BIC and EBMA.

5.3 Compare ARMS with Cross-Validations

Note that ARMS is related to cross-validation in terms of data splitting and cross evaluation (though one

then combines the models and the other selects one). It is natural then to compare their performance.

We consider three different cross-validation methods: CV1 (leave one out), CVhalf (leave half out), and

CVk (leave k = n−n3/4 out) considered by Shao (1993). With the sample size of 100, they become CV1,

CV50 and CV68 respectively.

Case 5.3.1. The true model is given in (2).

From Table 10, CV1 is very similar to AIC and CV68 is very similar to BIC, as suggested by theories

on models selection (see, e.g., Shao (1993)). CV50 is very similar to CV68 when error variance σ2 is

bigger than 0.5. All the three cross-validation methods perform worse than ARMS when σ2 is not very

small. Risk reductions of ARMS over the best of the CV methods are also given in the table.

Case 5.3.2. Random model case.
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Figure 5: 1/4 Weight for Small Models and 3/4 Weight for Large Models

AIC BIC EBMA ARMS

Average risk
0.2306

(0.0092)
0.2489

(0.0108)
0.2289

(0.0089)
0.2101

(0.0081)
Risk reduction 8.5% 15.5% 8% —

Table 9: Comparing ARMS with AIC, BIC, and EBMA: Case 5.2.3

It is conducted in a way similar to the initial random setting in Section 5.2, except that σ2 = 2. The

box plot for comparing ARMS with the cross-validation methods is in Figure 6.

Based on Table 11, risk reduction of ARMS over the cross validation methods CV68, CV50, and CV1

are 14%, 10%, and 15% respectively.

5.4 Relationship between PIE and the relative performance of combining
versus selection

In Section 3, we considered instability measures of model selection. Comparing the risks and PIE for

the examples given there, we noticed that ARMS performed better when PIE of AIC or BIC was bigger

than 0.5 and model selection tended to perform better when PIE was less than 0.4. Based on this and

some additional simulations, a rule of thumb for the use of PIE for regression estimation is given below.

If PIE values of model selection methods are bigger than 0.5, model combining methods should be

considered; if they are less than 0.4, model selection methods are OK; if PIE values are between

0.40 and 0.50, we should at least be careful about using model selection methods.
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σ2 = 0.1 0.5 1.0 2.25 4.0

CV1
0.0128

(0.0006)
0.0614

(0.0031)
0.122

(0.0056)
0.256

(0.012)
0.495

(0.024)

AIC
0.0127

(0.0006)
0.0614

(0.0030)
0.121

(0.0059)
0.254

(0.015)
0.496

(0.028)

CV50
0.0126

(0.0006)
0.0656

(0.0032)
0.126

(0.0055)
0.251

(0.013)
0.485

(0.024)

CV68
0.0133

(0.0007)
0.0751

(0.0036)
0.127

(0.0057)
0.252

(0.015)
0.472

(0.024)

BIC
0.0133

(0.0007)
0.0720

(0.0035)
0.128

(0.0056)
0.251

(0.014)
0.479

(0.024)

ARMS
0.0135

(0.0006)
0.0615

(0.0027)
0.112

(0.0048)
0.210

(0.010)
0.392

(0.018)
Risk reduction -6% 0% 7% 16% 18%

Table 10: Comparing ARMS with CV: Case 5.3.1

AIC BIC CV68 CV50 CV1 ARMS

Average risk
0.2252

(0.0094)
0.2230

(0.0098)
0.2314

(0.0134)
0.2219

(0.0087)
0.2342

(0.0089)
0.1995

(0.0077)

Table 11: Comparing ARMS with CV: Case 5.3.2

6 Data examples

In this section, we compare ARMS with EBMA, AIC and BIC using some real data sets. The performance

comparison is done as follows.

