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Stat 3011 Chapter 1

CHAPTER 1: INTRODUCTION

1.1 The Basics

Definition: statistics

Statistics is the science of collecting, organizing, interpreting, and learning from data.

COURSE GOAL:

Learn how to use statistical methods to translate data into knowledge so that we can investigate
questions in an objective manner. Here are some examples of questions we’ll have the tools to
answer before the end of the semester:

1. How can we estimate the percentage of American citizens who would vote for Hillary Clinton
if the presidential election were held today? How certain are we about our estimate?

2. What is the relationship between the amount of time spent studying and the score received
on an exam?

3. Is there an association between smoking and divorce? If so, does that mean smoking causes
divorce?

THREE ASPECTS OF STATISTICS

1. Design: Planning how to obtain data to answer the question of interest.

2. Description: Summarizing the data that are obtained.

3. Inference: Using sample data to learn about the population: make decisions and
predictions based on the data for answering the statistical ques-
tion.

Definition: population

The population is a collection of units of interest.
Examples:

• adults in Minneapolis

• polar bears in the Arctic

• shoes from a factory

1
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Definition: subject

Subjects are the individual units of a population (e.g. an adult, a polar bear, a shoe).

NOTE: Very rarely can we observe the entire population of interest. The basic goal of statistics
is to:
instead, observe a sample and use it to learn about the population.

Definition: sample

A sample is a subset of the units of a population.

EXAMPLE 1.1

Suppose we want to know what percentage of Minnesota adults own a firearm. Since it’s impossible
to ask all adult Minnesotans, we instead take a poll of 1000 Minnesotans by selecting a sample
from the phone book.

• What is the population?

All adult Minnesotans.
• What is the sample?

The 1000 Minnesotans selected from the phone book.
• Is this a good sample?

No. Some people don’t have phones, have unlisted phone num-
bers, or have cell phones.

What makes a “good” sample?

It should be representative of the population. This can be obtained
by selecting sample subjects randomly (more in Ch 4).

Where do statistical methods come in?

1. Use design to obtain an appropriate sample from the population.

2. Describe the sample data with graphical and numerical summaries.

3. Perform statistical inference.

2
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Definition: statistical inference

The procedure of using a sample to learn about a population is called statistical inference.

Definition: parameter

A parameter is a number that describes a population. It is usually UNKNOWN.

Definition: statistic

A statistic is a number that describes a sample. It can be computed from data; therefore, it is
KNOWN once a sample is obtained.

NOTE: We use a sample statistic to estimate a population parameter!

EXAMPLE 1.2:

We want to know the average height of all students at the U. It is logistically impossible to measure
everybody. Instead, we take this class as a sample, measure our heights, and average them.

• population:

all U students

• sample:

this class

• parameter:

average height of all U students

• statistic:

average height of this class

3
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1.2 The Role of Computers in Statistics

Unlike previous generations, it’s no longer necessary to perform complex statistical procedures by
hand. With this in mind, we will use computers for some of our statistical analysis. This will allow
us to focus on the interpretation of a statistical analysis instead of getting bogged down by tedious
calculations.

In this course we will learn how to use a programming language called “R”.

1.2.1 Introduction to R

What is R?

R is free software, which means it is free as in “free beer” (you can download it with no charge)
and free as in “free speech” (you can do whatever you want with it except to make it non-free). It
is available for download from the Comprehensive R Archive Network (CRAN) at

http://cran.r-project.org.

R is the language of choice for research statistics. If it’s statistics, you can do it in R.

Why R?

R is the most powerful statistical computing environment in existence, what many applied and
research statisticians use. It is best at statistical computing and graphics. So why use R for an
introductory statistics course? We could use a graphing calculator, a spreadsheet, or some less
sophisticated program. However, we don’t want to be limited by simpler tools which are rarely
used outside of a classroom.

1.2.2 Getting Started with R

1. The interactive interface

The default graphical user interface (GUI) that comes with R is called the R console, which
is a command line interface (like the command prompt on Windows or the Terminal on Mac;
see the following figure). In general, command line tools are hard to use for beginners. Better
R GUIs, such as the R Commander, RStudio, and Tinn-R, are available online. My favorite
R GUI is RStudio, which can be obtained freely from http://www.rstudio.com. However,
we still need to install R before we can use RStudio. To make our experience with R less
frustrating, most GUIs provide the following two features.

• Code auto-completion: automatic completion of code can be done by pressing the
Tab key.

• Retrieving Previous Commands: recall previous commands using the up and/or
down arrow keys.

A detailed description of these two features for RStudio can be found at

https://support.rstudio.com/hc/en-us/articles/200404846-Working-in-the-Console.

4
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2. Using R as a calculator

Type the following in the R console. Anything following a # is just a note that you do not
need to type in. You can submit them one at a time or all at once.

3*9 + 10
20/2
2^3 # ^ denotes power. This returns 2 cubed.
sqrt(16) # square root of 16
pi*4^2 # area of a circle with radius 4
log(15) # natural logarithm (base e) of 15
log10(100) # logarithm of 100 using base 10

The results screen reprints the command along with your result:

> 3*9 + 10
[1] 37

1.2.3 Entering Data in R

• By hand

First, come up with a name for your variable (y, Y, weight, Age).

5
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R is case sensitive, thus “weight” and “Weight” refer to different variables.

Also, no spaces can be used in the variable names. If necessary, separate words using periods
or capitalization: “RainAmount” or “rain.amount”.

Example:

We record the weights of 5 people: 120, 160, 135, 190, and 210

weight <- c(120, 160, 135, 190, 210)

where “<-” is the assignment operator in R and “c” denotes a column of data.

• From a URL

Entering data from a URL into R

Data can be imported into R using the “read.table” or “read.csv” commands. For example,
if we wanted to import the Australian crime data set into R and work with the variables inside
this data set, we would choose a name for it (say “au_crime”) and type the following:

> au_crime <- read.table(
> "http://www.stat.umn.edu/~wuxxx725/data/crime.txt",
> header = TRUE
> )
> names(au_crime)
[1] "Year" "firearm.suicide" "firearm.homicide"
[4] "non.firearm.suicide" "non.firearm.homicide"

where “header = TRUE” tells R that the file contains column labels (or headers).

For csv (comma-seperated values) file, you can use read.csv command. Type ?read.csv in
console to learn more.

> flies<-read.csv("http://stat2.org/datasets/FruitFlies.csv")
> View(flies)

Once the dataset is imported properly, you should see the name of the data set in ‘Environ-
ment’ window in RStudio (upper right window). To view the dataset, click on the name of
the dataset or type View(NameOfYourDataset) command in console.

• From a file on your computer

Entering data from a file into R

Importing data from a file in your computer into R is similar to importing data from a URL.
However, instead of typing the web location into the “read.table” command, you would type

6
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the location of the file in your computer.

You can also use file.choose() command to locate the data file in your computer.

> dat<-read.csv(file.choose())

After running the command above, there will be a pop-up window asking you to locate the
csv file. You may use read.table or read.delim instead of read.csv for different types of
dataset.

1.2.4 Getting Help

You can get help on any function in R by typing “help(function name)”. For instance, if we want
to learn more about the “hist” function, type “help(hist)”.

It is also easy to find help online and a more complete guide to programming in R can be accessed
from http://cran.r-project.org/doc/manuals/R-intro.pdf (this may or may not be useful for
this class).

7
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CHAPTER 2: EXPLORING DATA

Motivating Example:

Suppose we have IQ test scores for 60 randomly chosen fifth-grade students:

145, 101, 123, 106, 117, 102, 139, 142, 94, 124, 90, 108, 126, 134, 100,
115, 103, 110, 122, 124, 136, 133, 114, 128, 125, 112, 109, 116, 139, 114,
130, 109, 131, 102, 101, 112, 96, 134, 117, 127, 122, 114, 110, 113, 110,
117, 105, 102, 118, 81, 127, 109, 97, 82, 118, 113, 124, 137, 89, 101

What does this data tell you about the IQ of a fifth grader? It’s hard to understand much about
the data by just looking at a pile of numbers!

The first step of any statistical analysis is getting to know the data you’re working with. In Chapter
2 we discuss exploring sample data using both graphical and numerical summaries.

2.1 Types of Data

Definition: variable

A variable is any characteristic of a subject in a population.
Examples: height, IQ, income, # of hot dogs eaten last year, gender,

eye color

TWO TYPES OF VARIABLES:

1. Categorical (Qualitative) Variable:

Classifies subjects as belonging to a certain group/category.
ex: gender, eye color, car make, race, major, area code

2. Quantitative Variable: Takes on numerical values that represent different magnitudes.
ex: height, income, weight

8
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A quantitative variable can either be

(a) Discrete: The possible values of a discrete quantitative variable form a set of separate
numbers (i.e. can be listed).
ex: # of hot dogs eaten, # of t.v.’s, # of accidents/day

(b) Continuous: The possible values of a continuous quantitative variable form an interval.
That is, there is an infinite continuum of possible values.
ex: height, blood pressure, amount of rainfall

A Quick Summary:

2.2 Graphical Summaries of Data

2.2.1 Graphical Summaries for Categorical Variables

Graphical summaries of categorical variables help us visualize the distribution of the data among the
separate categories. Before constructing the graphical summary, we first organize the categorical
data into a frequency table.

Definition: frequency table

A frequency table is a listing of possible values for a variable, together with the number of observa-
tions for each value. (Note that we can also construct frequency tables for quantitative variables.)

Definition: proportion

A proportion of observations that fall in a certain category is the count of observations in that
category divided by the total number of observations.
(NOTE: percent = 100 × proportion)

9
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EXAMPLE 2.1

In an online poll from a few years ago, 351 people weighed in on the following question:

On which issue are political candidates most helped/hurt by their stance?

Their answers are summarized in the following frequency table (source: BuzzDash.com):

Issue Frequency Proportion Percent

Abortion 33 .094 9.4%

Gay Marriage 24 .068 6.8%

Religion 40 .114 11.4%

War 179 .510 51.0%

Economy 75 .214 21.4%

Total 351 1 100%

1. Categorical variable:

2. What percentage of those surveyed thought either the war or the economy was the most
influential issue?

3. What proportion of respondents did not think religion was the most influential issue?

Two Graphical Summaries for Categorical Variables:

1. Pie Chart

A circle is drawn with a “slice of pie” representing each category’s % of observations.

2. Bar Graph

A bar is drawn for each category with the bar’s height representing the % or count of obser-
vations.

10
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EXAMPLE 2.1 CONTINUED

351 web users surveyed about what they believe to be the most influential issue in political elections.

# R code for drawing a pie chart and bar graph:
> issue <- c("abortion", "gay marriage", "religion", "war", "economy")
> count <- c(33,24,40,179,75)
> pie(count, issue, main="Political Pie Chart") #creates a pie chart titled

#"Political Pie Chart"
> barplot(count, names=issue, main="Political Bar Graph") #creates a bar graph titled

#"Political Bar Graph"

abortion

gay marriage
religion

war
economy

Political Pie Chart

abortion gay marriage religion war economy

Political Bar Graph

0
50

10
0

15
0

Observations:
War seems to be the overriding issue that people base their vote on.
Social issues aren’t as influential as national issues.

Pie Charts vs. Bar Graphs

1. Pie charts emphasize a category’s relation to the whole, but make it difficult to compare
categories to each other!

2. Bar graphs compare the sizes of each group of a categorical variable (not in relation to the
whole).

3. Bar graphs are easier to read and more flexible than pie charts.

11
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2.2.2 Graphical Summaries for Quantitative Variables

Definition: distribution

A distribution of data shows the values a variable takes and how often they occur.

Graphical summaries help us visualize the following features of distributions for quantitative vari-
ables:

1.

2.

3.

Two Graphical Summaries for Quantitative Variables:

1. Stem-and-Leaf Plot

2. Histogram

Constructing a Stem-and-Leaf Plot

Each observation is represented by a “stem” and a “leaf”...

1. Order the data from smallest to largest.

2. Select one or more leading digits to be the stem. The final digit is the leaf.

3. Place stems in a column from smallest to largest.
Do not skip a stem even if it has no observations.

4. Draw a vertical line to the right of the stems.

5. Write down the value of each leaf in the row to the right of its stem (in increasing order).

12
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Examples:

1. 10, 20, 23, 27, 27, 27, 40, 49, 55, 56

2. 40133, 40598, 41532, 41808, 41875, 42200

EXAMPLE 2.2

Basketball-reference.com reported on NBA team salaries for the 2016–17 season. This data can
also be found at http://www.stat.umn.edu/∼wuxxx725/data/NBAsalary.txt, where each team
is listed with their team salary and a label indicating their conference (“E” for Eastern and “W”
for Western):

Team Conference Salary
Atlanta Hawks E 99374470
Boston Celtics E 94533435
. . .
. . .

We can visualize this quantitative data by constructing a stem-and-leaf plot in R:

> dat <- read.table("http://users.stat.umn.edu/~wuxxx725/data/NBAsalary.txt", sep = ‘\t’,
+ header = TRUE)
> attach(dat)
> stem(Salary, scale = 0.5)

The decimal point is 7 digit(s) to the right of the |

7 | 267
8 | 01348
9 | 22566899
10 | 013555899
11 | 23568

NOTES:

1. “sep = ‘\t’” tells R that the field separator of the data file is the tab character.

2. “scale = 0.5” tells R to make the stem half as long as the default.

13
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Observations:

Shape: The lower “tail” extends further than the upper “tail”.
Outlier: No team appears to have a salary much smaller or larger
than the other teams.
Center: 100–110 million.
Spread: The salaries range from 72 to 118 million.

Constructing a Histogram

Histograms break up the range of values of a variable into classes and display the count (or percent)
of the observations that fall into each class.

1. Divide the range of the data into intervals of equal width.

NOTE: We need to choose a width that gives us a good picture of the distribution of the
data. The number of intervals should not be too many or too few (see the example below).

2. Count the number of observations that fall into each interval.

3. On the horizontal axis, mark the scale of the variable.

On the vertical axis, mark the scale for counts (or percents).

4. Above each interval, draw a bar whose height is either the corresponding count or percent
for that interval.

EXAMPLE 2.2 CONTINUED

Use R to construct a histogram for the 2016–17 NBA salary data.

> hist(Salary, xlab="Team Salaries", main="", breaks=2)
> hist(Salary, xlab="Team Salaries", main="", breaks=10)
> hist(Salary, xlab="Team Salaries", main="", breaks=20)

• “xlab” gives a label for the horizontal axis

• “main” supplies the title

• “break” specifies the desired number of breaks or bars you want (it doesn’t always give you
exactly what you want).

14
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Histograms vs Stem-and-Leaf Plots

1. A stem-and-leaf plot allows us to see the value of each individual observation. We lose this
detail with a histogram.

2. Stem-and-leaf plots become unwieldy for large data sets.

3. Histograms are more versatile.

2.3 Numerical Summaries of Quantitative Data

Graphical summaries give us a good idea of the shape of a distribution as well as a rough idea
of its center and spread. However, numerical summaries provide more precise descriptions of the
characteristics of a distribution (specifically, its center and spread).

Notation:

1. n = the number of observations in a sample

2. xi = the ith observation of a sample (so the list of observations is x1, x2, · · · , xn)

3.
∑

= summation ∑
xi = x1 + x2 + · · ·+ xn

2.3.1 Measures of Center

Two measures of center:

1. mean (x) = the average of all observations

x =

2. median (M) = the middle number when measurements are ordered from smallest to largest

When n is odd, M =

When n is even, M =
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Examples: Calculate mean and median for the following samples.

1. 6, 5, 9, 5, 1001 (Sorted: 5, 5, 6, 9, 1001) 2. 6, 5, 9, 5 (Sorted: 5, 5, 6, 9)

1. x =

sorted data: 5, 5, 6, 9, 1001
M =

2. x =

sorted data: 5, 5, 6, 9
M =

Mean vs Median (Round 1)

1. the mean and median are usually not equal

2. x is calculated using all the data whereas M ignores all but the middle values.

(SEE BOOK EXAMPLE pp. 52–53)
THINK: (100, 100, 100, 100, 100) vs. (0, 0, 100, 100, 100)

3. Definition: resistant

A numerical summary of the observations is resistant if extreme observations have little, if
any, influence on its value.
the mean is affected by extreme values (outliers) but the median
is not; that is, the median is resistant to outliers but the mean
is not

EXAMPLE 2.3

A survey of 15 recent graduates revealed the following information about their grade point averages
(GPA) and their starting salaries upon graduation:

GPA: 1.1, 2.3, 2.9, 3.2, 3.3, 3.5, 3.5, 3.6,
3.6, 3.6, 3.6, 3.8, 3.8, 3.9, 4

Salary (in $1000’s): 31, 26, 44, 37, 55, 67, 52, 54,
143, 201, 90, 51, 43, 66, 64

17
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Use R to look at the distributions of both variables (GPA and salary) and also calculate the mean
and median for both.

> gpa <- c(1.1, 2.3, 2.9, 3.2, 3.3, 3.5, 3.5, 3.6, 3.6, 3.6, 3.6, 3.8, 3.8, 3.9, 4)
> salary <- c(31, 26, 44, 37, 55, 67, 52, 54, 143, 201, 90, 51, 43, 66, 64)
> hist(gpa, xlab="GPA", main="Histogram for GPA")
> hist(salary, xlab="Salary (in $1000’s)", main="Histogram for Salary", breaks=7)
> mean(gpa)
[1] 3.313333
> median(gpa)
[1] 3.6
> mean(salary)
[1] 68.26667
> median(salary)
[1] 54

Histogram for GPA
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1. Describe the shape of the distribution of GPA’s.

What is the relationship between the mean and median of the GPA’s?

2. Describe the shape of the distribution of starting salaries.

What is the relationship between the mean and median of the salaries?
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Mean vs Median (Round 2)

Symmetric

mean ≈ median

Right−Skewed

meanmedian

Left−Skewed

mean

median

2.3.2 Measures of Spread

Motivating Example

Two separate statistics classes were given the same exam and received the following scores:

Class 1 Class 2
40 60
50 65

Scores 70 70
90 75
100 80

x 70 70
M 70 70

The mean and median exam scores of the two classes are the same. However, the exam scores for
Class 1 are much more spread out than the scores for Class 2.

Looking at measures of center alone ignores other features of the distribution and can be misleading.
We can get a better understanding of a distribution by looking at both measures of center and
measures of spread!

