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Abstract Minimax-rate adaptive nonparametric regression has been intensively studied under the assumption

of independent or uncorrelated errors in the literature. In many applications, however, the errors are dependent,

including both short- and long-range dependent situations. In such a case, adaptation with respect to the

unknown dependence is important. We present a general result in this direction under Gaussian errors. It is

assumed that the covariance matrix of the errors is known to be in a list of specifications possibly including

independence, short-range dependence and long-range dependence as well. The regression function is known to

be in one of a countable (or uncountable but well structured) collection of function classes. Adaptive estimators

are constructed to attain the minimax rate of convergence automatically for each function class under each

correlation specification in the corresponding lists.
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1 Introduction

Adaptive function estimation has been extensively studied since the pioneering work of Efroimovish and

Pinsker [15]. Minimax-rate adaptive estimators have been constructed for familiar function classes in

various important and interesting settings. While achieving the minimax rate of convergence under a

local loss is proven to be impossible (e.g., Lepskii [25], Brown and Low [8]), minimax-rate adaptation under

a global loss (such as squared L2 loss) has been obtained using a variety of tools for various function

classes. The strategies that have been successfully proposed to construct adaptive estimators include

wavelet thresholding (e.g., Donoho and Johnstone [12]), kernel estimators with automated bandwidth

selection (e.g., Härdle and Marron [18]), and model selection based on finite-dimensional approximating

models for smooth function classes (see, e.g., Barron [4], Barron, Birgé and Massart [5], Yang [38],

Baraud [3], Wegkamp [33] for some early references). Positive results on adaptive estimation over general

function classes (smooth or not) under independent errors are in Yang [35]. See Wang et al [32] for

references and interesting results on adaptive estimation based on the flexible and powerful approach of

combining or aggregating estimators.
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For nonparametric regression, rates of convergence of various kinds of estimators have been well-

established (see, e.g., Zhao [39] for convergence of nearest neighbor estimators). Minimax-rate adaptive

estimation has also been studied, but the investigation has almost exclusively focused on the case with

independent errors. However, research in recent years indicates that regression with dependent errors

is both theoretically interesting and practically important (see Opsomer et al [37] for a review of the

topic). Indeed, in various disciplines (e.g., hydrology and finance), long-range dependence phenomena

are well-known (see, e.g., [28], [6], [23]). Despite much increased technical difficulties in various ways

for handling dependent errors (especially the long-range dependent cases), there has been a substantial

progress in the literature.

The results include identification of minimax rate of convergence for infinite dimensional classes by

Hall and Hart [16], Wang [31], Johnstone and Silverman [21], Efromovich [13] and Yang [36]. The first

three papers show that under a one-dimensional fixed design, long-range dependence always damages the

rate of convergence under the global L2 type of loss for some classical function classes. Very interestingly,

with a random design, however, under the assumption that the random errors are independent of the

design variables, the latter two papers show that long-range dependence does not necessarily affect the

rate of convergence, and even if it does, it damages the rate of convergence to a lesser degree. At first

glance, this is rather surprising because for the estimation of the regression function, in the familiar

nonparametric regression contexts, a fixed uniform design and a random design usually do not have any

difference in terms of rate of convergence, which is apparently not true here. The key aspect is that for a

fixed design, the correlations among the adjacent observations in terms of the X value (also in terms of

observation order) are highest; in contrast, for the random design, the correlations among the adjacent

observations in terms of the observation order (not in terms of the the X value) are highest. This subtle

difference leads to drastically different rates of convergence.

More generally, regardless of the input dimension and smoothness nature of the regression function

class, Yang [36] shows that under mild conditions, the minimax rate of convergence under the square L2

loss is either the minimax rate for the same function class but under independent errors or the rate of

convergence of the sample mean of the errors, whichever is worse.

Besides the derivation of the rates of convergence above, Hall et al [17], Efromovich [13], Johnstone

and Silverman [21] constructed adaptive regression estimators for specific smoothness classes and under

specific correlation structures. These results are very useful because the true smoothness parameters are

unknowable in practice.

The present work continues in the direction of adaptive nonparametric function estimation under corre-

lated random errors. We address the theoretical matter in a much greater generality in that the function

classes and the possible correlation structures are general. Therefore, unlike previous work, different

types of function classes and different kinds of correlation structures are allowed to be considered at the

same time for more flexibility. Under mild conditions, we show that minimax rate adaptive estimators

can be constructed to achieve the rate of convergence without knowing the class membership nor the

correlations of the errors. Note that our construction of the adaptive estimators in this paper is mainly

for theoretical understanding, and they may not be practical for implementation in real applications at

this time.

1.1 Notations and setup

Consider the regression model

Yi = u(Xi) + εi, i > 1.

Suppose the Gaussian errors εi, i > 1 have zero means and an unknown covariance matrix Ω. Note that

we do not require that the errors are stationary. The explanatory variables Xi, i > 1, are defined on a

measurable space X and are assumed to be i.i.d. with a known design density function h(x) with respect

to a σ-finite measure µ. We further assume that {Xi, i > 1} are independent of the errors {εi, i > 1}. This

is likely the case, for instance, when the random errors are due to the intrinsic nature of the measurement

device that may induce a serial correlation in consecutive uses. It is readily seen that the above setup of
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the regression function and the dependence of the errors is appropriate in terms of identifiability. Our

goal is to estimate the regression function u based on data (Xi, Yi)
n
i=1.

Let U be a class of regression functions. Let ‖ · ‖ denote the L2 norm with respect to the distribution

of X, i.e., ‖ u ‖=
(∫
u2(x)h(x)µ(dx)

)1/2
. Given U and Ω, the minimax risk for estimating u ∈ U under

the squared L2 loss is

R(U ; Ω;n) = inf
û

sup
u∈U

E ‖ û− u ‖2,

where the minimization is over all estimators of u based on {Xi, Yi}ni=1 with the true regression in U and

under the dependence Ω. This risk describes how well the regression function can be estimated uniformly

over U when the random errors in the observations have the covariance matrix Ω. In our setting, rate of

convergence of the minimax risk is generally identified in Yang [36] under minor additional conditions.

Note that it may also be of interest to study the minimax risk over both the function class U and Ω in a

class of covariance matrix, which is not handled in this work.

For the purpose of estimating u, we consider a list of function classes Lclass = {Uξ : ξ ∈ Υ}. Here

Υ can be either countable (possibly finite) or uncountable. The function classes are general and are not

necessarily restricted to certain smoothness types. Some of them may be of the same type with different

hyper-parameters and others may be drastically different.

Since the dependence of the errors is also typically unknown, it is natural to consider a covariance

structure for the errors with parameters to be estimated based on the data. Both parametric and

nonparametric forms can be considered. Here we consider a general list of classes of covariance matrices

Ldepend = {Ξj : j > 1}. It may include both short and long range dependent cases as will be seen. The

class Ξj = {Ω(j, θ) : θ ∈ Θj} is typically a parametric family of covariance matrix (with Θj being a

finite-dimensional parameter space), but it does not have to be.

Now the true unknown regression function is assumed to be in one of the classes in Lclass and the

dependence of the errors is from any one in Ldepend.