First, randomly permute the order of the observations and then split the data into two parts, with

the first part (n1 observations) used for estimation, and the second part (n − n1 observations) as the

validation set for assessment. Second, compute the predictive mean squared error (PMSE)

PMSE =

∑n
i=n1+1(Yi − Ŷi)

2

n − n1
,

where Ŷi is based on the first part of the data using the method being evaluated. Third, repeat above

steps 100 times and obtain the average PMSE over the permutations.

The results are given in Table 12. The number of explanatory variables (Column 2) and split

proportion n1 : (n − n1) (Column 3) are also included in the table. For columns 5-8, the number in the

parentheses is the standard error and the percentage is the risk reduction by ARMS over the method.

Below are some highlights of the results.

1. For Crime data A, the EBMA method based on MC3 approach is significantly better than model

selection AIC and BIC, but ARMS further improves the prediction accuracy by about 9%.

2. Comparing the results for data B and data B
′

, we see that when the sample size is reduced, PIE

is increased and the advantage of ARMS is increased.
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Figure 6: Comparing ARMS with Cross-Validation: Case 5.3.2

3. For Geyser data C and gas vapor data D, the risks of both ARMS and EBMA are slightly bigger

than that of the model selection methods AIC and BIC.

4. Based on the table, for the six data sets, the instability measure PIE seems to work quite well as

a sensible indicator of instability in model selection. For the cases with very high PIE (A, B
′

and

E), we see the advantage of ARMS over EBMA.

7 Conclusion

Both model selection and model combining have their places in statistical data analysis. However, when

and how to use model combining instead of model selection is a challenging problem. We studied a

model combining method with model screening and conducted a number of simulations for comparing

the different approaches in representative cases and random settings.

• We proposed an index, PIE, to measure model selection instability in estimation. A rule of thumb

is: If PIE is bigger than 0.5, model combining should be considered; if PIE is less than 0.4, a good

model selection method is likely to work better than the model combining methods. The results

from both simulations and data examples support this rule.

• We proposed a method for combining models, ARMS, with a step of model screening to remove

very poor models that would hurt the combined estimator. This also saves computational cost.

• Although ARMS and EBMA both improve the estimation accuracy when PIE is high, the empirical

comparisons showed that ARMS performed better than the EBMA method based on MC3 when
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d Split PIE EBMA BIC AIC ARMS

A 15 37:10 0.819
0.0699

(0.0025)
9%

0.0764
(0.0029)

19%

0.0741
(0.0029)

15%

0.0637
(0.0025)

—

B 13 200:51 0.574
18.65
(0.74)
2%

19.45
(0.87)
6%

19.04
(0.78)
4%

18.25
(0.77)

—

B
′

13 50:201 0.729
22.42
(0.86)
7%

24.71
(0.99)
16%

24.07
(0.91)
13%

20.76
(0.81)

—

C 2 180:42 0.317
0.280

(0.011)
-1%

0.279
(0.011)

-2%

0.279
(0.011)

-2%

0.284
(0.011)

—

D 4 24:8 0.434
12.93
(0.37)
1%

12.55
(0.37)
-2%

12.74
(0.35)
-1%

12.83
(0.37)

—

E 7 14:5 0.740
1.161

(0.041)
5%

1.344
(0.055)
18%

1.361
(0.049)
19%

1.10
(0.034)

—

Table 12: Comparing ARMS with AIC, BIC and EBMA on Real Data Sets

the true model size is not very small and the error variance is not small. The risk reduction of

ARMS over EBMA reached 18% in one case. It seems that EBMA tends to favor small models and

performs not well when AIC significantly outperforms BIC. The simulation results with random

models also give a consistent picture.

8 Appendix

8.1 Proof of Theorem 1

Fix a model j∗ ∈ Γ. Let n1 = n2 = n/2. Define

pn2 = Πn
i=n1+1

1√
2πσ2

exp

(
− 1

2σ2
(yi − f(xi))

2

)

and

qn2 =
∑

j∈Γs

1

Ks
Πn

i=n1+1

1√
2πσ̂2

j

exp

(
− 1

2σ̂2
j

(yi − f̂j(xi))
2

)
.