Three Measures of Spread:

1. Range

2. Interquartile Range

3. Standard Deviation
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I: RANGE

The range is the difference between the largest and smallest observations. That is,

range =

Example: Calculate the ranges of the exam scores for the two classes in the above example.

Class 1: range =
Class 2: range =

The Good:

Range is a simple measure of spread that is easy to calculate.

The Bad:

Range is only calculated using the most extreme values of a data set. Therefore, it can be misleading
and is not resistant to outliers.
ex: 2, 100, 100, 100, 100, 100, 100 range = 98

II: INTERQUARTILE RANGE

Definition: percentile

The pth percentile of a distribution is the value below which p% of the observations fall.

Example: Sam takes the GRE and scores in the 80th percentile. Therefore, Sam has performed
better than 80% of the other students taking the test but worse than the top 20%.

NOTE: We can calculate any percentile (3rd, 56th, 81st, etc). However, it is most common to use
the quartiles as a measure of the spread of a distribution.

1. First Quartile (Q1) = 25th percentile
The lowest 25% of the data lies below Q1.
Can also think of Q1 as the median of observations below M .

2. Second Quartile (Q2) = 50th percentile = median
50% of the data are below and 50% are above M
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3. Third Quartile (Q3) = 75th percentile
The highest 25% of the data lies above Q3.
Can also think of Q3 as the median of observations above M .

The quartiles split the distribution into 4 parts:

Q1 M Q3

Definition: interquartile range (IQR)

The interquartile range is the difference between the first and third quartiles. That is,

IQR =

Notes about IQR:

1. The larger the IQR, the more spread out the data is.

2. IQR is resistant to outliers since it’s calculated using only the middle 50% of the data set
(outliers tend to be outside this range).

Definition: 5-number summary

The 5-number summary is a brief numerical description of the center and spread of a distribution:

minimum Q1 M Q3 maximum
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EXAMPLE 2.2 CONTINUED

Use R to find 5-number summaries of NBA team salaries for the Eastern and Western conferences.

> summary(Salary[Conference=="E"])
Min. 1st Qu. Median Mean 3rd Qu. Max.

72290000 95450000 100200000 98580000 105100000 117700000
> summary(Salary[Conference=="W"])

Min. 1st Qu. Median Mean 3rd Qu. Max.
77470000 83340000 95900000 96640000 110300000 116200000

1. IQR for Eastern Conference:

IQR =

2. IQR for Western Conference:

IQR =

3. Conclusions:

Salaries are more spread out in the , but
the mean salary is higher in the .

Definition: box plot

The box plot is a plot of the five number summary.
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NOTE: Not only do boxplots provide a picture of the center and spread of a distribution, they
also give us an idea as to the shape or skewness of the distribution:

Definition: side-by-side box plot

A side-by-side boxplot graphs boxplots for more than one distribution (side by side). They allow
us to compare the centers and spreads of different distributions.

EXAMPLE 2.4
To better understand his 98 students, a professor handed out a survey. Among other things, he
asked about the amount of money they typically spend on a haircut:

Year Gender Height TV Siblings DistHome Haircut
5 M 72 0 0 4 0
5 F 65 30 1 1 45
. . . . . . .
. . . . . . .

A full data set can be found at http://www.stat.umn.edu/∼wuxxx725/data/class.txt. Use R
to draw a boxplot and side-by-side boxplots of the costs of haircuts for both male (M) and female
(F) students.

> dat <- read.table("http://www.stat.umn.edu/~wuxxx725/data/class.txt",
+ header = TRUE)
> attach(dat)
# Regular boxplot:
> boxplot(Haircut, range=10, ylab="Cost", main="Boxplot of Haircut Cost")
# Side-by-side boxplots for males and females:
> boxplot(Haircut ~ Gender, range=10, xlab="Gender", ylab="Cost",
+ main="Side-by-Side Boxplots")
# For side-by-side boxplots always use this order: numerical variable ~ group variable
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NOTES:

• By default, R marks any point that falls more than 1.5×IQR above Q3 or more than 1.5×IQR
below Q1 as an outlier. These points are represented by open circles and the whiskers are
only extended to values that aren’t considered to be outliers.

• To obtain a boxplot whose ‘whiskers’ extend to the maximum and minimum values of a data
set even if there are outliers, set ‘range’ to some large value such as ‘range=10’. (By default,
R sets ‘range=1.5’.)
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Observations:

• Overall cost is right skewed

• Women spend more than men

• Women are more spread out

• At least one outlier among men

• Women look fairly symmetric
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III: STANDARD DEVIATION

Definition: sample variance
(
s2
)

The sample variance of a set of observations is the “average” of the squared deviations from the
mean... WHAT?

s2 =

∑
(xi − x)2
n− 1

=
(x1 − x)2 + (x2 − x)2 + · · ·+ (xn − x)2

n− 1

NOTES:

1. xi − x = the deviation of xi from the mean.

2. s2 describes how far a typical observation deviates from the mean.

3. s2 is measured in units2.

4. Why divide by n− 1 instead of n?

It results in nicer mathematical properties.

Definition: sample standard deviation (s)

The sample standard deviation is the square root of the sample variance:

s =
√
s2 =

√∑
(xi − x)2
n− 1

Example: Calculate the sample standard deviation for the following data: 4, 4, 6, 7, 9

Properties of s:

1. Interpretation: s = distance that a “typical” observation falls from the mean
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2. s is measured in the same units as the original observations.

This makes it easier to interpret than s2.

3. Use s in conjunction with mean, x.

Since s measures spread about the mean, only use s to describe
the spread of a distribution when x is used as the measure of
center.

4.

5. The larger s is, the greater the spread of the data.

6. s = 0 ⇒

7. s depends on x. Therefore,

Comparing Standard deviations

Below you will find five pair of graphs. The mean for each graph µ is given just above each
histogram. For each pair of graph presented,

• Indicate which one of the graphs has a larger standard deviation or if the two graphs have
the same standard deviation

• Explain why. (Hint: Try to identify the characteristics of the graph that make the standard
deviation larger or smaller)
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Interpreting the Magnitude of s

How big is big? That is, how can the value of s help us to evaluate whether or not a particular
data set has a large spread or a small spread? The following rule helps us to answer this question
in the context of the data set of interest.

General Rule:

Unless the data set is extremely skewed or has extreme outliers, a rough rule of thumb is

that nearly all of the observations will fall within s of .

EXAMPLE 2.4 CONTINUED

Use R to calculate the mean and standard deviation of the haircut costs for the women in the
sample.

> mean(Haircut[Gender == "F"])
[1] 25.77358
> sd(Haircut[Gender == "F"]) #sd calculates the standard deviation
[1] 11.80065

From the boxplot for haircut costs for women, it appeared that the data was roughly symmetric.
What does the ‘General Rule’ tell us about the spread of this data?

Almost all of the data falls between...

So?
Using the General Rule, we can see that s reflects a fairly large
spread in the context of haircut costs.
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EXAMPLE 2.5

In a study of repair costs for midsized luxury vehicles, 10 types of cars were crashed into a wall at
5 miles per hour. The following are the repair costs for these 10 vehicles.

Type Repair Cost
Audi A6 0
BMW 328i 0
Cadillac Catera 900
Jaguar X 1254
Lexus ES300 234
Lexus IS300 979
Mercedes C320 707
Saab 95 670
Volvo S60 769
Volvo S80 4194

Use R to calculate the mean and standard deviation of the car repair costs. Repeat this analysis
without the Volvo S80 (outlier).

> cost <- c(0,0,900,1254,234,979,707,670,769,4194)
> mean(cost)
[1] 970.7
> sd(cost)
[1] 1206.596
> mean(cost[-10]) #cost[-10] is the cost variable without the

#10th observation (the Volvo S80)
[1] 612.5556
> sd(cost[-10])
[1] 441.4188

(a) How many standard deviations away is the Volvo S80 repair cost from the average cost?

(b) Observation:
x and s change a lot when we take out the Volvo S80. (They
are not resistant to outliers.)
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Choosing Numerical Summaries

We have seen that the sample median M is resistant to outliers, while the sample mean x is not.
The measure of spread we use most often in this course, the sample standard deviation s, is not
resistant to outliers either.
So why do we use x and s instead of more robust statistics?

• The mean and standard deviation involves all the values in the
dataset, while the median and IQR are only determined by a
few values in the dataset.

• When the dataset is large, the mean and standard deviation
are easier to compute than the median and IQR, as the latter
requires sorting the data.

• The mean and standard deviation have nicer theoretical prop-
erties than the median and IQR, when the distribution is not
too skewed and is free from outliers.

Concluding Remarks:

The numerical summaries we have studied in this chapter (x, s, median, etc.) are all examples of
sample statistics. They are numbers that describe a sample taken from some population. In later
chapters we will learn how we can use these sample statistics to learn about and estimate their
unknown population counterparts, population parameters.
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CHAPTER 4: GATHERING DATA

Variables: Explanatory variable (Independent variable) - Response variable (Dependent Variable)

4.1 Types of Studies

4.1.1 Experiment

A researcher conducts an experiment by assigning subjects to certain experimental conditions and
then observing outcomes on the response variable.
The experimental condition are called treatments

4.1.2 Observational Study

The researcher observes values of the response variable and explanatory variables for the sampled
subjects, without anything being done to the subjects (such as imposing a treatment).
Examples:

A sample survey selects a sample of people from a population and
interviews them to collect data.
A census is a survey that attempts to count the number of people in
the population and to measure certain characteristics about them.
In short:
an observational study merely observes rather than experiments
with the study subjects. An experimental study assigns to each
subject a treatment and then observes the outcome on the response
variable.

4.1.3 Experiments vs. Observational Studies

An experiment reduces the potential for lurking variables to affect the result. Thus, an experiment
gives the researcher more control over outside influences. Only an experiment can establish cause
and effect. Observational studies can not.
Experiments are not always possible due to ethical reasons, time considerations and other factors.
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4.2 Good and Poor Ways to Sample

Sampling Frame and Sampling Design

The sampling frame is the list of subjects in the population from which the sample is taken, ideally
it lists the entire population of interest. The sampling design determines how the sample is selected.
A variable is any characteristic of a subject in a population.

Simple Random Sampling (SRS)

Random Sampling is the best way of obtaining a sample that is representative of the population.
A simple random sample of n subjects from a population is one in which each possible sample of
that size has the same chance of being selected.
A simple random sample is often just called a random sample.

Summary: Types of Bias in Sample Surveys

Bias: When certain outcomes will occur more often in the sample than they do in the population.

• Sampling bias occurs from using nonrandom samples or having undercoverage.

• Nonresponse bias occurs when some sampled subjects cannot be reached or refuse to partic-
ipate or fail to answer some questions.

• Response bias occurs when the subject gives an incorrect response (perhaps lying) or the
way the interviewer asks the questions (or wording of a question in print) is confusing or
misleading.

A Large Sample Does Not Guarantee An Unbiased Sample!

Poor ways to sample

Convenience Sample: a type of survey sample that is easy to obtain.

• Unlikely to be representative of the population.

• Often severe biases result from such a sample.

• Results apply ONLY to the observed subjects.

Volunteer Sample: most common form of convenience sample.

• Subjects volunteer for the sample.

• Volunteers do not tend to be representative of the entire population.

Summary: Key Parts of a Sample Survey
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• Identify the population of all subjects of interest.

• Construct a sampling frame which attempts to list all subjects in the population.

• Use a random sampling design to select n subjects from the sampling frame.

• Be cautious of sampling bias due to nonrandom samples (such as volunteer samples) and
sample undercoverage, response bias from subjects not giving their true response or from
poorly worded questions, and nonresponse bias from refusal of subjects to participate.

We can make inferences about the population of interest when sample surveys that
use random sampling are employed.
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CHAPTER 5: PROBABILITY

5.1 Randomness

Definition: random phenomenon

A phenomenon is random if individual outcomes are uncertain but there is a long-term regularity
in the outcomes.

NOTE:

We use probability to describe and quantify randomness:

Definition: Probability

The probability of an outcome of a random phenomenon is the proportion of times the outcome
occurs in a very long series of repetitions (i.e. the “long-run proportion”).

EXAMPLE 5.1: Probability as a Long-run Proportion

Flip a fair coin. We expect that half of the time we will see heads (H) and the other half of the
time we will see tails (T). That is, the probability of flipping H is 1/2 and the probability of flipping
T is 1/2.
Use coin flipping to illustrate the idea of probability as a long-run proportion. Suppose we keep
flipping the fair coin and keep track of the proportion of rolls that have turned up heads.

Flip Result Cumulative Proportion of Heads

1 T 0

2 H 0.5

3 H

4 T

5 T

6 T

...
...

...
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Keep doing this for 5000 rolls:

Flip Result Cumulative Proportion of Heads
1 T 0.0000000
2 H 0.5000000
3 H 0.6666667
...

...
...

4998 H 0.5004002
4999 T 0.5005001
5000 H 0.5004000

Now, plot the cumulative proportion of heads vs. the number of flips:
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Notice:

As the number of flips increases, the proportion of Heads

.

5.2 Probability Models

A probability model for a random phenomenon has two parts:

1.

2.
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Definition: sample space (S)

A sample space is the collection of all possible outcomes of an experiment or random phenomenon.

EXAMPLE 5.2: Sample Spaces

Suppose we randomly select a student from class and ask a question. In the below situations,
describe the sample space for the experiment.

1. How much time did the student spend studying during the last 24 hours?

S = [0, 24]

2. In what state was the student born, given that he/she was born in the US?

S = {AL,AK,AZ, ...WY }

3. How many friends does the student have?

S = {0, 1, 2, · · · }

Definition: event

An event is a subset of the sample space.

Notation: We typically use capital letters A, B, C, etc to denote events.

EXAMPLE 5.3: Sample Spaces and Events

Suppose we toss a fair coin 3 times.

1. What is the sample space?

S =

2. Let A be the event that we get exactly 2 heads on the 3 tosses. Write down A.

A =

3. Let B be the event that at most one tail is flipped. Write down B.

B =
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Special Events:

• complementary event: Ac = “not A”

Ac = collection of all outcomes in S that are .
NOTE: Ac ∪ A =

• intersection: A ∩B = “A and B”

A ∩B = all outcomes that are .

• union: A ∪B = “A or B or both”

A ∪B = all outcomes that are .

EXAMPLE 5.4: Special Events

Roll a fair die (one time).

1. Write down the sample space.

S =

2. Let A be the event that you roll an even number and B be the event you roll a number bigger
than 2. Write down the following events.

(a) A, B
A = and B =

(b) Ac

Ac =

(c) A ∩B
A ∩B =

(d) A ∪B
A ∪B =
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Definition: disjoint

Two events A and B are disjoint if they have no outcomes in common.

EXAMPLE 5.4 CONTINUED

Let C be the event that you roll a value less than 3. Write down C and find A ∩ B, A ∩ C, and
B ∩ C. Which pairs of these events, if any, are disjoint?

C =

A ∩B =

A ∩ C =

B ∩ C =

(B,C) are disjoint but (A,B) and (A,C) are not.

Venn Diagrams: Allow us to visualize events.

A B

A

B C

Probability Rules:

Let A and B be events and let P (A) and P (B) denote the probabilities of these events occurring.
Then Rules 1-5 are true for any A and B.

1. 0 ≤ P (A) ≤ 1

P (A) = 0 ⇒ A will never occur
P (A) = 0.0001 ⇒ A is very unlikely but will occur in a long series of trials
P (A) = 0.6 ⇒ A will be observed more often than not in repeated trials
P (A) = 1 ⇒ A is certain to occur
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2. Law of Total Probability: P (S) = , where S is the sample space

3. Complement Rule: P (Ac) =

4. General Addition Rule: P (A ∪B) =

Using a Venn Diagram to Visualize the General Addition Rule:

A B

A∩BA∩Bc Ac∩B

5. Partitioning of Probability:

P (A) = P (A ∩B) + P (A ∩Bc)

Whereas Rules 1-5 hold for any events A and B, Rule 6 holds only if A and B are disjoint,
and Rule 7 holds only if A and B are independent.

6. Addition Rule for Disjoint Events: Assume A and B are disjoint.

(a) P (A ∩B) =

(b) P (A ∪B) =
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7. Multiplication Rule for Independent Events:

Definition: independent

Two events are independent if knowing that one occurs does not change the probability that
the other occurs. For example,

• The event that it rains today is not independent of the event that it was cloudy this
morning.

• The event that it rains today is independent of the event that 7 was one of the lottery
numbers chosen last night.

When A and B are independent,

P (A ∩B) = P (A)× P (B)

EXAMPLES:

1. A survey of students found that in the last month:

68% had gone to see a movie (A)

52% had attended a sporting event (B)

35% had done both (A ∩B)

(a) Draw a Venn diagram.

A B

.68−.35
=.33

.35
.52−.35

=.17
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(b) What is the probability that a randomly selected student has been to either a movie or
a sporting event (or both) in the last month?
P (A ∪B) =

(c) What is the probability that a randomly selected student has been to a movie but not
a sporting event in the last month?
P (A ∩Bc) =

(d) What is the probability that a randomly selected student has been to neither a movie
nor a sporting event in the last month?
P ((A ∪B)c) =

2. SurveyUSA polled 451 Americans regarding their opinion on federal gun control laws:

Opinion
Too Restrictive Not Restrictive Enough About Right Not Sure Total

Age
18–34 31 67 49 6 153
35–54 36 82 59 3 180
55+ 21 60 33 4 118
Total 88 209 141 13 451

Select one person at random from the sample and define events A and B:

A = thinks that federal gun control laws are too restrictive

B = is under the age of 55

(a) Find P (A) and P (B).

P (A) =
P (B) =

(b) What is the probability that the person does not think federal gun control laws are too
restrictive?
P (Ac) =

(c) What is the probability that the person is under the age of 55 and thinks federal gun
control laws are too restrictive?
P (A ∩B) =
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3. According to an organization called Student Monitor, 83% of American college students own
a laptop, 24% own a desktop, and 8% own neither a laptop nor a desktop.

laptop
.83

desktop
.24

neither .08

(a) What is the probability that a randomly selected student owns either a laptop or desktop
or both?
P (laptop or desktop) = 1− P (neither) = .92

(b) What is the probability that a randomly selected student owns both a desktop and a
laptop?

P (laptop or desktop) = P (laptop) + P (desktop)− P (both),
∴ P (both) = P (laptop) + P (desktop)− P (laptop or desktop)
= .83 + .24− .92 = .15

(c) Are owning a desktop and owning a laptop independent for the population of American
college students?