1.2 Example

Suppose we are estimating a d-dimensional regression function f(x1, ..., xd) defined on [0, 1]d. Here

we assume that d is not a small integer, say d = 10 and thus we may face the well-known “curse of

dimensionality”. Since it is very hard to visually inspect the data in a moderate or high dimension,

in general, it seems very unlikely that we can propose, with much confidence, a reasonable parametric

family or a nonparametric class for the estimation of f. Thus it seems very natural to consider various

candidates. In the same vein, different dependence structures can be considered to better capture the

true dependence of the random errors.

We choose Lclass to include:

1. Besov classes of full-dimension d;

2. Besov classes with different interaction orders;

3. A neural network class.

We choose Ldepend to include:

1. Independence;

2. Short-range dependence;

3. Long-range dependence;

4. Alternating dependence.
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Note that in the above situation, determining which function class in Lclass and which dependence

structure in Ldepend together best characterize the data at hand can be very difficult. It is desirable to

have an adaptive estimator that will work well for all the plausible scenarios (i.e., any combination of

choices of the function class and the correlation structure). There are two natural and closely related

approaches that can be considered for deriving adaptive estimators in our situation, one based on a

selection rule that adaptively chooses a proper function class and a correlation structure, and the other

based on combining non-adaptive procedures. We will focus on the latter approach with an appropriate

weighting of the candidate regression procedures.

The example will be provided with more details and treated for adapatation in Section 5.

1.3 Question of interest

We pose the following general question. Can one construct an adaptive estimator that achieves the

minimax rate of convergence without knowing the true U and Ω in the corresponding lists? Specifically,

can one construct an estimator ûn based on the data Zn = (Xi, Yi)
n
i=1 only so that for each U ∈ Lclass

and Ω as a member of any class in Ldepend, there exists a constant C (allowed to depend on U and Ω) so

that

sup
n

supu∈U E ‖ ûn − u ‖2

R(U ; Ω;n)
6 C(U ; Ω)?

Such an estimator will be said to be minimax-rate adaptive in terms of both dependence (correlation) of

the errors and the function class.

We will provide a positive answer to the above question under some mild conditions.

The rest of the paper is organized as follows. In Section 2, we provide some preliminaries for our main

results. In Section 3, we consider minimax-rate adaptation over a countable collection of function classes

and a list of dependence of the errors. In Section 4, an extension to the case of an uncountable collection

of function classes is given. In Section 5, we give an example to illustrate the application of the main

result. Conclusion/discussion follows in Section 6. The proofs of the technical results are in Section 7.

2 Some preliminaries

2.1 Metric entropy and its role in determining the rate of convergence

It is known that metric entropy (Kolmogorov and Tihomirov [22]) determines the minimax rate of conver-

gence for nonparametric function estimation (see Le Cam [24], Birgé [7], Yang and Barron [38]). A finite

subset Nε is called an ε-packing set in U under a distance d if d(u, v) > ε for any u, v ∈ Nε with u 6= v.

Let M2(ε;U) be the maximal logarithm of the cardinality of any ε-packing set under d2, the distance

induced by the L2(h)-norm ‖ · ‖ defined earlier. The asymptotic behavior of M2(ε;U) when ε→ 0 reflects

how massive the class U is under the given distance. We call M2(ε;U) the packing ε-entropy or simply

the metric entropy of U and ε is called the packing radius.

Assume M2(ε;U) <∞ holds for every ε > 0 and for every U in Lclass (which necessarily requires that

U to be bounded in L2(h) norm). Assume also M2(ε;U)→∞ as ε→ 0 (which excludes the trivial case

when U is finite). These conditions are satisfied if U is not finite, separable, and compact in the L2(h)

norm. For the target function class U , we assume that supu∈U ‖ u ‖∞6 L < ∞ for all U in Lclass, i.e.,

the function classes are uniformly bounded throughout the paper.

For most function classes, the metric entropies are known only up to orders. For this reason, we assume

that M(ε;U) is an available non-increasing function known to be of order M2(ε;U). As in [38], we call a

class U rich if for some constant 0 < τ < 1,

lim inf
ε→0

M(τε;U)/M(ε;U) > 1. (2.1)

Ac
ce

pt
ed

Downloaded to IP: 97.116.186.182 On: 2018-10-12 12:50:49 http://engine.scichina.com/doi/10.1007/s11425-018-9394-x



Guowu Yang et al. Sci China Math for Review 5

This condition is met for typical nonparametric classes (see [38] for more discussions), for which the

metric entropy is usually of order ε−α log (1/ε)
β

for some α > 0 and β ∈ R. Through out the paper, we

assume all the function classes being considered are rich.

In the rest of the paper, when comparing two sequences of positive numbers, the notations �, �
and � mean that the ratio of the right hand side and the left hand side is bounded both above (from

infinity) and below (away from zero), bounded above (from infinity), and bounded below (away from

zero), respectively.

2.2 A distance between covariance matrices and the covering entropy of a class of depen-

dence

To address the additional difficulty in regression estimation due to the unknown dependence of the errors,

we consider a distance on covariance matrices. Let A and B be two n× n symmetric matrices for n > 1.

Definition 1: The largest absolute value of the eigenvalues of A − B, denoted by ζ(A,B), is said to

be the eigenvalue distance between A and B.

Clearly, the distance ζ is a metric on the space of all n × n matrices for any n > 1, and it is induced

by the matrix spectral norm.

For a family of n × n symmetric matrices, for measuring the largeness of the collection, consider the

covering entropy under the eigenvalue distance.

Let {Ω(j, θ) : θ ∈ Θj} be the j-th family of dependence (covariance matrix) of the errors, and let

Ωn(j, θ) be the finite section of Ω(j, θ) of size n. Let Mζ(ε; Ξj ;n), or simply M(ε; Θj) for simplicity,

denote the covering entropy of the class of n × nmatrices {Ωn(j, θ) : θ ∈ Θj} under the distance ζ.

We assume that M(ε; Θj) is finite for each ε > 0. As will be seen, as long as the classes of dependence

are not too large compared to the regression function classes, not knowing the covariance matrix of the

random errors does not hurt the rate of convergence for adaptive estimation of the regression function.

In particular, if the correlation families are parametric, under mild conditions, minimax-rate adaptation

for regression estimation can be achieved.

2.3 Some conditions on the correlations of the errors

We do not require stationarity of the errors. For a given Ω (the infinite dimensional covariance matrix),

let Ωn be its finite section of size n, i.e., the covariance matrix of (ε1, ..., εn). Let σ2
i (j, θ) denote V ar(εi),

i > 1 under the covariance matrix Ω(j, θ). Let Ω̃(j, θ) = Ω(j, θ)/σ2
1(j, θ). Note that the first diagnal

element of Ω̃(j, θ) is always 1.

We assume the following conditions on Ldepend hold.

Assumption 1:

1. For each j > 1 and θ ∈ Θj , supiσ
2
i (j, θ) 6 σ2 for some known 0 < σ2 <∞.

2. For each j > 1, there exists a positive constant λj such that the smallest eigenvalue of Ω̃n(j, θ) is

lower bounded by λj for all θ ∈ Θj and all n > 1.