Consider log (pn2/qn2) . Assume first that j∗ ∈ Γs. By monotonicity of the log function, we have

log (pn2/qn2) ≤ log




(
Πn

i=1

(
2πσ2

)−1/2
)

exp
(
− 1

2

∑n
i=n1+1

(yi−f(xi))
2

σ2

)

1
Ks

(
Πn

i=1

(
2πσ̂2

j∗

)−1/2
)

exp

(
− 1

2

∑n
i=n1+1

(yi−f̂j(xi))2

σ̂2

j∗

)




= log Ks +
1

2

n∑

i=n1+1

(
log

σ̂2
j∗

σ2
+

(yi − f̂j(xi))
2

σ̂2
j∗

− (yi − f(xi))
2

σ2

)
. (10)
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Taking expectation conditional on the first part of the data, as denoted by En1
, we have

En1

(
log

σ̂2
j∗

σ2
+

(yi − f̂j(xi))
2

σ̂2
j∗

− (yi − f(xi))
2

σ2

)
=

‖ f̂j − f ‖2

σ̂2
j∗

+
σ2

σ̂2
j∗

− 1 − log
σ2

σ̂2
j∗

. (11)

Observe that

qn2 =
∑

j∈Γs

1
Ks√
2πσ̂2

j

exp

(
− 1

2σ̂2
j

(yn1+1 − f̂j(xn1+1))
2

)

×

∑
j∈Γs

1

Ks√
4π2σ̂4

j

exp
(
− 1

2σ̂2

j

(yn1+1 − f̂j(xn1+1))
2 − 1

2σ̂2

j

(y2 − f̂j(xn1+2))
2
)

∑
j∈Γs

1

Ks√
2πσ̂2

j

exp
(
− 1

2σ̂2

j

(yn1+1 − f̂j(xn1+1))2
) ×

· · · ×

∑
j∈Γs

1

Ks

Πn
i=1

√
2πσ̂2

j

exp
(
−
∑n

i=n1+1
1

2σ̂2

j

(yi − f̂j(xi))
2
)

∑
j∈Γs

1

Ks

Πn−1

i=1

√
2πσ̂2

j

exp
(
−∑n−1

i=n1+1
1

2σ̂2

j

(yi − f̂j(xi))2
) .

Let pi = 1√
2πσ2

exp
(
− (yi−f(xi))

2

2σ2

)
and gi =

∑
j∈Γs

Wj,i
1√
2πσ̂2

j

exp
(
− (yi−f̂j (xi))

2

2σ̂2

j

)
. It follows by the

definition of Wj,i that log (pn2/qn2) =
∑n

i=n1+1 log
(

pi

gi

)
. Together with (10) and (11), under the i.i.d.

assumption on the data, we have

n∑

i=n1+1

En1
log

(
pi

gi

)
≤ log Ks +

1

2
n2En1

(
‖ f̂j − f ‖2

σ̂2
j∗

+
σ2

σ̂2
j∗

− 1 − log
σ2

σ̂2
j∗

)
. (12)

Conditional on the first part of the data and the explanatory variables, as denoted by E
′

n1
below, we

have

E
′

n1
log

(
pi

gi

)
=

∫
pi log

pi

gi
dyi ≥

∫
(
√

pi −
√

gi)
2
dyi.

Let f i(x) =
∑

j∈Γs
Wj,if̂j for n1 + 1 ≤ i ≤ n. By Lemma 1 of Yang (2001), under Conditions 1 and 2,

we have that for n1 + 1 ≤ i ≤ n,

E
′

n1
log

(
pi

gi

)
≥
(
f i(xi) − f(xi)

)2

σ2 (2(1 + ξ2) + 9τ)
.