P (both) = .15,
but P (laptop)× P (desktop) = .83× .24 = .1992 6= .15,
∴ not independent.
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5.3 Conditional Probability

Motivating Example:

Suppose I take a handful of M&M’s and get 5 red, 4 blue, and 7 brown. I randomly pick one of
the M&M’s and eat it:

P(red) = 5/16 P(blue) = 4/16 P(brown)= 7/16

Now, suppose I tell you that the M&M was not brown. What is the probability the M&M was
blue given (or knowing that) it was not brown?

That leaves 9 possible M&M’s, 4 blue and 5 red.
Therefore, P(blue given not brown) = 4/9

Definition: conditional probability

The conditional probability of event A given event B is the probability that A occurs given the

knowledge that B has occurred. When P (B) > 0, the conditional probability of A given B is

P (A|B) =
P (A ∩B)

P (B)

Another Multiplication Rule:

Conditional probability gives us

P (A|B) =
P (A ∩B)

P (B)
and P (B|A) = P (A ∩B)

P (A)

Therefore,

P (A ∩B) =
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EXAMPLE 5.5

A study reported in the The New Yorker found that in the 2004 presidential election, 20% of voters
identified moral values as the most important factor in their voting decision. Define events A and
B where

A = identify moral issues as the most important factor in voting decision

B = vote for Bush

We know that Bush won 51% of the vote. We also know that 16% of voters both voted for Bush
and identified moral issues as the most important factor. Use this information to calculate the
following conditional probabilities.

(a) What is the probability that a person who voted for Bush voted on moral issues?

P (A|B) =

Interpretation: of Bush voters i.d.’d moral issues as the
most important factor.

(b) Find the conditional probability that a person voted for Bush given they voted on moral
issues.

P (B|A) =

Interpretation: The majority ( ) of those who voted
on moral issues voted for Bush.

(c) Find the conditional probability that a person did not vote for Bush given they voted on
moral issues.

P (Bc|A) =
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Conditional Probability and Independence

Recall: If A and B are independent, knowing that B happened does not change the probability
that A also occurs. Therefore, when A and B are independent,

P (A|B) =

Proof:

A and B independent ⇒ P (A ∩B) = P (A)P (B)

P (A|B) =
P (A ∩B)

P (B)
=
P (A)P (B)

P (B)
= P (A)

Three Ways to Check For Independence:

Two events A and B are independent if any of the following holds (you only have to check one):

1. P (A ∩B) = P (A)P (B)

2. P (A|B) = P (A)

3. P (B|A) = P (B)

If any one of these conditions do not hold, then none of them hold and the events are NOT
independent.

More Conditional Probability Examples

(a) In the gun control example on p. 42, what is P (A|B)? Interpret your answer in a sentence.

P (A|B) =
P (A ∩B)

P (B)
=
.149

.738
= .202

Interpretation: 20.2% of Americans under the age of 55 think
that federal gun control laws are too restrictive.
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(b) In the laptop/desktop example (p. 43), what proportion of students who own a laptop also

own a desktop?

P (desktop|laptop) = P (desktop ∩ laptop)
P (laptop)

=
.15

.83
= .181
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CHAPTER 6: PROBABILITY DISTRIBUTIONS

EXAMPLE 6.1

Toss a coin 3 times. By now we know that the sample space for this event is

S = {HHH,HHT,HTH, THH, TTH, THT,HTT, TTT}.

Let X = the number of heads (H). Therefore, X can be 0, 1, 2, or 3. The event that X takes on
any one of these values is random and can be assigned a probability. So, X is a variable and X is
random...X is a random variable!

Definition: random variable

A random variable is a variable whose value is a numerical outcome of a random phenomenon.

Notation:

We often use X, Y , and Z to denote random variables and use x, y, and z to denote their
realized/observed values, respectively.

Two Types of Random Variable

1. discrete:

2. continuous:

6.1 Discrete Random Variables

A discrete random variable takes on values that can be listed.

examples:
X = # of M&M’s in a bag
X = # of broken mirrors in a shipment
X = # of accidents/day in a factory

We can describe discrete random variables using its probability distribution...
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6.1.1 Probability Distribution of A Discrete Random Variable

Probability distributions for discrete random variables have two properties:

1.

2.

EXAMPLE 6.2

Let X = the number of bases for a randomly selected at bat. In 2015, the probability distribution
of X (excluding walks) for a Minnesota Twins player was as follows (all probabilities rounded to
three decimals):

x 0 1 2 3 4
probability .753 .159 .051 .008 .029

(a) Is this a legitimate probability distribution?

(b) For a randomly selected at bat, what is the probability the player got at least one base?

6.1.2 Center and Spread of A Probability Distribution

We can describe distributions of random variables just as we described distributions of data in
Chapter 2. Specifically, we can describe the center and spread of a probability distribution using
mean and standard deviation.

• Mean:

µ = E(X) = “Expected Value of X”
Measures the center tendency of the distribution of X

• Standard Deviation:

σ = “Standard Deviation of X”
Measures the spread of the distribution of X.
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Interpretation:

µ is the “long-run” average outcome. That is, µ is what we expect the average to be for a very long
series of repetitions. Similarly, σ is a “long-run” standard deviation.

Calculating µ and σ for Discrete Distributions

Let x represent the possible outcomes of discrete random variable X. Then the formulas for the

mean and standard deviation of the probability distribution for X are as follows:

µ =

σ2 =

σ =

EXAMPLE 6.2 CONTINUED

Recall: We let X be a random variable defined by the number of bases earned by a randomly
selected Minnesota Twins at-bat from the 2015 season. The probability distribution of X is:

x 0 1 2 3 4
probability .753 .159 .051 .008 .029

Find the mean and the standard deviation of this probability distribution.

If we define a similar random variable Y for the Rangers, who hit many more home runs than
the Twins, would we expect the standard deviation of Y to be smaller or larger than the standard
deviation of X?
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Larger. Since Y has a much higher probability to take the value of
4 than X, the distribution of Y is more spread out than that of X,
and therefore Y has a larger standard deviation.

EXAMPLE 6.3

Let X denote the response of a randomly selected person to the question, “What is the ideal number
of children for a family to have?”

According to a recent General Social Survey, the probability distribution of X for men in the
U.S. is as follows:

x 0 1 2 3 4
probability 0.04 0.03 0.57 0.23 0.13

Find and interpret the mean of this probability distribution.

If we sample a large number of American men and compute their
average ideal numbers of children, then in the long run the average
will be close to .

6.2 Continuous Random Variables

6.2.1 Density Curves

A continuous random variable takes on values that form an interval. It is impossible to list all its
values. Therefore, instead of writing out the probability distribution as we did for discrete random
variables, we describe the distribution using a density curve.
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A density curve specifies the probability distribution of a continuous random variable.

x

Properties of a Density Curve:

1. always non-negative (≥ 0)

2. P (a < X < b) = area under the curve above (a, b) (this sometimes
requires calculus)
Therefore P (X = a) = 0 for all a

3. total area under density curve = 1

EXAMPLE 6.4

A certain bus is equally likely to be anywhere from zero to twenty minutes late. Let X = the
number of minutes that the bus is late. Therefore X is uniformly distributed on the interval [0,20].

1. Draw the density curve for X.
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Total area = 1.

f(x) =

{
1/20 0 ≤ x ≤ 20

0 otherwise

2. What is the probability the bus is...

(a) At least 13 minutes late?

(b) Exactly 10 minutes late?

(c) Between 10 and 13 minutes late?

3. Exactly 75% of the waiting times are below what value?
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EXAMPLE 6.5: Histograms as Discrete Approximations of Density Curves

Let X = height (in inches) of a North American female. The following density curve specifies the
probability distribution of X:
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Now, suppose we don’t have this information. All is not lost! To get an idea of what the distribution
of heights is, we can randomly sample n North American women and measure their heights.

The following are histograms for these samples where n = 10, n = 100, n = 1000 with the true
density curve superimposed.
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Observations:
As sample size increases, the shape of the histogram for the sample
approaches the true density curve.

In general: The more data and finer the scale on the x-axis of a histogram, the better it approx-
imates the true density curve.
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CENTER & SPREAD OF A DENSITY CURVE

Measures of Center:

1. median =

2. mean =

Comparing the Mean and Median of a Density Curve

Symmetric

mean ≈ median

Right−Skewed

meanmedian

Left−Skewed

mean

median

Measures of Spread:

We can measure the spread of a distribution using standard deviation. This value is tough to
eyeball but can be calculated mathematically. We will return to this later...

6.2.2 The Normal Distribution

Notation Recall:

µ = mean of a probability distribution
σ = standard deviation of a probability distribution
x = sample mean
s = sample standard deviation
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The Normal Distribution

We now focus on a common continuous distribution, the normal distribution. The distributions
of many quantitative random variables are well-approximated by the normal distribution. It will
therefore become an indispensable tool in approaching statistical inference.

Normal distributions are specified by µ and σ for

−∞ < µ <∞ and 0 < σ <∞.

That is, if we know that a random variable has a normal distribution and we also know µ and σ,
then we know exactly what the probability distribution looks like.

Notation:

X ∼ N(µ, σ) : X is “normally distributed” with mean µ and standard deviation σ
Z ∼ N(0, 1) : Z is “standard normal” (normal with µ = 0 and σ = 1)

The Normal Distribution Density Curve

Features:

1. bell-shaped

2. symmetric

3. centered at µ (mark this on the plot)

4. mean = median = µ

NOTE: All normal curves have the same overall shape. So how does changing µ or σ affect the
normal curve?
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Changing µ:

Observations:
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Changing σ:

Observations:
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The 68–95–99.7 Rule

All normal distributions share common properties. One of these is the 68–95–99.7 Rule.

For any normal distribution

• Approximately of the distribution falls within σ of µ.

• Approximately of the distribution falls within σ of µ.

• Approximately of the distribution falls within σ of µ.
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EXAMPLE 6.6

The time a customer has to wait for their food to arrive at a local restaurant has a normal distri-
bution with a mean of 16 minutes and standard deviation of 4 minutes.
68–95–99.7 Rule:

(a) What proportion of customers wait longer than 16 minutes?

(b) What proportion of customers wait between 12 and 20 minutes?

(c) What is the probability that a customer waits between 12 and 24 minutes?
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(d) The shortest 2.5% of waiting times are smaller than what value?

(e) What is the probability that a customer waits less than 21 minutes?

Normal Distribution Calculations

Goal: Calculate quantities such as P (X ≤ a), P (a < X ≤ b), etc using the normal curve. For
problems not covered by the 68–95–99.7 Rule, we will need to use Table A (in Appendix A).

Notice: There is only one table but infinitely many different normal distributions (think of all the
combinations of µ and σ!). In order to use the same table for each of these distributions, we can
standardize the distributions so that they are on the same scale.

Standardizing Normal Distributions

Suppose X ∼ N(µ, σ) for any µ, σ. Then we can transform X to the standard normal scale:

Standardizing Observations

Definition: z-score

Let x be an observation from a normal distribution with mean µ and standard deviation σ. Then

z =
x− µ
σ

is the z-score of x.
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Interpreting a z-score:

1. By definition, z = number of standard deviations (σ) that x is
away from the mean (µ).

2. Almost all observations will be within 3 σ of µ. Therefore, any
observation with a z-score close to or more than 3 is an unusual
observation (it falls far from µ).

The Implication:

Suppose X ∼ N(µ, σ) and we want to calculate P (X < a) for some value a. Then, the standard-
ization scheme guarantees that

where z∗ is the z-score for a. Therefore, after standardizing any
normal distribution, we can use the standard normal distribution
for probability calculations.

Table A

Table A can be used to calculate areas under the curve for the standard normal distribution
(N(0, 1)). Specifically, Table A allows us to approximate P (Z < z∗) for any value z∗ where
Z ∼ N(0, 1):

Table A (page A-1): Table A (page A-2):

P (Z < z∗)

P (Z < z∗)

After standardizing, this table can be used to approximate any area beneath the normal curve
corresponding to any normal distribution.
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EXAMPLE 6.7

Let Z be a standard normal random variable. That is, Z ∼ N(0, 1).

(a) What is the probability Z falls below -2.63?

(b) What is the probability Z is at least 2.63?

(c) What is the probability Z is greater than -1.31?

(d) Find the proportion of the distribution that falls between -.97 and 1.31.
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(e) What value marks the 57th percentile?

Steps for Calculating Normal Probabilities:

When given a value x and asked to find a probability or proportion, there are 3 steps to follow:

1. Draw a picture.

2. Convert x to a z-score.

3. Use Table A to calculate the appropriate probability. (Start from the outside and work in!)

Steps for Calculating x Values of a Normal Distribution:

When given a probability or proportion and asked for the corresponding x value, there are 3 steps
to follow:

1. Draw a picture.

2. Use Table A to find the z-score for the specified probability.

(Start from the inside and work out!)

3. Unstandardize. Recall that z = (x− µ)/σ. Therefore you must calculate x = µ+ zσ.

EXAMPLE 6.8

Let X = SAT score and suppose that SAT scores are known to follow a normal distribution with
mean 1026 and standard deviation 209.

(a) Write down the distribution of X.

63



Stat 3011 Chapter 6

(b) Calculate and interpret the z-score for an SAT performance of 1100.

(c) What proportion of students score lower
than 1100?

(d) What is the probability that a randomly selected
student received a score of at least 820?

(e) What score must you earn to be in the top 10%?
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EXAMPLE 6.9

Let X = duration of a human pregnancy (in days). The distribution of X is well-approximated by
a normal distribution with a mean = 266 days and standard deviation = 16 days.

(a) What is the probability that the duration of the
pregnancy is between 250 and 300 days?

(b) How long do the shortest 2% of pregnancies last?

Assessing Normality

Not every continuous random variable follows a normal distribution. There is also no way to
guarantee that a random variable is normally distributed. However, given a sample of observations
from a certain distribution, there are some graphical tools that can help us to assess whether or
not it is reasonable to assume normality.

1. Histogram / boxplot: Check for skewness and outliers.

2. Q-Q plot: Check of skewness, outliers, and heavy-tailedness.

The Histogram or Boxplot as a Graphical Tool for Assessing Normality

• Normality Assessment:

The normal distribution has a symmetric, bell-shaped shape. If
the plot does not look symmetric and bell-shaped, then the data
is skewed and/or contains outliers.
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The QQ Normal Plot as a Graphical Tool for Assessing Normality

• Normality Assessment:

Plots the quantiles of the data against the quantiles of a normal distribution. Then the data
are approximately normally distributed if ...

the points lie along the plotted line.
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To create this plot, the following into R commands were used:

> samp <- rnorm(1000)
> qqnorm(samp)
> qqline(samp)

The first command created a random sample of 1000 observations (n = 1000) from N(0, 1). The
second command plotted the quantiles of the sample against the quantiles of the normal distribu-
tion. Then the third command created the line that we compare our points to.
Obvious deviations of the points from the line may indicate non-normality in the data. For example,
the following pictures show the Q-Q plots of data from three typical non-normal distributions.
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EXAMPLE 6.10

In the following two examples, we have two samples from unspecified distributions. Use histograms
and Q-Q plots to assess the normality of these distributions.

1. The survival times (in days) are recorded for 72 guinea pigs in a medical experiment. The
data can be found at http://www.stat.umn.edu/∼wuxxx725/data/guineapigs.txt.

> hist(Survival, xlab="Survival time (days)", main="")
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Assessment:

2. The heights of a random sample of 1000 women were recorded.

> hist(Height, xlab="Height (in)", main="", freq=F)
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6.2.3 The Normal Distribution in R

Normal Distribution Calculations

1. Assume Z ∼ N(0, 1).

(a) Calculate P(Z ≤ 1.645).
> pnorm(1.645)
[1] 0.950015

(b) Calculate P(Z ≥ -0.971).
> 1 - pnorm(-0.971)
[1] 0.8342259
> pnorm(-0.971, lower.tail=F)
[1] 0.8342259

NOTE: R calculates lower tail probabilities by default!
(c) Find the 97.5th percentile.

> qnorm(0.975)
[1] 1.959964

2. Assume X ∼ N(21, 2).

(a) Calculate P (X < 19).
> pnorm(19, mean=21, sd=2)
[1] 0.1586553

(b) Calculate P (17 < X < 25) (within 2 sd of the mean).
> pnorm(25, mean=21, sd=2) - pnorm(17, mean=21, sd=2)
[1] 0.9544997

(c) Find the 60th percentile.
> qnorm(.60, mean=21, sd=2)
[1] 21.50669

Generating Normal Data

# random sample of 100 observations (n=100) from N(0,1)
> x <- rnorm(100)
# random sample of 10 observations (n=10) from N(90,5)
> y1 <- rnorm(10,mean=90,sd=5)
# random sample of 100 observations (n=100) from N(90,5)
> y2 <- rnorm(100,mean=90,sd=5)
# random sample of 1000 observations (n=1000) from N(90,5)
> y3 <- rnorm(1000,mean=90,sd=5)
> hist(y1)
> hist(y2)
> hist(y3)
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CHAPTER 7: SAMPLING DISTRIBUTIONS

Recall from Chapter 1:

parameter: a number that describes a population

statistic: a number that describes a sample

inference: drawing conclusions about a population based on information from a sample

The Problem:

In the last chapter we studied the normal distributions, N(µ, σ). In doing so, we assumed that the
parameters of these distribution, µ and σ, were known. However, in practice we will rarely know
these values.

The Solution:

EXAMPLE 7.1

Let p = the proportion of Americans that approve of the job President Obama is doing. Notice that
p is an unknown parameter, it would be impossible to determine Obama’s exact approval rating.

Suppose ABC polled 1000 adults and 512 of them said they approved of the job Obama is
doing. How would you use this information to estimate the true approval rating, p?

Now, suppose CBS conducted their own poll of 1000 adults and found that 485 approved of
the job Obama is doing. How would you estimate p based on this sample?

Which estimate of p is correct?
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THE MAIN POINT: Different samples produce different results!

The value of a statistic (ex: x, p̂) will vary from sample to sample.
Therefore statistics have their own distributions.

Reese’s Pieces Part 1: Making Conjectures about Samples

Reese’s Pieces candies have three colors: orange, brown, and yellow.
Which color do you think has more candies (occurs more often) in
a package: orange, brown, or yellow?
Guess the proportion of each color in a bag?