When the errors are stationary, the condition supiσ
2
i (j, θ) 6 σ2 obviously simplifies to σ2(j, θ) 6 σ2,

where σ2(j, θ) is the common variance of the errors. The second condition prevents the errors to be

increasingly colinear. Under stationarity, a sufficient condition to ensure this requirement is that the

spectral density of the error series exists and is uniformly bounded away from zero. In particular, it is

satisfied if Ωn(j, θ) can be expressed as the sum of two components Ωn(j, θ) = Ω
(1)
n + Ω

(2)
n (j, θ), where

Ω
(1)
n = diag (ω1,n, ..., ωn,n) with min16i6n ωi,n > c > 0 for some constant c > 0 independent of n and

θ, and Ω
(2)
n (j, θ) is nonnegative definite. For non-stationary errors, the checking of Assumption 1 may

demand case-by-case more technically involved analysis.
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3 Adaptation with respect to countable lists of function classes and depen-

dence

We consider in this section the case that Lclass is countable, i.e., Lclass = {Ui, i > 1}. Choose εn,i such

that

M(εn,i;Ui) = nε2n,i. (3.1)

As shown in Yang [36], ε2n,i characterizes the part of difficulty in estimating u from the massiveness of

Ui. For each class in Ldepend, let ςn,j be chosen such that M(ςn,j ; Θj) = nςn,j . For a parametric family

of dependence, M(ς; Θj) is usually of order log(1/ς). Then ςn,j defined above is of order (log n) /n. Let

Ωn be the true covariance matrix of the random errors εi, 1 6 i 6 n, i.e., the finite section of the true

infinite-dimensional covariance matrix Ω. Let 1 denote the column vector with all entries 1.

Theorem 1: Suppose Assumption 1 is satisfied. Then we can construct an estimator ûn based on

(Xi, Yi)
n
i=1 such that under each Ω in the list Ldepend, for every Ui ∈ Lclass, we have

sup
u∈Ui

E ‖ ûn − u ‖2�
log n

n
+ ςn,j + max

((
1

′
Ωn1

)
/n2, ε2n,i

)
.

Remark: From the proof of Theorem 1, it can be seen that the dimension d of the covariate vector (i.e.,

the numbers of explanatory variables) is not playing any directly important role beyond its influence on the

orders of the metric entropy of the regression function classes. Thus similar results for high-dimensional

regression can be stated in terms of the metric entropy orders of the high-dimensional function classes.

Remark: As already mentioned before Theorem 1, for a parametric family of dependence, ςn,j in the

upper bound is typically of order (log n) /n, which usually does not affect the minimax rate of convergence

for a nonparametric function class Ui. See [36] for examples of the rate 1
′
Ωn1/n2. Yang and Barron [38]

give a number of examples of the order of ε2n,i.

Under some additional mild conditions, the upper bound in Theorem 1 is in fact the minimax rate of

convergence of the class Ui under the dependence Ω (see [36]). For instance, assume further that(
1

′
Ω−1
n 1

)(
1

′
Ωn1

)
� n2 and 1

′
Ωn1 � n, (3.2)

then given U and Ω, the minimax rate of convergence is

R(U ; Ω;n) � max
((

1
′
Ωn1

)
/n2, ε2n,i

)
.

The condition is satisfied by familiar short and long-range dependences (see [36]). In particular, for the

long range dependence (which has autocovariance Cov(εi, εi+j) ∼ c|j|−τ for some c > 0 and 0 < τ < 1),

the condition
(
1

′
Ω−1
n 1

)(
1

′
Ωn1

)
� n2 is satisfied and 1

′
Ωn1/n � n−τ (see, e.g., [2], [16]). We have the

following corollary.

Corollary 1: Under the assumptions for Theorem 1, if a function class Ui in Lclass is rich and the

true covariance matrix Ω ∈ Ξj satisfies Tr
(
Ω−1
n

)
� n and (3.2), and additionally M(ς; Θj) is of order

log(1/ς), then the estimator ûn achieves the minimax rate of convergence R(Ui; Ω;n).

For Corollary 1, we have assumed that Tr(Ω−1
n ) is of order n. For stationary situations, this condition

may not be needed. Suppose the errors {εj ,−∞ < j < ∞} follow an infinite order Gaussian auto-

regression
∑∞
k=−∞ bkεk+j = ζj , where ζj , −∞ < j < ∞ are i.i.d. from a standard normal distribution.

The coefficients bj ’s are assumed to be absolutely summable and satisfy
∫ π

0
|b(λ)|−2dλ < ∞, where

b(λ) =
∑∞
j=−∞ bje

ijλ. These conditions ensure invertibility of the auto-regression process to a moving

average process. Let r(j) =
∑∞
k=−∞ bkbk+j , −∞ < j <∞. Then the (k, j)-element of Ω is r(j−k). Under

these conditions, the minimax rate of convergence is showed to be max
((

1
′
Ωn1

)
/n2, ε2n,i

)
(see [36]).

Thus the estimator in Theorem 1 converges at the minimax rate R(Ui; Ω;n) adaptively without knowing

which class contains u nor Ω.

We next give a result on adaptive regression estimation under more specific conditions on the correlation

families. Here the parameter spaces Θj may or may not be compact.
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Assumption 2:

For each j > 1, suppose Θj is a subset of Rdj . Let Ω̃n(j, θ) = (wil(θ)) for θ ∈ Θj . Assume that there

exist positive constants cj and Aj such that max16i6n,16l6n|wil(θ) − wil(θ
′
)| 6 cjn

Ajd(θ, θ
′
) holds for

all n > 1 and θ, θ
′ ∈ Θj where d denotes the Euclidean distance.

Assumption 2 can be directly verified for parametric families of correlations with the covariance matrix

explicitly given. For example, consider a fractional Gaussian noise model with autocorrelation r(k) =
σ2

2

(
(k + 1)2−γ − 2k2−γ + (k − 1)2−γ) for 0 < γ < 2 (see [26]). When 0 < γ < 1, the errors have short-

range dependence; when γ = 1, the errors are uncorrelated; when 1 < γ < 2, the errors have long-range

dependence. It can be easily verified that this family of dependence satisfies Assumption 2.

Theorem 2: Assume Assumptions 1 and 2 are satisfied and (3.2) holds. If the function classes Ui in

Lclass are rich, then a properly constructed combined estimator ûn adaptively achieves the minimax rate

of convergence for all combinations of the regression function class and the correlation structure in Lclass
and Ldepend.

For stationary error series, when the dependence is given in terms of the spectral density, the following

condition is useful. We focus on long-range dependence here.

Let fθ(ω) be the spectral density of the error series, where θ ∈ Θ ⊂ Rk (1 6 k <∞) is unknown. We

assume that there exists a continuous function 0 < γ(θ) < 1 such that fθ(ω) ∼ |ω|−γ(θ) .

Assumption 3:

There exists a constant C such that

|fθ(ω)− fθ′ (ω)| 6 Cd(θ, θ
′
)fθ′ (ω)

holds for all ω and all θ and θ
′

with γ(θ) 6 γ(θ
′
).