Together with (12), we have

n∑

i=n1+1

En1

( (
f i(xi) − f(xi)

)2

σ2 (2(1 + ξ2) + 9τ)

)
≤ log Ks +

1

2
n2En1

(
‖ f̂j − f ‖2

σ̂2
j∗

+
σ2

σ̂2
j∗

− 1 − log
σ2

σ̂2
j∗

)
.

That is,

1

n2

n∑

i=n1+1

‖ f i − f ‖2≤ σ2 (2(1 + ξ2) + 9τ)

(
log Ks

n
+

1

2
En1

(
‖ f̂j − f ‖2

σ̂2
j∗

+
σ2

σ̂2
j∗

− 1 − log
σ2

σ̂2
j∗

))
.

By convexity of the squared L2 norm, together with that f̃(x) = 1
n2

∑n
i=n1+1 f i, we have

‖ f̃ − f ‖2≤ 1

n2

n∑

i=n1+1

‖ f i − f ‖2 .
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Note that if x ≥ x0 > 0, x − 1 − log x ≤ cx0
(x − 1)2 for a constant cx0

= x0−1−log x0

(x0−1)2
. It follows that

when j∗ ∈ Γs,

‖ f̃ − f ‖2≤ (1 + ξ2 + 9τ/2)

(
2σ2 log(Ks)

n
+

1

ξ1
‖ f̂j∗ − f ‖2 +

C(ξ1, ξ2)

σ2
(σ̂2

j∗ − σ2)2
)

,

where C(ξ1, ξ2) = 1/ξ2−1+log ξ2

ξ2

1
(1/ξ2−1)2

. Since f̃ is a convex combination of the original estimators, under Con-

dition 1, we have ‖ f̃ − f ‖2≤ τσ2 when j∗ /∈ Γs. Let Gs denote the event that model j∗ is in Γs. It

follows that

‖ f̃ − f ‖2≤ τσ2IGc
s
+ (1 + ξ2 + 9τ/2)

(
2σ2 log(Ks)

n
+

1

ξ1
‖ f̂j∗ − f ‖2 +

C(ξ1, ξ2)

σ2
(σ̂2

j∗ − σ2)2
)

IGs
,

where I{} denoe the indicator function. The conclusion then follows. This completes the proof of

Theorem 1.

8.2 A brief description of the real data sets used in the paper

1. Crime data (A). The data set contains the crime rate (response) and 15 predictors of 47 states in US

and was used by Ehrlich (1973) as an example to test a theoretical argument on crime. Vandaele (1978)

corrected some errors and we use the corrected data in this work. This data was considered in several

BMA papers (e.g., Hoeting et al. (1999)). As in the original analysis, all values except the indicator

variable for southern states were transformed logarithmically.

2. Fat data (B and B′). This data set gives body fat measurements for 252 men. The goal of the

analysis was to predict percentage of body fat using 13 simple body measurements (see Penrose, Nelson

and Fisher (1985) and Johnson (1996)). For each subject, percentage of body fat, age, weight, height

and ten body circumference measurements were recorded. One subject (observation 42) was removed

since the height given was obviously incorrect.

3. Geyser data (C). This data set was obtained from Simonoff (1996). The data set includes one

predictor: eruption duration time. The response is eruption time interval. There are 222 observations

in this data set. We chose the predictor itself and its square term as our two candidate predictors.

4. Gas vapor data (D). This data set contains 4 predictors and 32 observations (see, e.g., Weisberg

(1985, p. 138)). The response variable is the amount of vapor that is vented into the atmosphere when

gasoline is pumped into the tank of a car.

5. Pull strength data (E). There are 19 observations. The data set consists of information on pull

strength (response) of a wire bond, die height, post height, loop height, wire length, bond width on the

die and bond width on the post. A product term of the second and the fourth predictors is added as

the seventh candidate predictor (see, e.g., Myers, Montgomery and Vining (2002, p. 53)).
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