Color Orange Brown Yellow

Predicted

Proportion

1. If groups (of 2-4 students) in the class take a sample of 25 Reese’s Pieces candies, would you
expect every group to have the same number of orange candies in their sample? Explain.

2. Make a conjecture: Pretend that 10 groups each took samples of 25 Reese’s Pieces candies.
Write down the number of orange candies you might expect for these 10 samples:

These numbers represent the variability you would expect to see in the number of orange
candies in 10 samples of 25 candies.

Your group will be given a cup that is a random sample of Reese’s Pieces candies. Count
out 25 candies from this cup without paying attention to color. In fact, try to IGNORE the
colors as you do this.

3. Now, count the colors for your sample and fill in the chart below:
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Orange Yellow Brown Total

Number of candies

Proportion of candies

Record both the number and proportion of orange candies on the board.

4. Now that you have taken a sample of candies and see the proportion of orange candies, make
a second conjecture: If you took a sample of 25 Reese’s Pieces candies and found that you had
only 5 orange candies, would you be surprised? Do you think that 5 is an unusual value?

5. Record the number AND the proportion of orange candies in your sample on two dotplots
on the board. Recreate both dotplots in the two figures below.

0 5 10 15 20 25

Number of orange candies

0 5 10 15 20 25

Proportions of orange candies
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Part 2: Compare Sample Statistics to the Population Parameter

Discuss the following Things to Consider questions with your group. Be prepared to report
back to the class.

Things to Consider
The proportions you have calculated are the sample statistics. For example, the proportion
of orange candies in your sample is the statistic that summarizes your sample.

• Did everyone in the class have the same number of orange candies?

• How do the actual sample values compare to the ones you estimated earlier?

• Did all groups have the same proportion of orange candies?

• Describe the variability of the distribution of sample proportions on the board in terms
of shape, center, and spread.

• Do you know the proportion of orange candies in the population? In the sample?

• Which one can we always calculate? Which one do we have to estimate?

• Does the value of the parameter change, each time you take a sample?

• Does the value of the statistic change each time you take a sample?

• How would this sample proportion compare to the population parameter (the proportion
of all orange Reese’s Pieces candies produced by Hershey’s Company that are orange)?

• Based on the distribution we obtained (on the board), what would you ESTIMATE to
be the population parameter, the proportion of orange Reese’s Pieces candies produced
by Hershey’s Company?

• What if the groups in the class only took 10 candies in their sample instead of 25? Do
you think the graphs on the board would look the same? If not, how would they change?

• What if the groups in the class each took 100 candies? Would the distributions on the
board change at all? If so, how?
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Part 3: Simulate the Sampling Process
We will now simulate additional data and tie this activity to the Simulation Process Model
(SPM).

• Use the Web Applet: Reese’s Pieces link below

• http://www.rossmanchance.com/applets/OneProp/OneProp.htm?candy=1

You will see a big container of colored candies that represents the POPULATION of Reese’s
Pieces candies.

6. What is the proportion of orange candies in the population? (Note: In class we didn’t know
the parameter value but one catch in running a computer simulation is that we have to assume
a value.)

You will see that the proportion of orange is already set at 0.5, so that is the population
parameter. (People who have counted lots of Reese’s Pieces candies came up with this
number.)
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7. How does 0.5 compare to the proportion of orange candies in your sample? Explain.

8. How does it compare to the center of the class distribution? Does it seem like a plausible
value for the population proportion of orange candies? Explain.

Simulation

• Click on the “Draw Samples” button in the Reese’s Pieces applet. One sample of 25
candies will be taken and the proportion of orange candies for this sample is plotted on
the graph.

• Repeat this again. (Draw a second sample.)

9. Do you get the same or different values for each sample proportion?

10. How do these numbers compare to the ones our class obtained?

11. How close is each sample statistic (proportion) to the population parameter?
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Further Simulation

• Uncheck the “Animate” box.

• Change the number of samples (num samples) to 500.

• Click on the “Draw Samples” button, and see the distribution of sample statistics (in
this case proportions) build.

12. Describe the shape, center and spread of the distribution of sample statistics.

13. How does this distribution compare to the one our class constructed on the board in terms
of shape? Center? Spread?

14. Where does the value of 0.2 (i.e., 5 orange candies) fall in the distribution of sample pro-
portions? Is it in the tail or near the middle? Does this seem like a rare or unusual result?
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Part 4: Examine the Role of Sample Size

Next we consider what will happen to the distribution of sample statistics if we change
the number of candies in each sample (change the sample size).

Make a Conjecture

15 What do you think will happen to the distribution of sample proportions if we change the
sample size to 10? Explain.

16. What do you think will happen if we change the sample size to 100? Explain.

Test your conjecture

• Change the “sample size” in the Reese’s Pieces applet to 10.

• Be sure the number of samples (num samples) is 500.

• Click on the “Draw Samples” button.

17. How close are the sample statistics (proportions), in general, to the population param-
eter?
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• Change the “sample size” in the Reese’s Pieces applet to 100, and draw 500 samples.

• Be sure the number of samples (num samples) is 500.

• Click on the “Draw Samples” button.

18. How close are the sample statistics (proportions), in general, to the population parameter?

19. As the sample size increases, what happens to the distance the sample statistics are to the
population parameter?

20. Now, describe the effect of sample size on the distribution of sample statistics in terms of
shape, center and spread.

Note: When we generate sample statistics and graph them, we are generating an estimated
sampling distribution, or a distribution of the sample statistics. It looks like other distributions
we have seen of raw data.
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Definition: Sampling Distribution

The sampling distribution of a statistic is the probability distribution that describes the possible
values the statistic can take and assigns probabilities for those values. It is used to describe how
the values of a statistic vary in all possible samples of the same size from the same population.

EXAMPLE 7.2

Jim just got a new haircut and wants to know what his family thinks of it. That is, Jim is interested
in p, the true proportion of his family members that like his haircut. Their true opinions are:

Relative Mom (M) Dad (D) Sister (S) Brother (B)
Opinion Y Y N N

(Y=Yes, they like it; and N=No, they do not like it)

We can see that p = 0.5. However, Jim only has time to ask the opinion of 3 of his family members.

(a) List all possible samples and for each sample calculate p̂, the proportion of the sample that
likes Jim’s haircut.

(b) Use part a to find the sampling distribution for the sample proportion, p̂.

Sampling Distribution:

p̂ 1/3 2/3
probability 1/2 1/2

Notice P (p̂ = p) = 0!
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(c) Find the mean and standard deviation of this sampling distribution.

Although sampling distributions can be constructed for any statistic (including medians, mini-
mums, maximums, etc.), we will focus on the sampling distributions for the sample mean and
sample proportion.

Recall:

• A proportion is a value between 0 and 1. When multiplied by 100, it can be interpreted as a
percentage.

Examples:

The proportion of students that are late, that get A’s, etc.

• A sample mean is the average of a set of data.

Examples:

The mean number of hours per week spent on studying, the
mean amount of money per week spent on food, etc.
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7.1 The Sampling Distribution of A Sample Mean

Notation:

µ = population mean
σ = population standard deviation
x = sample mean

Statistical Inference:

EXAMPLE 7.3

Suppose we want to determine the average income of the students in this class but do not have
time to ask every single person. On average, would we rather make our estimate based on a sample
of 2 students or a sample of 10 students?
Unless we take a very unrepresentative sample, the average income
of 10 students will better approximate the overall average income
than will the average income of just 2 students.

The Law of Large Numbers (LLN)

Let x1, x2, · · · , xn be independent observations from any population with mean µ. Then, as the

sample size n increases

Interpretation:

NOTE: The LLN only tells us that x gets closer to µ as the sample size increases. However, in
order to understand the variability in x from sample to sample and to determine how large n needs
to be to ensure we obtain a reasonable estimate of µ, we need to study its sampling distribution.
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Mean and Standard Deviation of the Sampling Distribution of x

Suppose x1, x2, · · · , xn is a random sample from any population with mean µ and standard devia-
tion σ. Then the sampling distribution of x has

mean of the sampling distribution of x =

Interpretation:

If we take a LOT of samples and calculate x for each sample,
the average of the x’s will be close to µ.

standard deviation of the sampling distribution of x, σx =

Notes:

1. µx = µ ⇒ sample averages have the same mean as individual
observations

2. σx = σ/
√
n ⇒ sample averages are variable than

individual observations.

3. σx = σ/
√
n ⇒ As sample size n increases, the variability of x

from sample to sample .
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EXAMPLE 7.4

Let X = number of hours an American watches TV on an average day and suppose it is known
that X has a mean of 3 with a standard deviation of 2.25. The following is a density curve for
random variable X:
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(a) Take a sample of 10 Americans. What are the mean and standard deviation of the sampling
distribution of x, the average number of hours per day spent watching TV for these 10 people?

µx =

σx =

(b) What if we take a sample of 100 people?

µx =

σx =

x is variable than when we only have n = 10.

(c) How large of a sample would we need in order to obtain an estimate, x, with a standard
deviation less than or equal to .05?
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We have found the mean and standard deviation of the sampling distribution of x. However, as
when we explored probability distributions, we would also like to know the shape of the sampling
distribution. The following procedure will allow us to get an idea of this shape:

1. Take 1000 separate samples, each of size n.

2. For each sample, calculate the average time per day spent watching TV.

This gives us 1000 independent sample means.

3. Plot a histogram of the 1000 sample means.

This is an approximation of the density curve for the sampling distribution of x based on a
sample of size n.

Repeat this procedure for each of n = 10, n = 100, and n = 500:
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Observations:

1. sampling distribution has a different shape than the population
distribution

2. bell-shaped, symmetric (appear normal)

3. centered around the true mean (3)

4. become much less variable as sample size increases

85



Stat 3011 Chapter 7

Sampling Distribution of x

1. If x1, x2, · · · , xn is a random sample from N(µ, σ), then

2. Central Limit Theorem (CLT)

Suppose x1, x2, · · · , xn is a random sample from any population with mean µ and standard
deviation σ. Then, if n is large enough (rule of thumb: n ≥ 30)

EXAMPLE 7.5

A machine fills empty glass bottles with soda. Let X = amount of soda poured into a bottle and
assume X is normally distributed with a mean of 298 mL and standard deviation of 3 mL.

1. The label on the bottle says that it contains 295 mL of soda. Find the probability that a
randomly selected bottle contains less soda than advertised.

2. Now, find the probability that the average amount of soda per bottle in a randomly chosen
6-pack is less than 295 mL.
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Interpretation:

Only about of any sampled 6-packs will have an average
amount less than 295 mL/bottle, whereas almost of
individual bottles are underfilled.

EXAMPLE 7.6

Suppose the mean number of children per household in the U.S. is 1.90 with a standard deviation
of 1.68. (These numbers are based on a 2006 General Social Survey.) Let X = number of children
in a household.

1. Does X have a normal distribution?

2. Let x = average number of children in a random sample of 50 households. What is the
sampling distribution of x?

3. Sample 50 households. Find the probability that the average number of children per household
in this sample is more than 5.
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7.2 The Sampling Distribution of A Sample Proportion

Notation:

p = population proportion of “success”
p̂ = sample proportion of “success”

Statistical Inference: use p̂ to estimate p

EXAMPLE 7.7: Estimating p

Suppose we take a random sample of 60 U.S. households and 7 say they have been burglar-
ized/robbed. Use this information to estimate p, the true proportion of U.S. households that
have been burglarized.

GOAL:

p̂ varies from sample to sample.
Therefore, just as we did for x, we want to describe the sampling
distribution of p̂.

Law of Large Numbers for p̂

The Law of Large Numbers guarantees that as sample size n increases

That is, the larger the sample size, the better p̂ estimates p.
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Mean and Standard Deviation of the Sampling Distribution of p̂

Suppose p̂ is the sample proportion for a sample of size n from a population with proportion p.

Then the mean and standard deviation of the sampling distribution of p̂ are

mean =

standard error =

Interpretation:

Central Limit Theorem for p̂

Let p̂ be the sample proportion based on a sample of size n from a population with probability

of success equal to p. Assume the expected number of successes (np) and the expected number

of failures (n(1 − p)) are both at least 15. Then, by the Central Limit Theorem the sampling

distribution of p̂ is

EXAMPLE 7.8

Suppose that 29% of University of Minnesota students feel that our campus is becoming more
dangerous. Take a sample of 100 university students and let p̂ = the proportion of the sample that
feel campus is becoming less safe.

(a) Find the mean and standard deviation of the sampling distribution of p̂.
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(b) What is the approximate sampling distribution of p̂?

(c) Select one person at random from the sample of students. What is the probability that this
student feels campus is becoming more dangerous?

(d) What is the probability that fewer than 20% of those surveyed feel campus is becoming more

dangerous?

About of possible samples of University students will
have sample proportions < .20.

RECAP:

The sampling distribution of a sample statistic describes how the value of the statistic varies
depending on the sample we get. Specifically, it describes the possible values of the statistic and
how likely each of those values is to occur.
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CHAPTER 8: CONFIDENCE INTERVALS

How can we use sample data to draw conclusions about the population?

1.

(a)

(b)

2.

8.1 Point Estimation

Examples of Point Estimation: Using x to estimate µ and p̂ to estimate p.

For any given unknown population parameter there are many (in fact, infinitely many) possible
point estimates. For instance, we might estimate an unknown population mean µ using the sample
mean x or the sample median M (or anything else for that matter). So how do we decide which
point estimate to use?

Measuring How Well a Point Estimate Approximates the “Truth”

1.

Definition: bias (of a statistic)

The bias of a statistic is the difference between the mean of its sampling distribution and the
true parameter value. A statistic is unbiased if this difference is zero.

Interpretation:
An unbiased estimator doesn’t systematically over- or underes-
timate the parameter. Therefore, we want an unbiased point
estimator.

Examples of Unbiased Estimators:

We saw in Chapter 7 that p̂ is unbiased for p and x is unbiased
for µ.
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2.

A good estimator will have small standard error compared to other estimators.

EXAMPLE 8.1

Consider a situation in which we want to choose from four different statistics, each estimating the
same parameter. The value of each of these statistics will vary from sample to sample. Below are
approximations of the sampling distributions for each statistic. The true value of the parameter is
marked on the x-axes. Which statistic do you prefer?

truth truth

biased, large standard error unbiased, small standard error

truth truth

unbiased, large standard error biased, small standard error
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8.2 Interval Estimation

A point estimate serves as our best guess for the parameter. It might be too high, too low, or
just about right. Therefore, we also need a measure of its reliability. That is, we want to be able
to say how confident we are in the estimate.

Definition: interval estimate

An interval estimate is an interval of numbers within which the parameter value is believed to fall.

EXAMPLE 8.2:

According to the 2012 Resident Satisfaction Survey, 32% of Minneapolis residents felt that public
safety is among the biggest challenges of the city in the next five years. Considering the reported
margin of error of plus or minus 3 percentage points, find an interval estimate for p, the true
proportion of Minneapolis residents who felt that public safety is among the biggest challenges of
the city in the next five years.

p̂± moe = .32± .03 = (.29, .35).

We are fairly confident that the true proportion of Minneapolis res-
idents who felt that public safety is among the biggest challenges of
the city in the next five years is between 29% and 35%.

Definition: margin of error

The margin of error measures how accurate a point estimate is likely to be in estimating a param-
eter.

Definition: confidence interval (CI)

A confidence interval is an interval containing the most believable values for a parameter. The prob-
ability that this method produces an interval that contains the parameter is called the confidence
level.

General form of a confidence interval:

NOTE: The larger the moe, the the interval and the
accurate our estimate is.
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8.2.1 Confidence Intervals for A Population Proportion, p

EXAMPLE 8.3

We want to estimate the number of contracts in a city that are awarded to minority-owned firms.
We take a random sample of 389 contracts from the city and find that 58 were awarded to minority-
owned firms. Our goal is to use the sample information to construct a confidence interval with a
confidence level of .95 for p, the true proportion of contracts that are assigned to minority-owned
firms.

(a) What is the sampling distribution of p̂, the sample proportion of contracts that went to
minority-owned firms?

Since n is large enough, we have

(b) Between what 2 values does the middle 95% of this distribution fall?

Interpretation:

In 95% of all possible samples, p̂ will be within of
p. The other 5% will be “unlucky” and p̂ will be further than

from p.

The problem:

The solution:
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Definition: Standard Error

A standard error is an estimated standard deviation of a sampling distribution.

NOTE:

Standard errors are commonly used in practice, because TRUE
standard deviations are usually unknown.

For example:

For finding a confidence interval for a population proportion p,
the standard error (se) is

√
p̂(1− p̂)/n

(c) Using the estimated standard deviation (i.e., the standard error) of p̂, construct a 95% con-
fidence interval for p.

Part (b) ⇒ if we take from any sample and go
to the left or right of it, there is a 95% chance that it will include
p. That is, there is a 95% chance that p is in the interval:

BUT we do not know p. To calculate the interval, estimate p by
p̂.

p̂ = 58/389 = .149. Therefore, a 95% CI for p is

Interpret the CI:

On average, approximately 95% of the samples drawn from the
population would produce CIs that contain the true population
proportion p
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Suppose an equal opportunity law requires that at least 20% of all city contracts go to
minority-owned firms. What information does the CI give us in this context?

We are 95% confident that the true proportion of contracts that
go to minority-owned firms is only between and .
It is unlikely that the true proportion of contracts that go to
minority-owned firms is at least 20%.

NOTE: We can calculate confidence intervals for any confidence level, not just .95.

Notation:

α = error probability of the confidence interval (0 < α < 1)
1− α = confidence level of the confidence interval

Large Sample Confidence Interval for p

Assume we take a random sample of size n and that the number of successes and the number of

failures in that sample are both at least 15. That is, np̂ and n(1− p̂) are both at least 15. Then a

large sample CI for p with confidence level 1− α is

where z∗ depends on the confidence level. Specifically, ± z∗ mark the middle 1− α proportion of
the N(0, 1) distribution:

α/2 1− α α/2

−z∗ z∗
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Finding z∗

Though we can find z∗ for any specified confidence level, 90%, 95%, and 99% confidence intervals
are the most common.

Confidence Level α α/2 z∗

90%

95%

99%

Interpreting Confidence Intervals

1. For example: In the long run, 95% of 95% CI’s will contain the true parame-
ter. The other 5% that do not, are based on the “unlucky” samples that produce
unusually high or low values of the statistic.