The condition was used in [10] for studying the maximum likelihood estimator for the parameters for

a long-range dependence Gaussian process. It is satisfied for the case when fγ(ω) = |1 − eiω|−γf∗(ω),

where 0 < γ < 1 and f∗(ω) is continuous and bounded away from zero. It includes fractional ARIMA

cases, e.g., fθ(ω) = 1
2π |1− e

iω|−(1−γ) (see, e.g., [14], [20]).

It can be easily verified that Assumption 3 implies Assumption 2.

4 Adaptation over an uncountable collection of function classes

We extend the results in the previous section to the case of an uncountable collection of regression function

classes that have some mild structural properties.

Consider a collection of function classes {Uξ : ξ ∈ Υ}, where Υ is a subset in a finite-dimensional

Euclidean space Rm, 1 6 m < ∞. Assume that each function class in Lclass is rich. Let ‖ ξ ‖2=√
ξ2
1 + ...+ ξ2

m denote the Euclidean norm of ξ = (ξ1, ..., ξm) ∈ Rm. Assume that there is a partial order

on the hyper-parameter space Υ and that the order of the hyper-parameters is in accordance with the

order of the corresponding function classes in the sense that if ξ1 � ξ2 then Uξ1 ⊂ Uξ2 .
Let M(ε; ξ) be a continuous upper bound (of the same order) on the metric entropy of the class Uξ

under the L2(h) distance. Let εn,ξ be determined by the equation

M(εn,ξ; ξ) = nε2n,ξ.

Consider the following discretization of Rm. For each j > 1, consider the dyadic grid {i2−j : i ∈ Z} for

each coordinate, where Z denotes the set of all integers. Let Nj denote the corresponding discrete set in

Rm. Then let Q = ∪j>1Nj be the overall discrete set of all the dyadic rational numbers.

Assumption 4: For each fixed Ω in each class in Ldepend, for each ξ0 ∈ Υ, there exist a sequence

ξn ∈ Υ ∩Njn with ξ0 � ξn for some jn of order log n such that
εn,ξn
εn,ξ0

stays upper bounded.

Note that Assumption 4 is automatically satisfied for the case of a countable collection of functional

classes. For function classes indexed by continuous hyperparameters, this condition is also satisfied for

familiar smoothness classes (see [35], [37]).
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Theorem 3: Under the assumptions for Theorem 2 and Assumption 4, we can construct an estimator

such that it achieves the minimax rate of convergence adaptively over all function classes and under all

the correlation structures considered.

Example Consider one-dimensional Lipschitz classes on [0, 1] as follows. For positive constants C,

C1, ..., Cr, r > 0 being an integer, and ρ ∈ (0, 1], with α = r + ρ, define

U(α,C) = {f : |f (k)(x)| 6 Ck for k = 0, 1, ..., r, |f (r)(x)− f (r)(y)| 6 C|x− y|ρ for all x, y ∈ [0, 1]}.

From [22], the metric entropy of U(α,C) is upper bounded by A
(

1
ε

)1/α
with A locally bounded in

terms of the hyper-parameters. It is then straightforward to verify Assumption 4. Therefore, for these

Lipschitz regression function classes, if the errors satisfy Assumptions 1-2 and (3.2), we have minimax-

rate adaptive estimators over all the above Lipschitz regression function classes and all the correlation

structures considered.

5 An example application

In this demonstration, the unknown regression function u is assumed to be uniformly bounded, and the

explanatory variable X takes values in [0, 1]d with a known design density (with respect to Lebesgue

measure) bounded above and away from zero. In practical situations, especially when d is large, it is

usually difficult to know the form of u. For high dimensional function estimation, suitable reduction of

dimensionality may significantly improve estimation accuracy. We here consider two different ways of

dimension reduction, namely, additive or low-order interaction modeling and neural network modeling.

Coupled with the difficulty in modeling the regression function is the modeling of the correlations of the

errors: it is generally difficult to know how the errors are related to each other.

We accordingly consider different scenarios in hope that some of them properly capture the charac-

teristics of the data and give good regression estimation. We consider several function classes and a few

correlation structures for the errors below.

5.1 Function classes

1. Besov classes of full-dimension. For 1 6 σ, q 6 ∞ and α/d > 1/q, let Bα,dq,σ (C) be the collections

of all functions g ∈ Lq[0, 1]d such that the Besov norm satisfies ‖ g ‖Bα,dq,σ
6 C (see, e.g., [30], [11]).

Besov classes are rich, providing a lot of flexibility (e.g., spatial inhomogeneity) for statistical function

estimation. The minimax rate of convergence for estimating a function u ∈ Bα,dq,σ (C) under the squared

L2 loss is known to be n−2α/(2α+d) (see, e.g., [12], [38]). For d = 1, Donoho and Johnstone [12] show that

wavelet thresholding based estimators adaptively achieve the minimax rate of convergence.

2. Besov classes with different interaction order. Suppose d is relatively large. When the smoothness

parameter α is small or moderate, the convergence rate n−2α/(2α+d) for the Besov class Bα,dq,σ (C) is slow,

which reflects the well-known “curse of dimensionality”. To improve the rate of convergence, one may

entertain various dimension reduction features. Here we consider Besov classes of different interaction

orders as follows:

Sα,1q,σ (C) = {
∑d
i=1 gi(xi) : gi ∈ Bα,1q,σ (C), 1 6 i 6 d}

Sα,2q,σ (C) = {
∑

16i<j6d gi,j(xi, xj) : gi,j ∈ Bα,2q,σ (C), 1 6 i < j 6 d}

· · ·
Sα,dq,σ (C) = Bα,dq,σ (C).

From above, it is clear that the simplest function class Sα,1q,σ (C) contains additive functions (no interaction

between the variables) and these classes have different effective input dimensions between 1 and d. From
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[38], via simple metric entropy arguments, the minimax rate of convergence under the squared L2 loss for

estimating u in Sα,rq,σ (C) is readily seen to be n−2α/(2α+r) for 1 6 r 6 d, which is suggested by the heuristic

dimensionality reduction principle of Stone [29]. When r is small relative to d, the convergence rate is

much faster compared to n−2α/(2α+d). For each r, one can consider tensor-product wavelets of different

interaction orders and use thresholding to obtain an estimator that adaptively converges optimally for

every Sα,rq,σ (C) without knowing the hyper-parameters.

3. A neural network class. Let N(C) be the closure in L2[0, 1]d of the set of all functions g : Rd → R

of the form g(x) = c0 +
∑
i cim(v′ix+bi) (where the prime denotes the transpose), with |c0|+

∑
i |ci| 6 C,

and ‖vi‖ = 1, where m is the step function m(t) = 1 for t > 0, and m(t) = 0 for t < 0. The minimax

rate for estimating u ∈ N(C) under the squared L2 loss is shown to be bounded between

n−(1+2/d)/(2+1/d) (log n)
−(1+1/d)(1+2/d)/(2+1/d)

and (n/ log n)
−(1+1/d)/(2+1/d)

(5.1)

(see [38]). When d is large, the rate is slightly better than n−1/2 (independent of d), which avoids

the “curse of dimensionality”. Estimators at rate O(log n/n1/2) using finite-dimensional neural network

models are in e.g., Barron [4].