2. We are 95% confident that the true value of the parameter is between the
upper and lower bounds of the 95% CI.

3. I’m 95% confident the interval will include the true value of the population
parameter.
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EXAMPLE 8.4 (Exercise 8.13)
When the 2010 General Social Survey asked subjects if they would be willing to accept cuts in
their standard of living to protect the environment, 486 of 1374 subjects said yes.

(a) Estimate the population proportion, p, who would answer yes.

p̂ = 486/1374 = .354

(b) Can we use this sample to calculate a valid confidence interval?

Yes, we have more than 15 successes and 15 failures.

(c) Calculate a 90% CI for p.

p̂± zα/2
√
p̂(1− p̂)

n
= .354± 1.645

√
.354(1− .354)

1374
= .354± .021
= (.333, .375)

Interpretation: We are 90% confident that the true proportion of
people willing to lower their standard of living is between .333
and .375.

(d) Now calculate a 98% CI for p.

p̂± zα/2
√
p̂(1− p̂)

n
= .354± 2.33

√
.354(1− .354)

1374
= .354± .030
= (.324, .384)

Interpretation: We are 98% confident that the true value of p is
between .324 and .384.

(e) Similarly, a 99% CI for p can be shown to equal (.321, .387). What pattern do you see?

As the confidence level increases, the CI becomes wider.
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EXAMPLE 8.5

A woman who smokes during pregnancy increases health risks to her infant. Let p = proportion
of women smokers that quit during pregnancy.

(a) Suppose that in a random sample of 300 women who smoked prior to pregnancy, 51 quit
smoking during pregnancy. Use this sample information to calculate a 98% CI for p in
R. (Note: the assumptions of a random sample and at least 15 observed successes and 15
observed failures are met.)

#‘x’=number of successes, ‘n’=sample size
> prop.test(x=51, n=300, conf.level=0.98, alternative="two.sided")

1-sample proportions test with continuity correction
data: 51 out of 300, null probability 0.5
X-squared = 129.3633, df = 1, p-value < 2.2e-16
alternative hypothesis: true p is not equal to 0.5
98 percent confidence interval:
0.1240578 0.2280177
sample estimates:

p
0.17

(b) Now, suppose that we have a random sample of 1000 women smokers in which 170 quit smok-
ing. Use this sample information to calculate a 98% CI for p in R. (Again, the assumptions
for the CI are satisfied.)

> prop.test(x=170, n=1000, conf.level=0.98, alternative="two.sided")
1-sample proportions test with continuity correction

data: 170 out of 1000, null probability 0.5
X-squared = 434.281, df = 1, p-value < 2.2e-16
alternative hypothesis: true p is not equal to 0.5
98 percent confidence interval:
0.1436947 0.1999219
sample estimates:

p
0.17

(c) What pattern do you see?
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Properties of a Confidence Interval

1. moe as confidence level increases

2. for fixed p̂, moe as sample size increases

Small Sample Confidence Interval for p

When n is small the normal approximation to the sampling distribution of p̂ can be awful, thus
causing the large sample confidence interval for p to be misleading. In fact, there exist alternative
methods for constructing confidence intervals when the sample size is not large enough to satisfy
the requirement of at least 15 successes and 15 failures. See p. 386 of the book for details.

Sample Size Calculations

Goal: Ideally, we would like both

1. level of confidence in our interval estimate; and

2. margin of error

If the sample size is large enough, we can achieve both of these goals simultaneously. If this is the
case, then why don’t we always just pick really large samples?

EXAMPLE 8.2 CONTINUED

Recall that in the 2012 Resident Satisfaction Survey, the City of Minneapolis found out that 32%
of the residents felt that public safety is among the biggest challenges of the city in the next five
years. However, suppose we want to obtain a more recent estimate of p, the true proportion of
Minneapolis residents who felt that public safety is among the biggest challenges of the city in the
next five years. How many people do we need to poll in order to estimate p within 3 percentage
points with 95% confidence?
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Problem:

Solution:

Back to the problem...

What if we had no prior guess for p?

Use the worst case scenario. moe is maximized when
√
p̂(1− p̂)/n is

maximized (i.e. when p̂(1− p̂) is max’d):
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This happens at p̂ = 1/2.
Therefore, using p̂ = 1/2 will give a larger value for n than any other
p̂. However, this will sometimes lead us to collect a lot more data
than is necessary if p is either close to 0 or close to 1.
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Sample Size for a Desired Margin of Error

The sample size required to estimate p within a margin of error of (at most) m with a confidence

level of 1− α is

where zα/2 depends on the desired confidence level (1− α), and

1.

or

2.

NOTES:

1. Always round up for sample size calculations!

2. Notice that the sample size calculation is not influenced by the size of the population.

For instance, suppose we want to estimate the proportion of all Americans (not just Republi-
cans) that prefer Romney. To estimate this proportion within 2.5 percentage points with 99%
confidence, we would only need to survey the same number of people even though
the target population of all Americans is much larger than the population of Republicans.

EXAMPLE 8.6

A campus group is interested in estimating the proportion of U students that feel that their binge
drinking has negatively impacted their academic performance. How many students should they
poll in order to estimate the proportion to within ±.05 with 90% confidence if...

(a) we have no prior information?

(b) based on UMADD statistics, we expect the proportion to be around 0.25?
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8.2.2 Confidence Intervals for A Population Mean, µ

Constructing a confidence interval for a population mean is much like constructing a confidence
interval for a population proportion. Mainly, the general form of the confidence interval will still
be

Just as we used knowledge of the sampling distribution of p̂ to construct confidence intervals for
p, we use the sampling distribution of x to construct confidence intervals for µ. Recall that if
x1, x2, · · · , xn are a random sample from a population with mean µ and standard deviation σ

so that if we standardize x, we have

The Problem:

The Solution:

NOTE: t does not have a normal distribution! In fact, in replacing σ by an estimate (s), t takes
on an extra source of error that the z-score does not. Therefore, its distribution must account for
this increased variability.
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The t-distribution

If x1, x2, · · · , xn are a random sample from a normal population with unknown mean µ and unknown
standard deviation σ, then

where tn−1 denotes the t-distribution with n − 1 degrees of freedom
(df).

NOTE: This is also approximately true when x1, x2, · · · , xn is a random sample from any distribu-
tion with mean µ and standard deviation σ if n is large!

Properties of the t-distribution
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• Properties:

– bell-shaped
– symmetric about 0
– has fatter tails than N(0, 1) (that is, it is more spread out)

• The exact shape and spread of the t distribution are determined by its degrees of freedom.

• Relationship to N(0, 1):

As df increase, the t-distribution gets closer to N(0, 1).
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The idea: the estimate of σ improves as n (and therefore df)
increases.

t-distribution Calculations

Table B in Appendix A gives right tail probabilities for t-distributions with varying df.

EXAMPLE 8.7:

1. If df = 11, find the value of t for which P (t11 ≥ t) = .005.

> qt(.005, df=11, lower=F) #‘qt’ = quantile of the t distribution with
#‘df’ = degrees of freedom

[1] 3.105807 #R calculates lower tail probabilities by default
#Tell it not to with ‘lower=F’

2. If df = 21, find the value of t for which P (t21 ≤ t) = .99.

> qt(.99, df=21)
[1] 2.517648

3. If df = 14, what is P (t14 ≥ 2)?

> pt(2, df=14, lower=F)
[1] 0.03264398

P (t14 ≥ 2.145) < P (t14 ≥ 2) < P (t14 ≥ 1.761) ⇒ .025 < P (t14 ≥ 2) < .05

Have to use R to find the exact calculation.

4. Rule:

If 100 ≤ df ≤ 1000, use df = 100 in Table B.

If df ≥ 1000, use df =∞ in Table B.

(NOTE: t∞ is “approximately” the same as N(0, 1)!)

Example: P (t5000 ≥ 1.96) ≈

Confidence Interval for µ

Assumptions:

1. randomness: x1, x2, · · · , xn are a random sample from some population with unknown mean
µ and unknown standard deviation σ
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2. normality: the population distribution is approximately normal

If the assumptions are satisfied, the confidence interval with confidence level 1− α for µ is

where t∗n−1 depends on the confidence level. Specifically, ± t∗n−1 mark the middle 1−α proportion
of the tn−1 distribution:

α/2 1− α α/2

−t∗n−1 t∗n−1

Properties of the confidence interval for µ:

1. moe as the confidence level increases. (same as for
p)

2. moe as sample size increases. (same as for p)

3. the smaller the standard deviation, the the moe
(There is more precision in the interval estimate if there’s less
variation among the subjects.)
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EXAMPLE 8.8

A survey of 51 current adult smokers in the U.S. asked, “On average, how many cigarettes do you
smoke per day?”

(a) Based on the following stem-and-leaf plot of the raw data, does it appear that the underlying
assumptions of the confidence interval are satisfied?

> cigs <- c(1,3,3,8,9,9,9,10,11,11,12,13,14,14,15,15,15,16,16,16,16,17,17,17,17,
18,19,19,20,20,20,20,20,22,22,23,23,24,25,25,25,28,30,30,30,30,32,32,35,38,40)

> stem(cigs)
0 | 133
0 | 8999
1 | 0112344
1 | 55566667777899
2 | 0000022334
2 | 5558
3 | 000022
3 | 58
4 | 0

(b) Calculate and interpret a 99% confidence interval for µ, the true mean number of cigarettes
smoked per day by U.S. smokers.

> mean(cigs)
[1] 19.09804
> sd(cigs)
[1] 8.775545
> length(cigs)
[1] 51

Interpretation:

We are 99% confident that the average number of cigarettes that
a smoker has each day is between and .
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(c) Repeat this analysis using the t.test function in R.

> t.test(x=cigs, conf.level=.99, alternative="two.sided")
t = 15.5417, df = 50, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
99 percent confidence interval:
15.80751 22.38857
sample estimates:
mean of x
19.09804

Robustness of t-Procedures

When we use the t distribution to construct a confidence interval for µ, we assume that the sample
is randomly drawn from some population that is approximately normal. However, in practice these
assumptions are rarely perfectly satisfied. How does this affect the reliability of interval estimates?

Definition: robustness

A statistical method is robust with respect to a particular assumption if it performs adequately
even when that assumption is violated.

Notes: The t procedure for calculating a confidence interval...

1. is robust to non-normality (when no outliers are present)

2. does not perform well when there are extreme outliers

3. is not robust to violations of the assumption of a random
sample
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Sample Size Calculations

The Goal: Determine how large of a sample size is needed to obtain both a small margin of error
and high confidence in our interval estimate (so our method almost always captures µ).

For instance, how large of a sample do we need if we want a confidence interval for µ with a 1− α
confidence level and a margin of error that is no more than m?

t∗ depends on the confidence level and the sample size.

The problem:

The solution:

•

•

Sample Size for a Desired Margin of Error

The sample size required to estimate µ within a margin of error of m with a confidence level of

1− α is approximately

Reminder: Always round up for sample size calculations!
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EXAMPLE 8.10

Suppose the Minnesota wildlife service wishes to estimate the mean number of days spent hunting,

per hunter, for all licensed hunters in Minnesota. How many hunters must they survey in order to

be 95% confident that their estimate is within 1 day of the true mean? (Use the fact that for a

previous study conducted in 2000 the sample standard deviation was s = 10.)
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CHAPTER 9: HYPOTHESIS TESTS

Motivating Example

A diet pill company advertises that at least 75% of its customers lose 10 pounds or more within 2
weeks. You suspect the company of falsely advertising the benefits of taking their pills. Suppose
you take a sample of 100 product users and find that only 5% have lost at least 10 pounds. Is this
enough to prove your claim? What about if 72% had lost at least 10 pounds?

Goal:

9.1 Elements of A Hypothesis Test

1. Assumptions

The reliability of any hypothesis test relies on a certain set of
assumptions being satisfied.

2. Hypotheses

Each hypothesis test has two hypotheses about the population:

Null Hypothesis (H0):
a statement about the population we want to disprove. It
often represents no effect

Alternative Hypothesis (Ha):
what we hope to find evidence for. It is an alternative to the
null hypothesis and should be stated before looking at the
data (to avoid bias)!

Diet Pill Example:

Let p = true proportion of diet pill customers that lose at least 10 pounds. State the null
and alternative hypotheses for the diet pill example.

H0 :

Ha :
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3. Test Statistic

Definition: Test Statistic

A test statistic is a measure of how compatible the data is with the null hypothesis. The
larger the test statistic, the less compatible the data is with the null hypothesis.

Most test statistics we will see have the following form:

What does an extreme value of T reflect?

T is extreme
⇒ sample estimate is many standard deviations away from the

hypothesized value
⇒ the data don’t agree with the hypothesized value.

NOTE:
T is a function of the sample data

⇒ T is a statistic
⇒ T has a sampling distribution under H0 (assuming H0 is true)
Studying the sampling distribution of T helps us measure how
likely our sample data is when H0 is true

4. p-value

The p-value helps us to interpret the test statistic.

Definition: p-value

Assume H0 is true. Then the p-value is the probability that the test statistic T takes a value
(in support of Ha) as or more extreme than the one we observed.

Diet Pill Example:

Suppose that in your sample of 100 customers, 65% had lost at least 10 pounds in 2 weeks.
Recall our hypotheses:

H0 : p = 0.75

Ha : p < 0.75
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(a) Assuming H0 is true, what is the sampling distribution of p̂?

(b) Use part (a) to determine the sampling distribution of test statistic T .

(c) Calculate a test statistic for this hypothesis test.

(d) Calculate and interpret the p-value for this test statistic.

p-value =

Interpretation: If the proportion
of customers that lose at least
10 pounds is truly .75, it is very
unlikely that we would choose a
sample with so few people achieving this weight loss
(prob= ). Thus, our data provides evidence
that H0 is false.

In General:

5. Conclusion and Interpretation

We assume that H0 is true and put the burden of proof on Ha. Therefore, we can use the
p-value to decide whether or not the data provide sufficient evidence to reject H0 in favor of
Ha.
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The Idea:

Recall that a small p-value indicates that our observation based
on the sample is unlikely to occur under H0.
How small is small enough to reject H0?

Rejection Rule:

Determine “statistical significance” by comparing a p-value to a significance level, α.

• p-value < α ⇒we have strong evidence against H0. We conclude
that the results are “statistically significant” at level α and
reject H0.

• p-value ≥ α ⇒
we fail to reject H0 in favor of Ha. We do not have enough
evidence to conclude H0 is false.

Interpreting the Significance Level

If, for example, we choose α = 0.05, we require strong enough evidence against H0 that when
H0 is true there is only a 5% chance that we mistakenly reject it.

Common Choices for α:

Our choice of α depends on how confident we want to be in our decision about H0. It should
always be chosen prior to collecting the data!

α = 0.01 ⇒ need to be confident that H0 is false in order to
reject

α = 0.05 ⇒ need to be confident that H0 is false in order to
reject

α = 0.10 ⇒ need to be confident that H0 is false in order to
reject
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9.2 Normal Hypothesis Test for Population Proportion p

Assumptions

1.

2.

Rule of thumb: at least 15 expected successes (np0 ≥ 15) and
15 expected failures (n(1− p0) ≥ 15)

Hypotheses

1. H0: p = p0 2. H0: p = p0 3. H0: p = p0
Ha: Ha: Ha:

- The value of p0 is the same in both H0 and Ha.

- Hypotheses 1 and 2 are called “one-sided tests” and hypothesis 3 is called a “two-sided test”.

Test Statistic
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p-value

p-value = P (observe a value as or more extreme than z∗ in favor of Ha | H0 is true )

Hypothesis 1: Hypothesis 2: Hypothesis 3:
p-val = p-val = p-val =

Conclusion

p-value < α ⇒
p-value ≥ α ⇒

EXAMPLE 9.1

The manufacturer of a new breast cancer screening method claims that it detects cancer in more
than 83% of women who have it. To investigate, they apply their screening method to a sample
of 203 randomly selected women known to have breast cancer. The test detects cancer in 184 of
these women. Use this information to test their claim at the 0.01 level.

Assumptions:

Hypothesis: Let p = true proportion of detection

H0:
Ha:

Test statistic:
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p-value:

p-val =
There’s only a % chance that our test performs so well in
a sample of this size if it doesn’t actually detect as well as claimed

Conclusion:

Interpretation: We have to conclude that the true pro-
portion of breast cancers detected by the new screening method is
significantly greater than 83%.

EXAMPLE 9.2 (Exercise 9.19)
Among the employees eligible for management training at a large supermarket chain in Florida,
40% are women. However, since management training began, only 12 of the 40 employees (30%)
chosen for the training were women. At the 0.05 level, test the claim of a women’s group that
women are being passed over for management training in favor of their male colleagues. That is,
test the claim that a disproportionate number of the people selected for the training are men.

Let p= proportion of employees selected for training that are women

Hypothesis:

H0:
Ha:

Note: The assumptions hold since we have a random sample and there are 40(.40) = 16 expected
‘successes’ and 40(1− .40) = 24 expected failures under H0.

> prop.test(x=12, n=40, conf.level=0.95, p=0.40, alternative="less")
1-sample proportions test with continuity correction
data: 12 out of 40, null probability 0.4
X-squared = 1.276, df = 1, p-value = 0.1293
alternative hypothesis: true p is less than 0.4
95 percent confidence interval:
0.0000000 0.4416485
sample estimates:
p

0.3
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NOTES:

1. If Ha: p > 0.40, then we would type alternative = “greater”.

If Ha: p 6= 0.40, then we would type alternative = “two.sided”.

2. We would get slightly different values if we did this by hand. R uses a ‘continuity correction’
that we do not...

Interpret p-value:

Under H0, there is a nearly % probability to observe a
sample proportion of .3 or lower. This is not , so it is

that this sample is drawn from a population with pro-
portion .4.
Conclusion:

We H0 at the significance level .05.

Interpretation: We evidence to conclude that the true
proportion of employees selected for training that are women is sig-
nificantly less than 40%.

9.3 The t-Test: Hypothesis Testing for Population Mean µ

The basic structure of hypothesis tests regarding population means is the same as for hypothesis
tests regarding population proportions, only the details change.