5.2 Correlation structures

We consider stationary errors. Due to lack of knowledge on dependence, the collection of covariance

matrix Ldepend is chosen to include those corresponding to i.i.d., short-range dependence and long-range

dependence as follows.

1. Independence.

2. Short range dependence. Consider exponentially decaying autocovariance r(j) = σ2θ|j| for an integer

j, where σ2 > 0 and −1 < θ < 1 are unknown parameters.

3. Long range dependence. Suppose the spectral density of the error series satisfies that fγ(ω) =

|1− eiω|−γf∗(ω), where 0 < γ < 1 and f∗(ω) is a given continuous function bounded away from zero.

4. Alternating dependence. For the above long-range dependence, the errors are eventually positively

correlated. Here consider r(j) = (−1)jσ2

2

(
(j + 1)2−γ − 2j2−γ + (j − 1)2−γ) with unknown γ ∈ (0, 2)

and σ2 > 0. Note that the correlations are positive and negative in an alternating way. Because the

covariances essentially cancel out even when 0 < γ < 1, the rate of convergence for regression estimation

is the same as under independent errors.

5.3 Adaptation over the function classes and the correlation structures

Applying the results in Section 4, we construct an adaptive estimator over the classes of regression

functions and the specified dependence structures described above. If the errors are independent or

short-range dependent (Cases 1, 2 and 4 above), then when u is in Bα,dq,σ (C) with α relatively large

compared to d, the risk converges at a good rate O
(
n−2α/(2α+d)

)
; when u is in Sα,rq,σ (C) for some small

r, then the risk converges at a faster rate O
(
n−2α/(2α+r)

)
; when u is not in any of these cases, but

fortunately has the neural net representation, then the risk also converges at a good rate O(log n/n1/2).

If the errors are long-range dependent (Case 3 above), then our adaptive estimator converges at the

aforementioned rates for the function classes respectively, or the rate (1′Ωn1) /n2 � n−γ , whichever is

slower.

The key point here is that by our strategy of mixing estimators, the combined procedure automatically

adapts to different scenarios for a good rate of convergence. That is, without knowing the covariance

structure, nor which type of dimension reduction is appropriate for the underlying function and the

smoothness parameters of the function class that contains the true regression function, we can do as well

as if we knew them in advance.
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6 Conclusion and discussion

In this work, adaptive regression with respect to function classes and correlation structures of the errors

are considered with the emphasis that the errors are dependent and unknown to certain degree. Under

the assumption that the errors are Gaussian and independent of the explanatory variables, we derived

rate-optimal adaptation risk bounds and showed that minimax-rate adaptive estimation of the regression

function is achievable in spite of unknown possibly long-range dependent errors. To highlight the roles

of the regression function class and the correlations of the errors, we have not handled the issue of

unknown design distribution of the covariates and adaptation with respect to it. Complete adaptation over

regression function classes, error dependences and design distributions simultaneously is an interesting

open problem. In addition, adaptation with respect to unknown relationship between the covariates and

the random errors is also of interest for future research.

7 Proofs of the results

Before we prove Theorem 1, we give more notations. Let Z = (X,Y ), z = (x, y), zn = (z1, .., zn)
′
, and

similarly define yn and xn. Let Un = (u(X1), ..., u(Xn))
′
and un = (u(x1), ..., u(xn))

′
.

7.1 Proof of Theorem 1

Let us outline our scheme for the construction of an adaptive estimator. For each choice of U and Ω

pair, we construct a joint density on the product space of the observations, and then mix these densities

with different U and Ω. The mixture will be shown to be suitably close to the unknown joint density of

the data uniformly over the function classes and the dependences in a proper sense. The mixture will be

used to construct the adaptive estimator in a rather delicate way.

Here we prove the result with Lclass being countable, i.e., Lclass = {Ui, i > 1}. We divide the proof

into several steps.

7.1.1 Constructing a cover set for each U and Ω

Fix U and Ω for a moment. Let Gεn be an εn-net for U under the L2 distance. Let

pu,Ω(zn) = (Πn
i=1h(xi)) (2π)

−n/2 |Ωn|−1/2 exp
(
− (1/2) (yn − un)

′
Ω−1
n (yn − un)

)
.

Let PZn,u,Ω denote the corresponding distribution. Then from Lemma 1 later in this section, for Ω ∈ Ξj ,

under Assumption 1, we have

D (PZn,u,Ω ‖ PZn,v,Ω) =
1

2
E (un − vn)

′
Ω−1
n (un − vn) 6

n

2λjσ
2
1(j, θ)

‖ u− v ‖2h . (7.1)

Thus for any u ∈ U and Ω ∈ Ξj , there exists ũ ∈ Gεn such that

D (PZn,u,Ω ‖ PZn,ũ,Ω(zn)) 6
nε2n

2λjσ
2
1(j, θ)

. (7.2)

7.1.2 Discretization of the dependence for each Ξ

Now we consider discretizing Θj by an ςn,j-net Θ
(n)
j with an appropriate choice of ςn,j > 0 to be given

later. Then for any θ0 ∈ Θj , there exists θ1 ∈ Θj such that ζ(Ω̃n(j, θ0), Ω̃n(j, θ1)) 6 ςn,j . It follows from

Lemmas 2 and 3 that

|tr
(

Ω̃n(j, θ0)
(

Ω̃n(j, θ1)
)−1

)
− n| 6 nςn,j/λj .

| log det

(
Ω̃n(j, θ0)

(
Ω̃n(j, θ1)

)−1
)
| 6 nςn,j/λj ,
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where λj is a lower bound on the smallest eigenvalue of Ω̃n(j, θ0) and Ω̃n(j, θ1). Call the discretized set

Θn
j .

We also discretize the parameter σ2
1(j, θ) in (0, σ2] with an equally spaced ε-net An of width 1

n . Then for

any σ2
1(j, θ0) ∈ (0, σ2], there exists a ∈ An such that a > σ2

1(j, θ0) and |a−σ2
1(j, θ0)| 6 1/n. Let Ωn(j, θ1) =

aΩ̃n(j, θ1). We then can bound |tr(Ωn(j, θ0) (Ωn(j, θ1))
−1

) − n| and log det
(

Ωn(j, θ0) (Ωn(j, θ1))
−1
)

as

follows. Observe

tr
(

Ωn(j, θ0) (Ωn(j, θ1))
−1
)
− n

=
σ2

1(j, θ0)

a
tr

(
Ω̃n(j, θ0)

(
Ω̃n(j, θ1)

)−1
)
− n

=
σ2

1(j, θ0)

a

[
tr

(
Ω̃n(j, θ0)

(
Ω̃n(j, θ1)

)−1
)
− n

]
+
n(σ2

1(j, θ0)− a)

a

and

log det
(

Ωn(j, θ0) (Ωn(j, θ1))
−1
)

= n log
σ2

1(j, θ0)

a
+ log det

(
Ω̃n(j, θ0)

(
Ω̃n(j, θ1)

)−1
)
.

It follows that

|tr
(

Ωn(j, θ0) (Ωn(j, θ1))
−1
)
− n| 6 |tr

(
Ω̃n(j, θ0)

(
Ω̃n(j, θ1)

)−1
)
− n|+ 1

σ2
1(j, θ0)

6 nςn,j/λj +
1

σ2
1(j, θ0)

, (7.3)

| log det
(

Ωn(j, θ0) (Ωn(j, θ1))
−1
)
| 6 n(a− σ2

1(j, θ0))

σ2
1(j, θ)

+ nςn,j/λj 6 nςn,j/λj +
1

σ2
1(j, θ0)

. (7.4)

7.1.3 Mixing over regression functions and dependences

Now we have a finite collection of functions in G̃εn,i(Ui) for each Ui ∈ Lclass and a countable collection

Ω̃ ∈ {Ω̃(j, θ) : θ ∈ Θn
j } for j > 1. Let {πi : i > 1} be a prior weight assignment on {Ui, i > 1}, i.e.,∑

i>1 πi = 1 with all πi > 0, i > 1. For each i > 1, choose wi to be the uniform weight on G̃εn,i(Ui). Let

{ψj : j > 1} be a prior weight assignment on {Ξj , j > 1} and let κj denote the uniform prior weight on

Θn
j . Also let {φk} be the uniform weight on An. Then for a ∈ An and θ ∈ Θn

j , let Ω(j, θ) = a · Ω̃(j, θ).

From the previous subsection, we know that for each θ0, there exists a∗ ∈ An and θ1 ∈ Θn
j such that

(7.3) and (7.4) hold. Define

q(zn) =
∑
i>1

∑
u∈G̃εn,i (Ui)

∑
j>1

∑
θ∈Θnj

∑
a∈An

πiψjwi(u)κj(θ)φk(a)pu,Ω(j,θ)(z
n).

Then q(zn), with the corresponding distribution denoted by QZn , is a density on Zn which satisfies that

for any given θ0 ∈ Θj , u0 ∈ Ui, for any θ1 ∈ Θn
j , u1 ∈ G̃εn,i(Ui),

D
(
PZn,u,Ω(j,θ0) ‖ QZn

)
= E log

pu;Ω(j,θ0)(Z
n)∑

i>1

∑
u∈G̃εn,i (Ui)

∑
j>1

∑
θ∈Θnj

∑
a∈An πiψjwi(u)κj(θ)φk(a)pu,Ω(j,θ)(zn)

6 E log
pu;Ω(j,θ0)(Z

n)

πiψjwi(u1)κj(θ1)φk(a∗)pu1,Ω(j,θ1)(zn)

= − log (πi)− log(ψj)− log φk +M(εn,i;Ui) +M(ςn; Θj) +D
(
PZn,u;Ω(j,θ0) ‖ PZn,u1,Ω(j,θ1)

)
.

Let u0 = (u0(x1), ..., u0(xn))
′

and u1 = (u1(x1), ..., u1(xn))
′
. Given Xn, by Lemma 1, the conditional

K-L divergence between PZn,u0;Ω(j,θ0) and PZn,u1,Ω(j,θ1) is upper bounded as follows:

1

2
log det

(
(Ω(j, θ0))

−1
Ω(j, θ1)

)
+

1

2
tr
(

Ω(j, θ0) (Ω(j, θ1))
−1
)
− n

2
+

1

2
(u0 − u1)

′
(Ω(j, θ1))

−1
(u0 − u1)
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6 nςn/λj + (1/2) (u0 − u1)
′
(u0 − u1)/(λjσ

2
1(j, θ0)) +

1

σ2
1(j, θ0)

.

Taking expectation with respect to Xn, together with the setup of the discretizations, we have

D
(
PZn,u,Ω(j,θ0) ‖ QZn

)
6 − log (πi)− log(ψj)− log φk +M(εn,i;Ui) +M(ςn,j ; Θj) +

nςn,j/λj +
nε2n,i

2λjσ
2
1(j, θ0)

+
1

σ2
1(j, θ0)

.

Note that for each i > 1, j > 1, and θ0 ∈ Θj , we have

sup
u∈Ui

D
(
PZn,u,Ω(j,θ0) ‖ QZn

)
6 − log (πi)− log(ψj)− log φk +

M(εn,i;Ui) +M(ςn,j ; Θj) + nςn,j/λj +
nε2n,i

2λjσ
2
1(j, θ0)

+
1

σ2
1(j, θ0)

.

We choose εn,i such that M(εn,i;Ui) = nε2n,i and ςn,j such that M(ςn,j ; Θj) = nςn,j . Then

sup
u∈Ui

D
(
PZn,u,Ω(j,θ0) ‖ QZn

)
6 − log (πi)− log(ψj)− log φk +(

1 +
1

2λjσ
2
1(j, θ0)

)
nε2n,i +

(
1 +

1

λj

)
nςn,j +

1

σ2
1(j, θ0)

.

7.1.4 Estimating the conditional distributions

Thus we have constructed a distribution QZn on the product space, which is uniformly appropriately

close to PZn,u;Ω for all u ∈ Ui and θ ∈ Θj in terms of the Kullback-Leibler divergence. Let θ0 ∈ Θj and

u ∈ Ui be the true dependence and the regression function. For simplicity, let Ω denote Ω(j, θ0).

The density q(zn) can be written as product of conditional densities, i.e., q(zn) = q0(z1)···qn−1(zn|zn−1).

Let p̂i−1(zi) = qi−1(zi|zi−1). For n > 1, let Ωn =

(
Ωn−1 βn−1

β
′

n−1 σ2
n

)
be the partition of Ωn. Under the

Gaussian assumption, given Xi+1 = x and (Xj , Yj)
i
j=1 under Ω, Yi+1 has a normal distribution with

mean mi,u;Ω(x|Zi) = u(x) + β
′

iΩ
−1
i

(
Y i − U i

)
and variance σ2

i+1 − β
′

iΩ
−1
i βi. Let

pzi+1|Zi;u;Ω(xi+1, yi+1) = h(xi+1)
(

2π
(
σ2
i+1 − β

′

iΩ
−1
i βi

))−1/2

×

× exp
(
−1/

(
2
(
σ2
i+1 − β

′

iΩ
−1
i βi

)) (
yi+1 −mi,u(xi+1|Zi)

)2)
.

It is the conditional density of Zi+1 given Zi under the regression function u and Ω. Then we have,∑n−1
i=0 E log

pzi+1|Zi;u;Ω(Zi+1)

p̂i(Zi+1)

= E log
pu,Ω(Zn)
q(Zn)

= D (PZn,u;Ω ‖ QZn)

6 − log (πi)− log(ψj)− log φk +
(

1 + 1
2λjσ

2
1(j,θ0)

)
nε2n,i +

(
1 + 1

λj

)
nςn,j + 1

σ2
1(j,θ0)

.

Since the squared Hellinger distance satisfies d2
H(p1, p2) =

∫ (
p

1/2
1 − p1/2

2

)2

dµ 6 D(p1 ‖ p2), we have

max
u∈Ui

n−1∑
i=0

Ed2
H(pzi+1|Zi;u;Ω, p̂i) 6 − log (πi)− log(ψj)− log φk +(

1 +
1

2λjσ
2
1(j, θ0)

)
nε2n,i +

(
1 +

1

λj

)
nςn,j +

1

σ2
1(j, θ0)

.