Assumptions

1. Random sample

2. Normality and/or Large n: Population distribution is approximately normal and/or sample
size is large

Hypotheses

1. H0: µ = µ0 2. H0: µ = µ0 3. H0: µ = µ0
Ha: Ha: Ha:

Test Statistic
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p-value

p-value = P (observe a value as or more extreme than t | H0 is true )

Hypothesis 1: Hypothesis 2: Hypothesis 3:
p-val = p-val = p-val =

Conclusion

p-value < α ⇒ reject H0

p-value ≥ α ⇒ fail to reject H0

EXAMPLE 9.3 (Exercise 9.31)
In the 2004 General Social Survey, men were asked how many hours they worked in the previous
week. For the random sample of 895 male workers, the mean was 45.3 hours with a standard
deviation of 14.8 hours. Does this data support the claim that the true average number of hours
that men work each week (µ) exceeds the standard 40 hour work week? (Test this claim at the
0.05 level.)

Assumption:

Hypothesis:
H0:
Ha:

Test Statistic:

p-value:

Interpretation of the p-value:

119



Stat 3011 Chapter 9

Conclusion:

Interpretation:

Hypothesis Tests and Confidence Intervals

EXAMPLE 9.4

It is important for nutritional information on food packaging to be accurate. A random sample of
n = 10 frozen dinners of a certain brand was selected from a production line. The mean calorie
content for these dinners was 246.6 with a standard deviation of 10.803 calories. The data is ap-
proximately normal with no substantial outliers.

(a) The packaging for this dinner lists the calorie content as 240 calories. Let µ = true mean
calorie content of the frozen dinner and test whether or not the information on the package
is accurate at the 0.05 level.

Assumption:
Random sample and though n is small, the population from
which the data are sampled is approximately normal according
to the problem description.

Hypothesis:

H0: µ = 240

Ha: µ 6= 240

Test Statistic:

t =
x− µ0
s/
√
n

=
246.6− 240

10.803/
√
10

= 1.93

120



Stat 3011 Chapter 9

p-value:

p-val = 2P (t9 > 1.93), where P (t9 > 1.93) > P (t9 > 2.262) = 0.025.

Therefore, 2P (t9 > 1.93) > 0.05

Conclusion:
p-val > .05 ⇒ Fail to reject H0 at the .05 level. There is not
enough evidence to conclude that true mean content is signifi-
cantly different from what the label says.

(b) Calculate and interpret a 95% confidence interval for µ.

x± tα/2,n−1
s√
n
= 246.6± t.025,9

10.803√
10

= 246.6± 2.262
10.803√

10

= 246.6± 7.73

= (238.87, 254.33)

We are 95% confident that the true mean calorie content is
between 238.87 and 254.33 calories.

(c) Repeat these analyses in R.

> cal <- c(240, 253, 243, 267, 258, 239, 235, 252, 246, 233)
> t.test(x=cal, conf.level=0.95, alternative="two.sided", mu=240)

One Sample t-test
data: cal
t = 1.9319, df = 9, p-value = 0.08541
alternative hypothesis: true mean is not equal to 240
95 percent confidence interval:
238.8718 254.3282
sample estimates:
mean of x

246.6

Notes about the t.test function:

- ‘mu’ = hypothesized value of µ

- If Ha: µ < 240, then we would type alternative = “less”.

- If Ha: µ > 240, then we would type alternative = “greater”.
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- Always need alternative = “two.sided” to get the correct CI.

(d) What conclusions can you make about the package’s claim based on the hypothesis test and
the confidence interval?

Notice that 240 calories is in the 95% CI for µ. Therefore, we
can use both the hypothesis test and CI to conclude that 240
calories is a plausible value of µ.

Equivalence Between a CI and 2-sided Hypothesis Test for µ

Inference about µ has an exact equivalence between the two-sided hypothesis test at level α and
the confidence interval with confidence level 1−α. Specifically, suppose we wish to test H0: µ = µ0
versus Ha: µ 6= µ0 at level α. Then,

1. If µ0 is in the 1− α confidence level CI for µ ⇒

2. If µ0 is not in the 1− α confidence level CI for µ ⇒

For example, we can use a 95% CI for µ to make a conclusion for the two-sided test at the 0.05
level and can use a 99% CI for µ to make a conclusion for the two-sided test at the 0.01 level (and
so on).

NOTES:

1. Confidence intervals and one-sided tests for µ are not compatible!

122



Stat 3011 Chapter 9

2. Inference about proportions does not have an exact equivalence between the confidence in-
terval and 2-sided hypothesis test.

9.4 Possible Errors in Hypothesis Testing

Inference based on a hypothesis test may not always reflect the “truth”!

H0 true Ha true

Do not reject H0

Reject H0

Note: “Error” doesn’t mean we did anything wrong - it just means that the conclusion based on
our data does not reflect the true state of nature.

EXAMPLE 9.5

According to the Journal of Psychology and Aging, older workers have an average job satisfaction
rating of 4.3 (on a scale from 0 to 5). We are interested in knowing if the average satisfaction rating
is lower among younger workers. That is, we want to test
H0: µ = 4.3

Ha: µ < 4.3

where µ = the mean job satisfaction rate for younger workers. What are the Type I and Type II
errors in the context of this problem?

Type I:

Type II:
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How likely are we to commit a Type I or Type II error?

Probability of a Type I Error

Recall the interpretation of the significance level, α, of a hypothesis test:

If we set significance level = α, we require strong enough evidence against H0 that the
probability of mistakenly rejecting H0 when it is actually true is only α. Therefore...

P(Type I Error) =

Controlling the Probability of a Type I Error

Our choice of α controls the chances of making a Type I Error. How should we choose α?

Probability of a Type II Error

Calculating the probability of a Type II Error can be complex. It is also not as easy to control as
the probability of a Type I error. In general,
P(Type II error) as P(Type I error) increases.

Why?

Insight: As P(Type I error) increases, we require evi-
dence for rejecting H0. This means that we are likely to
make a Type II error.

9.5 Limitations and Common Misinterpretations of Hypothesis Testing

1. Statistical significance does not mean practical significance. Statistical significance relates to
the existence of an effect (or difference), whereas practical significance relates to the size of
a possible effect (or difference).

Example: Let µ = true average IQ of children in a certain region of the U.S.. Based on a
sample of 5000 children with an average IQ of 100.8 and standard deviation of 16.21, the
p-value for the test of H0 : µ = 100 versus Ha : µ > 100 is approximately .0002. Therefore,
though there is not much of a practical difference between the sample mean (100.8) and the
hypothesized mean (100), this difference is highly statistically significant. That is, there is
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statistical significance but not practical significance. Why did this happen?

When n is large, standard error will be small. Therefore, the test statistic will
be large and the p-value small. However, the p-value measures extent of evidence
against H0, not how far the true parameter is from H0.

2.

Example: p-values of .047 and .052 have almost no practical difference, but they will result
in different conclusions if α = .05. Therefore, always report the exact p-value when it is close
to α.

3.

When we ‘fail to reject H0’, we are saying that we do not have enough evidence to conclude
that H0 is false. We are not saying that H0 is true.

4. p-value = P(test statistic is more extreme than the one we observed | H0 is true)

p-value 6= P(H0 is true | observed test statistic)

5. It is misleading to report results only if they are statistically significant.

Suppose we run 20 similar tests, of which only one is statistically significant. If we report the
one significant test, it is quite likely that we are reporting a Type I error.

6. Don’t always believe what you read! Since researchers do often only report results that
are significant and beneficial to their cause, be sure to keep in mind that these results may
actually be the result of a Type I error!
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CHAPTER 10: COMPARING TWO GROUPS

Instead of focusing on one population mean or proportion, we might be interested in comparing
parameters from 2 distinct populations.

Examples:

• compare average GRE scores before and after taking a prep
course

• compare the proportion of Minnesotans who own guns to the
proportion of Wisconsinites who own guns

10.1 Comparing Two Proportions

Goal: Compare two (unknown) proportions corresponding to two independent samples.

Procedure:

Take two independent random samples of size n1 and n2 from the two populations of interest and
count up the number of “successes” in each. We use the following notation to describe the situation:

Population Population Proportion Sample Size # of Successes Sample Proportion

1 p1 n1 X1 p̂1 = X1/n1

2 p2 n2 X2 p̂2 = X2/n2

How can we compare p1 and p2?

Just as with inference regarding a single mean, µ, or proportion, p, we can make inferences about
p1 − p2 using

1.

2.
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10.1.1 Point Estimation for p1 − p2

The obvious point estimate of p1 − p2 is .

Sampling Distribution of p̂1 − p̂2

The statistic p̂1 − p̂2 varies from sample to sample. Just as the sampling distributions for x and p̂
were used to make inferences about µ and p, respectively, the sampling distribution of this statistic
will be used to construct confidence intervals and hypothesis tests regarding p1−p2. This sampling
distribution has

In addition, when n1 and n2 are both “large enough”, the sampling distribution of p̂1 − p̂2 is
approximately normal:

How large is “large enough”?

10.1.2 Confidence Intervals for p1 − p2

Recall the basic form of a confidence interval:

127



Stat 3011 Chapter 10

Large Sample Confidence Interval for p1 − p2

Assumptions:

1.

2.

Then the large sample 1− α confidence level CI for p1 − p2 is

where, as usual, ± z∗ mark the middle 1− α proportion of the N(0, 1) distribution.

Interpreting the Confidence Interval for p1 − p2

1.

2.

EXAMPLE 10.1

The NCAA requires colleges to report the graduation rates of their athletes. In a sample of former
male and female student athletes, 43 of the 53 females surveyed had graduated whereas 58 of the
102 males had graduated. Calculate and interpret a 99% confidence interval for the difference in
true proportions of female athletes who graduate (pF ) and male athletes who graduate (pM ).

Assumptions:
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99% CI for pF − pM :

We are 99% confident that the true proportion of female student
athletes that graduate is between and higher
than the true proportion of males student athletes that graduate.

10.1.3 Hypothesis Tests for Comparing p1 and p2

Hypothesis tests for comparing two population proportions consist of the same five elements as
were introduced in Chapter 9.

Assumptions

1. 2 independent random samples

2. at least 5 successes and 5 failures in both samples

Hypotheses

The null hypothesis is always H0: p1 = p2, that is, that there is no
difference between the 2 proportions.
1. H0: p1 = p2 2. H0: p1 = p2 3. H0: p1 = p2
Ha: Ha: Ha:

Test Statistic
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WHY?

Recall that the basic form of a test statistic is

Point Estimate and Hypothesized Value:

We can rewrite H0: p1 = p2 as H0: p1 − p2 = 0 where p̂1 − p̂2 is a point estimate for p1 − p2.

Standard Error of p̂1 − p̂2:

When H0 is true, p1 = p2 = p for some (unknown) value of p so that

Since p is unknown, we estimate it using .

Note: p̂ is called the pooled estimate of p since it is obtained by pooling the information from both
samples to provide one estimate of p.

Finally, we can substitute p̂ for p and obtain the above test statistic.

p-value

Hypothesis 1: p-val = P (Z < z)

Hypothesis 2: p-val = P (Z > z)

Hypothesis 3: p-val = 2P (Z > |z|)

Conclusion

If p-value < α, reject H0

If p-value ≥ α, fail to reject H0

130



Stat 3011 Chapter 10

EXAMPLE 10.2

SurveyUSA polled 500 Americans and asked if marijuana should be legalized for medicinal purposes.
The results of this survey are summarized in the following contingency table:

Legalize Don’t legalize Total
< 50 years old 202 108 310
≥ 50 years old 118 72 190

Total 320 180 500

(a) Use this information to test at the 0.05 level whether younger people are more likely than
older people to think marijuana should be legalized for medicinal purposes.

Assumption:

Hypothesis:

H0 :
Ha :

Test Statistic:

p-value:
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Conclusion:

Repeat this analysis in R:

#Create a vector of the number of successes for both populations:
> NumLegalize <- c(202,118)
#Create a vector of the sample sizes from both populations:
> SampSize <- c(310,190)
#Run the hypothesis test:
> prop.test(x=NumLegalize, n=SampSize, conf.level=0.95, alternative="greater")

2-sample test for equality of proportions with continuity correction
data: NumLegalize out of SampSize
X-squared = 0.3541, df = 1, p-value = 0.2759
alternative hypothesis: greater
95 percent confidence interval:
-0.04670842 1.00000000
sample estimates:

prop 1 prop 2
0.6516129 0.6210526

NOTES: This is the same ‘prop.test’ function we used to make inference about one proportion.
Therefore,

1. If Ha: p1 < p2, then we would type alternative = “less”.
If Ha: p1 6= p2, then we would type alternative = “two.sided”.

2. We would get slightly different values if we did this by hand. R uses a ‘continuity
correction’ that we do not...

(b) Compute a 95% CI for p1 − p2 in R.

> prop.test(x=NumLegalize, n=SampSize, conf.level=0.95, alternative="two.sided")
2-sample test for equality of proportions with continuity correction

data: NumLegalize out of SampSize
X-squared = 0.3541, df = 1, p-value = 0.5518
alternative hypothesis: two.sided
95 percent confidence interval:
-0.06069792 0.12181846
sample estimates:

prop 1 prop 2
0.6516129 0.6210526

NOTE: To get a correct confidence interval in R, the alternative must be ‘two.sided’ !
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10.2 Comparing Two Means - Matched Pairs

Comparisons of two means are based on either two independent samples or two dependent samples:

Independent Samples

ex: compare mean heights of men and women
ex: compare average exam scores for two different stat classes

Dependent Samples

The dependent samples we will consider result from matched pairs experiments.

ex: compare the mean weight loss resulting from 2 different diet
pills
Sample 2n people who are “matched” by weight.
Randomly assign one person in each pair to pill 1 and the
other to pill 2.
This natural pairing causes the samples to be dependent.

ex: compare mean weights before and after taking a diet pill

Matched Pairs

Goal:

Definition: matched pairs

Data are matched pairs if each subject in one sample is matched with a subject in another sample
in some meaningful way. A matched pair may be “before” and “after” observations on one subject
or observations on two subjects that have been matched by characteristics that may influence the
response variable (ex: gender, age, weight).

Why use matched pairs?

Method for Studying Matched Pairs:
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Notation:
µD = true mean of paired differences xD = sample mean of paired differences
sD = sample standard deviation of paired differences nD = number of pairs in the sample

EXAMPLE 10.3

Six adults are chosen for a blood alcohol content (BAC) study. Each adult is given 3 beers at sea
level and 3 beers at high altitude. The order of two drinking sessions is chosen at random for each
subject.

Sea Level (SL) High Altitude (HA) Difference
0.007 0.013 -0.006
0.010 0.017 -0.007
0.009 0.015 -0.006
0.011 0.014 -0.003
0.008 0.010 -0.002
0.006 0.009 -0.003

Based on this data, we can show that

xD = −0.0045 and sD = 0.0021.

Suppose the distribution of differences is normal. At the 0.01 level, test the hypothesis that the
average BAC at sea level is less than the average BAC at high altitude.

Assumptions: random sample and distribution of differences is nor-
mal

Hypotheses:

H0 : µD = 0
Ha : µD < 0

Test statistic:

t =
xD − µ0
sD/
√
nD

=
−0.0045

0.0021/
√
6
= −5.25
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p-value:
p-val = P (t5 < −5.25), where 0.001 = P (t5 < −5.894) < P (t5 < −5.25) <
P (t5 < −4.032) = 0.005

Conclusion:
p-val < 0.005 < 0.01 ⇒ Reject H0. We have enough evidence (at the
0.01 level) to conclude that alcohol reaction is greater at HA than
at SL.

EXAMPLE 10.4

Suppose we are interested in the protein concentration (in grams/kg of wheat) of a winter wheat
and a spring wheat. The growth and protein level of these wheats may be influenced by the location
in which they’re grown (temperature, altitude, soil characteristics, etc). Therefore, we select 20
different locations and plant both a winter wheat and a spring wheat in each location. That is,
winter and spring wheat observations are matched by location. The following is a partial data set
for our experiment:

Location Spring Wheat Protein Winter Wheat Protein Difference (spring - winter)
1 122 87 35
2 171 145 26
3 144 116 28
...

...
...

...

The following are summary statistics for the sample data:

xD = 29.2 and sD = 9.35117.

Calculate a 95% confidence interval for µD, the true mean difference (spring − winter) in protein
concentration.

xD ± tα/2,nD−1
sD√
nD

= 29.2± 2.093 · 9.35117√
20

= 29.2± 4.38

= (24.82, 33.58)

We are 95% confident that the average protein content for spring
wheat is between 24.82 and 33.58 higher than for winter wheat.
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10.3 Comparing Two Means - Independent Samples

Goal: Compare two (unknown) means corresponding to two independent samples.

The procedure for comparing two means of independent samples is similar to comparing two pro-
portions of independent samples, only the details change. Mainly, we make inferences about the
differences between two means (µ1 − µ2) through point estimation, interval estimation, and hy-
pothesis testing.
To this end, we independently collect a random sample from each population:

Population Pop. Mean Pop. St. Dev. Sample Size Sample Mean Sample St. Dev.

1 µ1 σ1 n1 x1 s1

2 µ2 σ2 n2 x2 s2

NOTE: We will assume for the rest of this chapter that σ1 and σ2 are unequal. Along with this
case, the book also presents this material under the assumption that σ1 = σ2. The assumption
that σ1 = σ2 results in a different standard error formula for (x1 − x2), which we will not cover in
class.

10.3.1 Point Estimation for µ1 − µ2

The obvious point estimate of µ1 − µ2 is .

The statistic x1 − x2 varies from sample to sample. That is, it has its own sampling distribution:

However, since σ1 and σ2 are unknown, we instead estimate the standard deviation using the
standard error of x1 − x2:
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In this case, we construct confidence intervals and hypothesis tests using the fact that

Note: This is a conservative approximation of the degrees of freedom (df). That is, the df are likely
to be larger than this rule gives us. This means that if we used a more accurate approximation for
the df, we would likely get a narrower confidence interval. There is a more accurate approximation
for the df called ‘Welch’s df’. The formula is very complicated, but R will do it automatically.

10.3.2 Confidence Intervals for µ1 − µ2

Assumptions:

1.

2.

The 1− α confidence level confidence interval for µ1 − µ2 is

Note: The interpretation of the confidence interval for µ1 − µ2 is similar to that of confidence
intervals for p1 − p2.
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10.3.3 The Two-Sample t-Test for Comparing µ1 and µ2

Assumptions

1. 2 independent random samples

2. Both populations are approximately normal.

(Though 2-sample t procedures are robust to non-normality for larger sample sizes.)

Hypotheses

The null hypothesis is always H0: µ1 = µ2, that is, that there is no
difference between the 2 means.
1. H0: µ1 = µ2 2. H0: µ1 = µ2 3. H0: µ1 = µ2
Ha: Ha: Ha:

Test Statistic

p-value

Hypothesis 1: p-val = P (tdf < t)

Hypothesis 2: p-val = P (tdf > t)

Hypothesis 3: p-val = 2P (tdf > |t|)

where df is the smaller of n1 − 1 and n2 − 1.

Conclusion

If p-value < α, reject H0

If p-value ≥ α, fail to reject H0

EXAMPLE 10.5

Verbal SAT scores were recorded for independent samples of students who intend to major in
engineering and students who intend to major in literature. Suppose histograms of both samples
show no strong skewness and no outliers. From the data we calculate
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Intended Major Sample Size Sample Mean Sample St. Dev.
(1) Engineering 44 446.9 42.0
(2) Literature 44 534.2 45.5

Let
µE = true mean verbal score for intended engineering majors
µL = true mean verbal score for intended literature majors

(a) Calculate a 90% confidence interval for µE −µL, the true difference in mean verbal scores for
students intending to major in engineering and students intending to major in literature.

(b) Determine if there is strong evidence at the 0.01 level that the true mean verbal score of
intended engineering majors is less than that of intended literature majors.

Assumptions:

Hypotheses:

H0 :
Ha :

Test statistic:
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p-value:

Conclusion:

EXAMPLE 10.6
The data set http://www.stat.umn.edu/∼wuxxx725/data/class.txt contains data collected from
a recent survey of U of M students.

Year Gender Height TV Siblings DistHome Haircut
1 M 75 60 5 10 15
5 F 65 30 1 1 45
3 M 70 0 1 1 18
. . . . . . .
. . . . . . .

Along with other questions, the students were asked about the amount of money spent on their
latest haircut.

1. Construct and interpret a 95% confidence interval for the true difference in the mean amount
of money men and women spend on a haircut.

#Sample of Male Haircuts:
> MaleHair <- Haircut[Gender == "M"]
#Sample of Female Haircuts:
> FemHair <- Haircut[Gender == "F"]
> t.test(x=MaleHair, y=FemHair, alternative="two.sided", conf.level=0.95)
Welch Two Sample t-test
t = -6.5631, df = 92.461, p-value = 3.011e-09
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-17.333509 -9.280328
sample estimates:
mean of x mean of y
12.46667 25.77358

2. Test at the 0.05 level whether male students spend less money on average than female students
on their haircuts.
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> t.test(x=MaleHair, y=FemHair, alternative="less", conf.level=0.95)
Welch Two Sample t-test

data: MaleHair and FemHair
t = -6.5631, df = 92.461, p-value = 1.506e-09
alternative hypothesis: true difference in means is less than 0
95 percent confidence interval:

-Inf -9.938168
sample estimates:
mean of x mean of y
12.46667 25.77358

NOTE:

- If Ha: µx > µy, then we would type alternative = “greater”.

- If Ha: µx 6= µy, then we would type alternative = “two.sided”.

EXAMPLE 10.3 (DONE THE WRONG WAY)

Treat the data as independent samples, ignoring the fact that the BAC measurements at sea
level and at high altitude were made on the same 6 people. At the 0.01 level, test the hypothesis
that the average BAC at sea level is less than the average BAC at high altitude.

> BAC.sl<-c(0.007, 0.010, 0.009, 0.011, 0.008, 0.006)
> BAC.ha<-c(0.013, 0.017, 0.015, 0.014, 0.010, 0.009)
> mean(BAC.sl)
[1] 0.0085
> mean(BAC.ha)
[1] 0.013
> sd(BAC.sl)
[1] 0.001870829
> sd(BAC.ha)
[1] 0.00303315
> t.test(x = BAC.sl, y = BAC.ha, alternative = "less", conf.level = 0.95)

Welch Two Sample t-test

data: BAC.sl and BAC.ha
t = -3.093, df = 8.323, p-value = 0.007062
alternative hypothesis: true difference in means is less than 0
95 percent confidence interval:

-Inf -0.001808149
sample estimates:
mean of x mean of y

0.0085 0.0130

141



Stat 3011 Chapter 14

CHAPTER 14: ANALYSIS OF VARIANCE

EXAMPLE 14.1:

What is the most effective method for treating anorexia? 72 anorexic teenage girls were randomly
assigned to one of three treatments. The first treatment group received cognitive behavioral therapy
in which girls are taught to identify the thinking that triggers their eating disorder and to replace it
with other thoughts meant to prevent this behavior. The second treatment group attended family
therapy and the third group served as a control group and did not receive any therapy. Each girl
was weighed before her treatment began and weighed again upon completion of the treatment.
This data can be found at
http://www.stat.umn.edu/∼wuxxx725/data/anorexia.txt.

Let
µ1 = mean weight gain after completing cognitive behavioral therapy
µ2 = mean weight gain after completing family therapy
µ3 = mean weight gain with no treatment

Are any of the treatments better or worse than the others? That is, are there any significant
differences among µ1, µ2, and µ3?

GOAL:

Why not just do a two-sample t-test for each pair of means?

1. We would have to do
(
g

2

)
=
g(g − 1)

2
tests, where g = number

of means we want to compare.
BUT: Type I error rate increases as the number of tests increases

2. This would only allow us to compare 2 groups at a time but we
want to know if means differ among all groups – want to answer
this with one test.
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14.1 One-Way ANOVA

Notation:

g = number of groups we are comparing
ni = sample size of the ith group
N = overall sample size = n1 + n2 + · · ·+ ng
yi = sample mean of the ith group
y = overall sample mean (sample mean of all the observations)
si = sample standard deviation of the ith group

One-Way ANOVA compares population means among g different groups.

Hypothesis:

H0:
Ha:

To test H0 we do an analysis of variance. That is, we compare

1.

2.

Question:

If our goal is to compare themeans of several populations, why are we doing an analysis of variance?

Answer:

Group 1 Group 2 Group 3

−
4

−
2

0
2

4

Group 1 Group 2 Group 3

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Notice that the means of the three groups are the same in both pictures!
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plot 1: variation between sample means is small in comparison to
variability within groups
plot 2: variability between sample means is large in comparison to
variability within groups

Conclusions:
Differences in means in plot 1 are probably due to chance whereas
in plot 2 the differences are probably due to true difference among
groups and not to chance
Two means are significantly different only if their difference is large
relative to the variability of observations within each group.

Side-by-side boxplots provide a graphical comparison of the variability within and between groups.
However, in order to test H0 we also need a numerical summary of this information.

Measuring Variability Between Groups

SSG = Sum of Squared Deviations for Groups =
∑g

i=1 ni(yi − y)2

MSG =
SSG

g − 1
= a measure of how much means vary from group to

group.

Measuring Variability Within Groups

SSE = Sum of Squared Deviations for Error =
∑g

i=1(ni − 1)s2i

MSE =
SSE

N − g = a measure of how much observations vary within each
group.
MSE is also an estimate of σ2, the population variance for each
group.

Measuring Overall Variability

SST = SSG+ SSE =
∑

(y − y)2
Measures how much observations vary from the overall mean.
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The ANOVA F Test Statistic

The F statistic measures how compatible the data is with H0 : µ1 = µ2 = · · · = µg by comparing
the between group variability to the within group variability:

Interpretation:

The ANOVA Table

The analysis of variance is summarized using an ANOVA Table:

Source of Variation df SS MS F

Group

Error

Total
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The One-Way ANOVA F Test

Assumptions:

1. g independent random samples from g populations

2. Normality: Each population has a normal distribution with un-
known mean

3. Equal Variance: Each population has an equal (but unknown) stan-
dard deviation σ

Notes:
- The F test is robust to departures from normality and equal variance.
- Graphical methods (such as histograms or boxplots) can be used to check the assumptions of
normality and equal variance.

Hypothesis:

H0:
Ha:

Test Statistic:

p-value: Recall that the larger F is, the more evidence we have against H0.

Conclusion:

If p-value < α, reject H0

If p-value ≥ α, fail to reject H0
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The F Distribution

The F (3, 60) density curve:

0 1 2 3 4 5
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4

0.
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Properties:

1. Non-negative

2. Right-skewed

3. Mean is approximately 1 (exact value: df2
df2−2 for df2 > 2.)

4. Mode is also approximately 1 (exact value: df1−2
df1

df2
df2+2 for df1 > 2.)

F calculations:

Table D in Appendix A only gives the 95th percentiles of the F distribution. Thus, Table D can
tell us only whether an F statistic will result in a p-value greater or less than .05. The pf function
in R can be used to compute exact p-values for a given F statistic:

> pf(3.493, df1=2, df2=20, lower=F) #p-value for F=3.493 with df1=2 and df2=20
[1] 0.04999364
> pf(7.42, df1=5, df2=15, lower=F) #p-value for F=7.42 with df1=5 and df2=15
[1] 0.001103249

147



Stat 3011 Chapter 14

EXAMPLE 14.1 CONTINUED

Recall that we want to compare anorexia treatment methods. Let

change = weight change (post-treatment – pre-treatment weight)
therapy = treatment group

Suppose the assumptions needed for the one-way ANOVA F test are fulfilled. Fill in the following
ANOVA table and use it to perform the test for equal mean weight gain among the three anorexia
treatments at the 0.05 level:

Source of variation df SS MS F

groups 614.6

error 3910.7

Total

Assumptions:

Hypothesis:
H0:
Ha:

Test statistic:

p-value:

Conclusion:
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We can also use R to run the one-way ANOVA F test and obtain an exact p-value:

> aov1 <- aov(change ~ therapy) #The form of the equation is always:
# aov(numerical variable ~ group variable)

> summary(aov1) #This returns the ANOVA table and p-val of the F test
Df Sum Sq Mean Sq F value Pr(>F)

therapy 2 614.6 307.3 5.4223 0.006499 **
Residuals 69 3910.7 56.7

14.2 Follow-Up to the ANOVA F -test

When we reject the one-way ANOVA F -test for equal means we can only conclude that at least
two of the group means are significantly different than each other. However, we cannot use this
test to determine which means are different or by how much they differ. In this case, we should
perform further analysis, but we need to be careful...

Example:

Suppose we reject H0: µ1 = µ2 = µ3. To determine which means are significantly different, we
could use the methods of Chapter 10 to construct 100(1 − α)% confidence intervals for each pair
of means:

µ1 − µ2 µ1 − µ3 µ2 − µ3

What is the problem here?

To construct the confidence intervals so that the desired confidence level extends to the entire set
of intervals as opposed to each individual interval, multiple comparison procedures can be used.

Definition: Multiple Comparisons

Multiple comparison methods perform several separate statistical analyses with a confidence level
that applies simultaneously to the entire set of analyses rather than to each analysis separately.
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Applied to confidence intervals:

Several multiple comparison methods have been developed. A common one is the Tukey Honest
Significant Difference (Tukey H.S.D.) method. The math involved in the Tukey H.S.D. is
complicated, so we’ll just show how to do it in R and discuss the interpretation.

EXAMPLE 14.1 CONTINUED
Use R to construct Tukey H.S.D. multiple comparison confidence intervals for the mean weight
gain for the three different anorexia treatments. Use an overall confidence level of 1− α = 0.95.

> aov1 <- aov(change ~ therapy)
> TukeyHSD(aov1, "therapy", conf.level=0.95) #Always list the ANOVA first and the

#name of the group variable second.
Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = change ~ therapy)
$therapy

diff lwr upr p adj
control-cog -3.456897 -8.327276 1.413483 0.2124428
family-cog 4.257809 -1.250554 9.766173 0.1607461
family-control 7.714706 2.090124 13.339288 0.0045127

Conclusion:

Mean weight gain for the family therapy group was significantly
higher than for the control group (all values in the interval are >

0).
However, since 0 falls between the lower and upper values of the
other 2 intervals, the mean weight gain is not significantly different
among the control and cognitive behavior groups nor among the
family and cognitive behavior groups.
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CHAPTER 3: TWO-VARIABLE ASSOCIATIONS

Motivating Example

“Mutton busting” is a popular rodeo intermission event in which children are placed on top of a
sheep (mutton) and ride around until they fall off (busting). The following table contains the ride
times and heights of 10 little mutton busters:

Ride Length (s) 0.12 0.79 3.57 3.14 4.54 1.74 3.11 5.96 10.58 7.21
Height (in) 37.0 39.5 41.0 42.0 42.5 43.0 44.0 44.5 45.0 46.0

38 40 42 44 46

0
2

4
6

8
10

Height (in)

R
id

e 
Le

ng
th

 (
s)

Using what we learned in previous chapters, we can separately explore the heights of the mutton
busters as well as their ride times. However, we are also interested in the relationship between the
height of a child and how long they can stay on the mutton. For instance, from the plot it appears
that taller children tend to have longer ride times.

Goal:
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Definition: association

Two variables measured on the same subjects are associated if some values of one variable tend to
occur more often with some of the second variable.

When exploring the relationship between two variables, we typically distinguish between which is
the response variable and which is the explanatory variable.

Sometimes this distinction is obvious, while at other times different
variables can be considered a response, depending on the goal of the
analysis.

Definition: response and explanatory variables

A response variable measures an outcome that is thought to occur in response to an explanatory
variable.

Examples:

• In the relationship between blood alcohol content (BAC) and the # of beers one drinks,

response variable:

explanatory variable:

• In the relationship between one’s gender and their political party affiliation,

response variable:

explanatory variable:

In the next couple of chapters we will explore the following types of associations:

Chapter 11: Associations between 2 categorical variables

Chapter 12: Associations between 2 quantitative variables
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CHAPTER 11: ASSOCIATION BETWEEN TWO CATEGORI-
CAL VARIABLES

EXAMPLE 11.1

“Entrance polls” from the 2012 Iowa Republican caucuses collected information from 1,787 caucus
voters. This survey data is summarized in the following contingency table which breaks down the
number of votes for each candidate by family income level:

Candidate
Romney Santorum Paul Other Total

Family Income Level Under $50K 94 112 183 201 590
$50K-$100K 146 202 147 203 698
$100K or more 179 120 70 130 499
Total 419 434 400 534 1787

Name the two categorical variables in this study:

Is there an association between candidate and income level among the entire population of Iowa
Republican caucus voters?

11.1 Chi-Squared Test for Independence

Definition: independent variables

Two categorical variables are independent if the distribution of one of the variables is not influenced
by the observed value of the other.

Goal:

How?
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Expected Cell Counts:

In general, when two categorical variables are independent, we can calculate the expected value of

each cell in the contingency table:

Chi-Squared Test for Independence

1. Assumptions

(a) random sample

(b) large enough sample size so that expected cell count ≥ 5 in all cells

2. Hypothesis

H0:
Ha:

3. Test Statistic

Recall: A test statistic is a measure of how compatible the data is with H0. In this case, a
test statistic should measure the degree to which the observed contingency table agrees with
the assumption of independence between the two variables.

When H0 is true, do you expect X2 to be a large or a small number?
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What is the distribution of X2 when H0 is true?

That is, X2 has a distribution with
df = , where r =number of rows and c =number of
columns in the contingency table. (See below.)

4. p-value

5. Conclusion
If p-value < α, reject H0

If p-value ≥ α, fail to reject H0

The Chi-Squared Distribution
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Properties:

1. continuous

2. right skewed

3. only takes on non-negative values (≥ 0)

4. shape is specified by the df

5. the larger df, the more spread out

155



Stat 3011 Chapter 11

χ2 calculations

Use Table C in Appendix A to calculate a range for the p-value of the chi-squared test. The pchisq
function in R can be used to compute an exact p-value for a given test statistic X2.

1. Let df=20 and find P (χ2 ≥ 34.17).

> pchisq(34.17, df=20, lower=F)
[1] 0.02499745

2. Let df=13 and estimate P (χ2 ≥ 24).

> pchisq(24, df=13, lower=F)
[1] 0.03113006

EXAMPLE 11.1 CONTINUED

(a) Calculate the expected cell counts under the assumption that one’s family income level and
candidate preference are independent.

Romney Santorum Paul Other Total

Under $50K 94 112 183 201 590
(138.3) (143.3) (132.1) (176.3)

$50K-$100K 146 202 147 203 698
(163.7) (169.5) ( ) ( )

$100K or more 179 120 70 130 499
(117.0) (121.2) ( ) ( )

Total 419 434 400 534 1787
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(b) At the 0.05 level, test for an association between one’s family income and their candidate
preference.

Assumptions:

Hypotheses:

H0:

Ha:

Test statistic:

p-value:

Conclusion:

EXAMPLE 11.2

Are smoking and divorce related? A random sample of 1669 adults were interviewed about their
marriage and smoking statuses:

Divorced?
Yes No Total

Smoke? Yes 238 247 485
No 374 810 1184
Total 612 1057 1669

Use R to test for an association between smoking and divorce at the 0.01 level.
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• Step 1: Put the data in matrix form.

> dat <- matrix(c(238,247,374,810), nrow=2, byrow=T)
> dat

[,1] [,2]
[1,] 238 247
[2,] 374 810

NOTE: ‘nrow=2’ tells R that there are 2 rows in the table and ‘byrow=T’ tells R that we are entering
in the data for the first row followed by the data for the second row (as opposed to entering data for
the first column followed by the second column).

• Step 2: Run the Chi-square test.

> mytest <- chisq.test(dat, correct=F)
> mytest

Pearson’s Chi-squared test
data: dat
X-squared = 45.292, df = 1, p-value = 1.697e-11

Assumptions:
random sample, expected cell counts > 5

Hypotheses:
H0: smoking and divorce are independent
Ha: smoking and divorce are dependent

Test statistic:
X2 = 45.29,df = 1

p-value:
p-val = P (χ2

1 ≥ 45.29) = 1.697× 10−11

Conclusion: Reject H0. There is a significant association between
smoking and divorce at the 0.01 level.
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11.2 Measures of Association

The chi-squared test addresses:

The chi-squared test does not address:

Definition: risk

The “risk ” of an outcome is the probability of its occurrence.

Definition: relative risk

The ratio of risks for two groups is called the relative risk and can be used to measure the strength
of the association between two categorical variables.

EXAMPLE 11.2 CONTINUED

We previously showed that there is a significant association between the incidence of smoking and
divorce. We now want to describe this association.

(a) What is the estimated risk of divorce among smokers?

(b) What is the estimated risk of divorce among non-smokers?