This means that we can estimate well the conditional densities of Zi+1 given Zi by p̂i’s in terms of the

cumulative squared Hellinger risk. We now construct estimators of u.

Ac
ce

pt
ed

Downloaded to IP: 97.116.186.182 On: 2018-10-12 12:50:49 http://engine.scichina.com/doi/10.1007/s11425-018-9394-x



Guowu Yang et al. Sci China Math for Review 13

7.1.5 Estimating u up to a constant

Now, for each i, let ũi, j̃i and θ̃j̃i be the minimizer of d2
H(pzi+1|Zi;u;Ω(j,θ), p̂i) over u ∈ ∪i>1Ui, j > 1, and

θ ∈ Θj respectively. Then by the triangle inequality, we have

max
u∈Ui

n−1∑
i=0

Ed2
H(pzi+1|Zi;u;Ω, pzi+1|Zi;ũi;Ω(j̃i,θ̃j̃i

))

6 max
u∈Ui

n−1∑
i=0

2E
(
d2
H(pzi+1|Zi;u;Ω, p̂i) + d2

H(pzi+1|Zi;ũ;Ω(j̃i,θ̃j̃i
), p̂i)

)
6 4 max

u∈Ui

n−1∑
i=0

Ed2
H(pzi+1|Zi;u;Ω, p̂i)

6 −4 log (πi)− 4 log(ψj)− 4 log φk + 4

(
1 +

1

2λjσ
2
1(j, θ0)

)
nε2n,i + 4

(
1 +

1

λj

)
nςn,j +

4

σ2
1(j, θ0)

.

From Lemma 1 in [35], we have that if f1 and f2 are two densities with mean and variance µ1, σ
2
1 and

µ2, σ
2
2 respectively, then

d2
H(f1, f2) >

(µ1 − µ2)
2

2(σ2
1 + σ2

2) + (µ1 − µ2)
2 .

Under the boundedness assumptions, we have that the squared Hellinger distance between pzi+1|Zi;u;Ω

and pzi+1|Zi;ũi;Ω(j̃i,θ̃j̃i
) at a given x is lower bounded by (µ1−µ2)2

4σ2+4L2 , where µ1 = u(x) − β′

iΩ
−1
i

(
Y i − U i

)
and µ2 = ũi(x)− β̃′

i

(
Ω(j̃i, θ̃j̃i)

)−1 (
Y i − Ũ i

)
is the mean of pzi+1|Zi;ũi;Ω(j̃i,θ̃j̃i

) at x. It follows that

Ed2
H(pzi+1|Zi;u;Ω, pzi+1|Zi;ũi;Ω(j̃i,θ̃j̃i

))

>
1

4σ2 + 4L2
E

∫
h(x)

(
u(x)− ũi(x)− β̃

′

i

(
Ω(j̃i, θ̃j̃i)

)−1 (
Y i − Ũ i

)
+ β

′

iΩ
−1
i

(
Y i − U i

))2

dµ

>
1

4σ2 + 4L2
E

∫
h(x) (u(x)− ũi(x)− τi)2

dµ,

where τi =
∫
h(x)u(x)dµ−

∫
h(x)ũi(x). Thus for any u ∈ Ui, j > 1, θ0 ∈ Θj , we have

n−1∑
i=0

E

∫
h(x) (u(x)− ũi(x)− τi)2

dµ

6 4
(
σ2 + L2

) n−1∑
i=0

Ed2
H(pzi+1|Zi;u;Ω, pzi+1|Zi;ũi;Ω(j̃i,θ̃j̃i

))

6 16
(
σ2 + L2

)(
− log (πi)− log(ψj)− log φk +

(
1 +

1

2λjσ
2
1(j, θ0)

)
nε2n,i +

(
1 +

1

λj

)
nςn,j +

1

σ2
1(j, θ0)

)
.

Thus we have obtained a sequence of estimators ũi of u with the variances

E

(∫
h(x) (u(x)− ũi(x)− τi)2

dµ

)
of u− ũi well controlled on average. However, a possibly large bias remains and need to be handled.

7.1.6 Debias the estimators

To get a final estimator of u, we estimate the mean η =
∫
h(x)u(x)dµ based on the current data Zi. For

any η̂ based on Zn, let ̂̂ui(x) = ũi(x)−
∫
ũi(x)h(x)dµ+ η̂. Then the new estimator satisfies∫

h(x)
(
u(x)− ̂̂ui(x)

)2

dµ =

∫
h(x) (u(x)− ũi(x)− τi)2

dµ
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+ (η̂ − η)
2
.

It follows that

n−1∑
i=0

E

∫
h(x)

(
u(x)− ̂̂ui(x)

)2

dµ

=

n−1∑
i=0

E

∫
h(x) (u(x)− ũi(x)− τi)2

dµ+ nE(η̂ − η)2

6 16
(
σ2 + L2

)(
− log πi − logψj − log φk +

(
1 +

1

2λjσ
2
1(j, θ0)

)
nε2n,i +

(
1 +

2

λj

)
nςn,j +

1

σ2
1(j, θ0)

)
+nE(η̂ − η)2.

A simple estimator of η based on Zn is the sample mean of Y n. Let η̂ = (1/n)
∑n
j=1 Yj , then

E(η̂ − η)2 = E

(
1

n

n∑
i=1

(u(Xi)− η) +
1

n

n∑
i=1

ei

)2

= E

(
1

n

n∑
i=1

(u(Xi)− η)

)2

+ E

(
1

n

n∑
i=1

ei

)2

=
1

n

∫
(u(x)− η)

2
h(x)dµ+

1
′
Ωn1

n2

6
4L2

n
+

1
′
Ωn1

n2
.

From all above, we have

1

n

n∑
i=1

E ‖ u− ̂̂ui ‖26 4L2

n
+

1
′
Ωn1

n2
+

16
(
σ2 + L2

)(− log πi − logψj − log φk
n

+

(
1 +

1

2λjσ
2
1(j, θ0)

)
ε2n,i +

(
1 +

2

λj

)
ςn,j +

1

nσ2
1(j, θ0)

)
.

Note that log φk is of order log n. Due to convexity of the squared L2 norm, the upper bound above also

holds for E ‖ u− 1
n

∑n
i=1
̂̂ui ‖2 . This completes the proof of Theorem 1.

7.2 Proof of Theorem 2

Under Assumption 2, by Lemma 4 in Section 7, we have that

ζ
(

Ωn(j, θ),Ωn(j, θ
′
)
)
6 n max

16i6n,16l6n
|wil(θ)− wil(θ

′
)| 6 cjn

Aj+1d(θ, θ
′
).

Thus in order to have ςn,j of order 1/n, d(θ, θ
′
) should be of order n−(Aj+2). Consider a rectangular grid

on Rdj for an ε-net with ε of order n−(Aj+2) (ignore those cubes that do not intersect with Θj and modify

a grid point if it is not in Θj). We can assign a prior weight on the grid in such a way that for each

θ ∈ Θj , there exists θ(n) in the grid with ζ
(

Ωn(j, θ),Ωn(j, θ
′
)
)
6 1/n and logw(θ(n)) is of order log n

(see [35] or [36]). Then the rate given in Theorem 1 is known to be the minimax rate of convergence

(see [36]).

7.2.1 Proof of Theorem 3

Consider the following countable collection of classes:

{Uξ : ξ ∈ Q ∩Υ}. (7.5)
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We assign prior weights {πξ, ξ ∈ Q ∩Υ} based on a description of the indices of the classes according to

coding theory as follows. For every dyadic rational number q, it can be written as q = i(q)+
∑l(q)
j=1 aj(q)2

−j

for some l > 1, aj ’s being either 0 or 1, and i is the integer part of q. To describe such a q, we just need to

describe the integers i, l, and the aj ’s. To describe i, we first describe the sign of i using log2 2 = 1 bit, and

then describe the absolute value of i using log∗(i) =: log2(i)+2 log2 (log2(i+ 1)) bits (ignoring rounding).

Then describe l using log∗(l) bits, and finally describe aj ’s using l bits. By this way, we describe all the

hyper-parameter components β1, ..., βm for ξ = (β1, ..., βm) ∈ Q ∩ Υ. The total description length for ξ

then is
m∑
k=1

(1 + log∗(i(βk)) + log∗(l(βk)) + l(βk)) .

The prior weight of class Uξ in the countable collection is πξ with− log2 πξ equal the above expression. The

coding interpretation guarantees {πξ : ξ ∈ Q∩Υ} is a sub-probability (see, e.g., [9]), i.e.,
∑
ξ∈Q∩Υ πξ 6 1.

One can either normalize πξ to be a probability or put the remaining probability on any chosen class

without any effect on rates of convergence.

As in the proof of Theorem 1, for each ξ ∈ Q ∩ Υ, discretize Uξ by a covering set of size εn,ξ as

defined earlier in this section and discretize the dependence as before. Follow the same construction of

the adaptive estimator. Let û∗ denote the final estimator. It remains to show it is minimax-rate optimal

for all the classes {Uξ : ξ ∈ Υ}.
Based on Assumption 4, for each ξ0 ∈ Υ, there exists a sequence ξn ∈ Υ ∩Nmn with ξ0 � ξn for some

mn of order log n such that
εn,ξn
εn,ξ0

stays upper bounded. Note that then πi is bounded above by order

log n. By Theorem 1, for each u ∈ Uξ0 ⊂ Uξn , we have

E ‖ u− û ‖26 4L2

n
+

1
′
Ωn1

n2
+

16
(
σ2 + L2

)(
− log (πi)

n
− log(ψj)

n
− log (φi)

n
+

(
1 +

1

2λjσ
2
1(j, θ0)

)
ε2n,ξn +

(
1 +

1

λj

)
ςn,j +

1

nσ2
1(j, θ0)

)
.

Together with log (πi) = O(log n) and ε2n,ξn = O(ε2n,ξ0), we obtain

E ‖ u− û ‖2= O

(
log n

n
+ ε2n,ξ + ςn,j +

1
′
Ωn1

n2

)
= O

(
max

(
ε2n,ξ0 ,

1
′
Ωn1

n2

))
.

The conclusion follows. This completes the proof of Theorem 3.

7.3 Lemmas and their proofs

Lemma 1: Let Pµ1,Ω1
and Pµ2,Ω2

denote the n-dimensional normal distributions with means µ1 and µ2

and covariance matrices Ω1 and Ω2, respectively. Then

D (Pµ1,Ω1
‖ Pµ2,Ω2

)

= (1/2) log det
(
Ω−1

1 Ω2

)
+ (1/2) tr(Ω1Ω−1

2 )− (1/2)n+ (1/2) (µ1 − µ2)
′
Ω−1

2 (µ1 − µ2).

Proof: Direct calculation gives the result.

Lemma 2: Let Ω1 and Ω2 be two n× n positive definite matrix. Then we have

n− tr(Ω1Ω−1
2 ) 6 log det

(
Ω1Ω−1

2

)
6 tr(Ω−1

1 Ω2)− n

and consequently

| log det
(
Ω1Ω−1

2

)
| 6 max

(
|tr(Ω1Ω−1

2 )− n|, |tr(Ω−1
1 Ω2)− n|

)
.

Proof: From Lemma 1, by taking µ1 = µ2, we have

log det
(
Ω−1

1 Ω2

)
+ tr(Ω1Ω−1

2 )− n > 0,
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and similarly

log det
(
Ω1Ω−1

2

)
> n− tr(Ω−1

1 Ω2).

Observing that log det
(
Ω1Ω−1

2

)
= − log det

(
Ω−1

1 Ω2

)
, the conclusion follows.

Lemma 3: Let Ω1 and Ω2 be two n× n positive definite matrix. Let ν∗ denote the maximum of the

absolute values of the eigenvalues of Ω2 − Ω1 and let w1 and w2 denote the smallest eigenvalues of Ω1

and Ω2 respectively. Then

|tr(Ω1Ω−1
2 )− n| 6 nν∗/w2.

| log det(Ω1Ω−1
2 )| 6 nν∗/(min(w1, w2)).

Proof: By positive definiteness, there exist two orthogonal matrice O and Õ such that

Ω2 = O
′
diag(ν1,1, ..., ν1,n)O

and

Ω2 − Ω1 = Õ
′
diag(ν2,1, ..., ν2,n)Õ,

where the two diagonal matrices are formed by the eigenvalues of Ω2 and Ω2−Ω1, respectively. It follows

that

tr(Ω1Ω−1
2 )− n = tr

(
Ω−1

2 (Ω1 − Ω2)
)

= tr
(
O

′
diag(ν−1

1,1 , ..., ν
−1
1,n)OÕ

′
diag(ν2,1, ..., ν2,n)Õ

)
= tr

(
diag(ν−1

1,1 , ..., ν
−1
1,n)OÕ

′
diag(ν2,1, ..., ν2,n)ÕO

′
)
.

Based on the simple observation that for symmetric matrices A,B1, B2, if A > 0 and B1 6 B2, then

tr(AB1) 6 tr(AB2), together with that OÕ
′
diag(ν2,1, ..., ν2,n)ÕO

′
6 |v∗|In, where v∗ is the largest

eigenvalue of Ω1 − Ω2 in absolute value and In denotes the identity matrix, we have

tr(Ω1Ω−1
2 )− n 6 v∗(ν−1

11 + ...+ ν−1
1n ) 6 nv∗/ν−1

11 .

With a similarly established lower bound, i.e.,

tr(Ω1Ω−1
2 )− n > −v∗(ν−1

11 + ...+ ν−1
1n ) > −nv∗/ν−1

11 ,

we know

|tr(Ω1Ω−1
2 )− n| 6 nν∗/w2.

Together with Lemma 2, the conclusion on the determinant follows.

Lemma 4: Let A = (ai,j) be an n × n square matrix. Then for any eigenvalue λ of A, |λ| is upper

bounded by

min

 max
16i6n

n∑
j=1

|aij |, max
16j6n

n∑
i=1

|aij |

 .

For a proof of this simple result, see, e.g., [19].
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