(c) Calculate and interpret the estimated relative risk of divorce among smokers and non-smokers.
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CHAPTER 12: REGRESSION ANALYSIS

EXAMPLE 12.1
How well does the production cost of a movie predict how well it will do at the box office? Data
(courtesy of Houghton Mifflin) was collected from a random sample of 10 Hollywood movies:

Box Prod Promo Book
85.1 8.5 5.1 4.7
106.3 12.9 5.8 8.8
. . . .
. . . .

where
Box = 1st year box office receipts (millions)
Prod = production costs (millions)
Promo = promotional costs (millions)
Book = book sales (millions)

A full data set can be found at http://www.stat.umn.edu/∼wuxxx725/data/movies.txt.

GOAL:

Explore the association between 2 quantitative variables.
ex: production cost and box office sales

The Approach:

1. Get to know the sample data using both graphical and numerical
summaries.

2. Use the sample data to make inferences about the true popula-
tion relationship.
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12.0 Exploring the Data (A Return to Chapter 3)

3.2.1 Graphical Summaries - The Scatterplot

The scatterplot is a graphical tool used to display the relationship between two quantitative
variables.

Constructing a Scatterplot:

1. Label the x-axis (horizontal) with the explanatory variable.

Label the y-axis (vertical) with the response variable.

2. Represent each observation with a point in the graph at its (x, y) coordinate.

Examples:
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What To Look For In A Scatterplot

1. overall pattern

ex: linear, curved, etc

2. strength

How closely do the points follow a pattern?
ex: weak, moderate, strong

3. direction

Do the variables have a positive or negative association?

Definition: positive association

Two quantitative variables are positively associated when high values of one of the variables
tend to occur with high values of the other.

Definition: negative association

Two quantitative variables are negatively associated when high values of one of the variables
tend to occur with low values of the other (and vice versa).

4. outliers

Are there any unusual points that fall outside the cloud of data
points?

EXAMPLE 12.2

Is there an association between Olympic winning times for the 200 meter dash and the year in
which the Olympics took place? The following is a partial data set of the Olympic winning times
(in seconds) starting in 1908 and ending in 1996 where

Year = number of years after 1900
Time = Olympic winning times for the 200m dash (in seconds)

(The full data set can also be found at http://www.stat.umn.edu/∼wuxxx725/data/dash.txt.)
Year Time

1 8 22.60
2 12 21.70
3 20 22.00
. . .
. . .
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Which is the explanatory variable and which is the response?

response = Time
explanatory = Year

Use R to draw a scatterplot of the data.

> plot(Year, Time, xlab="# of years past 1900", ylab="Dash time (s)", pch=16)

• When using the “plot” function, always list the x-axis (explanatory) variable first and the
y-axis (response) variable second.

• Recall: “xlab” = x-axis label, “ylab” = y-axis label, and “main” = title

Also, “pch = 16” tells R to use solid dots (the default is open circles).
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Describe the relationship between the Olympic winning time of the 200m dash and the year in
which the Olympics took place:

strong, negative, linear relationship
200m dash times have been improving (decreasing) over time

163



Stat 3011 Chapter 12

3.2.2 Numerical Summaries - Correlation

A scatterplot only allows us to eyeball the strength of a linear relationship between two quantitative
variables. We also want to quantify the strength of this relationship.

Notation:

Let x = {x1, x2, · · · , xn} and y = {y1, y2, · · · , yn} denote two paired samples of size n corresponding
to two different quantitative variables. Also, let

x = sample mean of the x data
sx = sample standard deviation of the x data
y = sample mean of the y data
sy = sample standard deviation of the y data

Definition: correlation (r)

Correlation is a measure of the strength and direction of the linear relationship between two
quantitative variables. The sample correlation between two variables x and y can be calculated
using

r =
1

n− 1

∑(
xi − x
sx

)(
yi − y
sy

)
Notice the z-scores!

Properties of r:

1. The value of r does not change if we reverse the roles of x and y.

(It doesn’t matter which is labeled “response” and which is la-
beled “explanatory”.)

2. The value of r does not change if we change the units of the variable.

ex: converting pounds to kilograms won’t affect r

3. r only measures the strength and direction of a linear (not
curved) relationship.

4. r is not resistant to outliers.

This is obvious since the formula for r involves x and y
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5. −1 ≤ r ≤ 1

Direction:

r > 0⇒ positive association
r < 0⇒ negative association
r = 0⇒ uncorrelated (no linear relationship)

Strength:

r ≈ 0 ⇒ weak linear relationship.
r ≈ ±1 ⇒ strong linear relationship.
r = 1 or r = −1 only if all points fall exactly on a straight line.

Draw a picture:
[−1,−.8) = strong, negative; [−.8,−.5) = moderate, negative;
[−.5, .5] = weak; (.5, .8] = moderate, positive; (.8, 1] = strong,
positive
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Refer back to the scatterplots on page 161 for examples.
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EXAMPLE 12.2 CONTINUED
Use R to calculate the correlation between the year in which the Olympics took place and the
winning time for the 200 meter dash:

> cor(Year, Time)
[1] -0.9496326
> cor(Time, Year)
[1] -0.9496326

r = −0.950. Therefore, there is a strong, negative linear association
between Time and Year. This agrees with our interpretation of the
scatterplot.

3.2.3 Numerical Summaries - Least Squares Regression

Correlation provides a measure of the strength and direction of a linear relationship. We will now
learn how to use least squares regression to provide a numerical description of the pattern of
the linear relationship between a (quantitative) explanatory variable and a (quantitative) response
variable.

Definition: regression line

A regression line formulates the linear relationship between a response variable (y) and explanatory
variable (x) and can be used to predict the value of y for a given value of x.

Sample Regression Line

Suppose we have explanatory variable x and a response variable y with observed data pairs
(x1, y1), (x2, y2), · · · , (xn, yn). Then the equation for the sample regression line is

ŷ = a+ b x

• ŷ = the predicted value of y at x

• a = intercept (value of y when x = 0)

this may not have any interpretive value if no observations have
x values near 0

• b = slope of the line = expected change in y per unit change in x
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a

1

b

Relationship Between r and b:

b > 0 ⇒ positive slope (positive association)
Therefore if b > 0, r > 0 (and vice versa)
Similarly, if b < 0, r < 0 (and vice versa)

Using the Regression Line for Prediction:

We can predict the value of the response variable at some value of x by plugging x into the equation
of the regression line.

Example: Suppose we have a regression line with a = 2 and b = −1/4.

(a) Write down the formula and draw a picture of the regression line.

ŷ = 2− 1
4x

(b) Predict y for x = 100.

ŷ = 2−
(
1
4

)
(100) = −23

(c) Predict y for x = 4.

ŷ = 2−
(
1
4

)
(4) = 1
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Finding a and b

As we’ve seen before, the observations will (most likely) not all fall on a straight line. So how do
we pick a and b for the regression line? Consider a simple example:
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Definition: residual

A residual is the prediction error for an observation. Specifically, it is the difference between
an observed value of the response variable (y) and the value predicted by the regression line
(ŷ = a+ b x):

residual = y − ŷ

residual
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NOTES:

1. Cannot switch the order of y and ŷ in the formula for the residual.

2. What does it mean when the residual = 0?

The predicted value is spot on.

3. What does it mean when the residual < 0? > 0?

residual < 0 ⇒ y < ŷ ⇒ predicted value is too high.

residual > 0 ⇒ y > ŷ ⇒ predicted value is too low.

GOAL:

Choose a and b so that
- residuals are small
- not systematically over- or under- predicting the true value.

Least Squares Regression

Definition: residual sum of squares

The residual sum of squares (RSS) is one measure of how well a regression line predicts values of
the response variable. It is literally the sum of the squared residuals:

RSS =
∑

(residual)2 =
∑

(y − ŷ)2

Least Squares Criterion:

choose a and b to minimize RSS

Least Squares Line:
ŷ = a+ b x
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where

b = r
sy
sx

a = y − b x

Properties of the Least Squares Regression Line (LSL)

1. Changing x and y around will give a different regression line.

2. Some residuals are positive and some residuals are negative, but it is always true that∑
residual =

∑
(yi − ŷi) = 0

Interpretation:

low predictions are balanced by high predictions

3. RSS for the LSL is smaller than for any other line.

4. The LSL always passes through the point (x, y).

i.e. y = a+ bx

5. r2 provides a measure of how well the LSL describes the relationship between x and y (where
r is the correlation).

• r2 = proportion of variation in y that is explained by its
linear relationship with x.

• 0 ≤ r2 ≤ 1

• The closer r2 is to 1 the better x can be used to predict y
• r2 = 1 ⇒ all variability in y is explained by its linear rela-
tionship with x
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EXAMPLE 12.2 CONTINUED

Recall: We are interested in quantifying the linear relationship between the Olympic winning time
of the 200m dash and the year in which the Olympics took place. Let

x = Year = number of years after 1900
y = Time = Olympic winning times for the 200m dash (in seconds)

Step 1: Graphical Summary

We already looked at a scatterplot for this data. (see page 163)

Step 2: Numerical Summaries using R

> LSL <- lm(Time ~ Year) #"lm" fits the least squares line using Time as the response
#variable and Year as the explanatory variable
#We store this information in "LSL"

> summary(LSL) #Gives values of a, b, r-squared, etc
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 22.355087 0.143763 155.50 < 2e-16 ***
Year -0.030266 0.002354 -12.86 1.65e-10 ***
–-
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2838 on 18 degrees of freedom
Multiple R-squared: 0.9018, Adjusted R-squared: 0.8963
F-statistic: 165.3 on 1 and 18 DF, p-value: 1.649e-10

Notes:

• Function “lm” stands for “linear model”.

(That is, “lm” is the letter l and the letter m. Don’t make a typo!)

• The form of the “lm” function is always “lm(response ~ explanatory)”.

• “LSL” (or whatever other name you assign your results) has more information than just
coefficient estimates and r2. Let’s take a look:

> names(LSL) #shows what LSL holds
[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "xlevels" "call" "terms" "model"
> LSL$fitted.values #predicted values of Time based on the regression line
> LSL$residuals #residuals
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(a) Use the R output to find the equation of the least squares regression line.

ŷ = 22.36− 0.0303x

(b) Interpret the value of the slope.

On average, 200 meter dash times improve (decrease) by 0.0303
seconds every year.

(c) By how much would we expect the 200m dash time to improve from one Olympics to the
next (4 years apart)?

−0.0303(4) = −0.1212

(d) Estimate what the winning 200m dash time might have been had the Olympics been held in
1950.

ŷ = 22.36− 0.0303(50) = 20.84

(e) State and interpret r2.

r2 = 0.902

Therefore, about 90% of the variability in winning times is ac-
counted for by its linear relationship with year.
The other 10% of the variation in 200m dash time is accounted
for by other factors that are not in this study (ex: temperature,
running surface, etc)

(f) Calculate the interpret the sample correlation r.

r = sgn(b)
√
r2 = (−1)(.950) = −.950

(g) The 2016 Olympics 200m dash was won by Usain Bolt of Jamaica in 19.78 seconds. Find the
residual for this observation.

ŷ = 22.355− 0.0303(116) = 18.84
residual = y − ŷ = 19.78− 18.84 = 0.94

The prediction provided by the regression line for the 2016 Olympics was not very good, even
though the relationship in the data looks quite linear and the r2 value is high.

Why did the prediction fail? (There could be multiple reasons.)
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Extrapolation: The value of x in the new observation is too far
outside of the range of the observed values of x.
Non-linearity: While the r2 value of this model appears to be
high, there might exist other non-linear models that work even
better. For example, we may consider regressing the winning
speeds of the Olympics 200m dash (instead of winning times) on
the years that the Olympics took place.

Plotting the Least Squares Line in R
After using R to find the least squares line, we can draw a graph that includes the data points
along with the fitted line.

#Fit the line:
> dashline <- lm(Time ~ Year)
#Draw the scatterplot:
> plot(Year, Time, xlab="# of years past 1900", ylab="Dash time (s)", pch=16)
#Add the least squares line to the scatterplot:
> abline(dashline)
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12.1 Regression Analysis

Thus far, we have learned to explore and describe the observed relationship between 2 variables for
a sample of data. In other words, we have only learned how to describe some data that’s sitting
in front of us. In the remainder of this chapter we will learn how to use these sample statistics to
make inferences about the true relationship between 2 variables among an entire population.

Population Regression Model

Let

y = value of the response variable
x = value of the explanatory variable

Notice: The trend of the linear relationship between x and y is described by

µx = α + βx

What is the interpretation of the trend?
µx is the expected value of y given a particular value of x.

Model Assumptions:

When using such a model to describe the linear relationship between two quantitative variables, x
and y, we are making 3 assumptions.

1. A linear relationship is appropriate.

2. Normality: The distribution of the y values at a given value of x is

N(µx, σ) = N(α + βx, σ)

3. Constant variance:

The standard deviation of y, σ, is the same for all values of x.
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In pictures:
draw 2 pictures, one with non-constant variance

Constant variance Non−constant variance

12.2 Inference About the Population Regression Model

As usual, we can make inferences about the unknown true population regression model through

1. point and interval estimation

2. hypothesis testing

12.2.1 Estimating α and β

Recall that the population regression model can be written as

y = α+ βx+ ε .

However, parameters α and β are unknown. That is, the true linear relationship between x and y
is unknown.

Goal:

Choose estimates of α and β that will result in small prediction
errors.
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The Bottom Line:

The least squares line
ŷ = a+ bx

serves as a point estimate of the true population regression model:
a is an unbiased estimate of α
b is an unbiased estimate of β

EXAMPLE 12.1 CONTINUED

Recall: We are interested in exploring the relationship between box office sales and the cost of
production. Which is the response and which is the explanatory variable?

Response: box office sales
Explanatory variable: production cost

Use R to draw a scatterplot and estimate the true linear relationship between box office success
and the cost of production:

> plot(Prod, Box, xlab="Production Cost", ylab="Box Office Sales")
> myfit <- lm(Box ~ Prod)
> summary(myfit)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 15.513 11.603 1.337 0.217989
Prod 7.978 1.223 6.522 0.000184 ***
–-
Residual standard error: 14.26 on 8 degrees of freedom
Multiple R-squared: 0.8417, Adjusted R-squared: 0.8219
F-statistic: 42.54 on 1 and 8 DF, p-value: 0.0001838
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(a) What is the estimate of α?

a = 15.513

(b) State and interpret the estimate of β.

b = 7.978

we expect box office sales to increase by almost $8 million for
every one million spent on the movie’s production

(c) Write down the least squares estimate of the population regression line.

B̂ox = a + b(Prod) = 15.513 + 7.978 (Prod)

(d) Predict the box office sales for a movie with production costs of $7 million.

B̂ox = a + b(Prod) = 15.513 + 7.978 (7) = $71.4

12.2.2 Hypothesis Tests and Confidence Intervals for β

Most of the interesting information about the linear relationship between two quantitative variables
is captured by the slope of the population regression line, β. Therefore, we will focus on making
inferences about β. We can also construct hypothesis tests and confidence intervals for the intercept
α in a similar fashion. However, recall from Chapter 3 that it is not always reasonable to interpret
α in the context of the problem. In such cases, it is also meaningless to construct and interpret
confidence intervals and hypothesis tests for α.

The construction of hypothesis tests and confidence intervals for β will rely on the following infor-
mation:
b = point estimate of β

standard error of b = se(b)

(Calculate in R, the formula is too complicated)

sampling distribution of b:

b− β
se(b)

·∼ tn−2

where n = sample size
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Confidence Intervals for β

Assumptions:

1. Random sample of n pairs of data

2. Model Assumptions:

(a) Linear relationship is appropriate

(b) Normality

(c) Constant variance

1− α Confidence Level CI for β:

point est± margin of error = b± t∗df · se(b)
where df = n− 2

Hypothesis Tests for β

Assumptions: Same assumptions as for the confidence interval.

Hypothesis:

H0: β = 0
Ha: β 6= 0

Interpretation:

Draw a picture. When β = 0, the outcome of y does not depend
on the value of x.

β = 0
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The following are equivalent:

H0 : β = 0 ⇐⇒ H0 : x and y are independent
⇐⇒ H0 : we wouldn’t want to use x to predict y

Test Statistic:

t =
point est− hyp value

se(point est)
=

b

se(b)
∼ tn−2 when H0 true

p-value:

p-value = 2P (tn−2 > |t|)

Conclusion:

If p-value < α, reject H0

If p-value ≥ α, fail to reject H0

12.2.3 Measuring the Strength of the Linear Relationship

Rejecting H0: β = 0 only tells us that a significant linear association between our two quantitative
variables exists. It does not give us an idea of how strong this association is!

1. Correlation R = a measure of the strength and direction of the linear
association between 2 quantitative variables

R is unknown. Estimate R using r, the sample correlation.

2. R2 = proportion of variation in y that is explained by its linear
relationship with x. The remaining variation is captured by or
reflected in the scatter

R2 is unknown. Estimate R2 using r2.
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EXAMPLE 12.1 CONTINUED

Use the R output on page 176 to answer the following questions.

(a) At the 0.05 level, use the R output to test H0: β = 0 versus Ha: β 6= 0 where β is the slope
of the regression line between box office sales and production costs.

Assumptions:

We will learn how to check these assumptions later...

Test statistic:
t =

b

se(b)
=

7.978

1.223
= 6.522

p-value:

p-val = 2P (tn−2 > t) = 2P (t8 > 6.522) < 2(0.001) = 0.002

Actually, from R we have an exact p-value: p-val = 0.000184

Conclusion:

p-val < 0.05. Reject H0. We have strong evidence that a linear
association exists between box office sales and production costs.

(b) Calculate and interpret the 95% confidence interval for β:

b± tα/2,n−2se(b) = 7.978± 2.306(1.223)

= 7.978± 2.820 = (5.158, 10.798)

We are 95% confident that Box office sales increase somewhere
between $5.158 and $10.798 million for $1 mil increase in pro-
duction cost.

(c) What percentage of the variation in box office sales is accounted for by its linear relationship
with production costs?

≈ 84% (r2 = .8417)

180



Stat 3011 Chapter 12

12.3 Correlation and Regression: A Cautionary Tale

Recall: Correlation and regression are powerful tools for describing associations and making pre-
dictions. However, these tools can be abused as well. Keep the following in mind when constructing
(and reading) the results of this type of analysis:

1. Correlation and regression only describe linear relationships.

2. Correlation and regression are not resistant to outliers.

3. Regression lines should not be extrapolated far outside the range of observed data.

Definition: extrapolation

Extrapolation is the use of a regression line to predict values of the response variable for
values of the explanatory variable that are far outside the observed range of the data.

Why is this a problem?

We have no assurance that the linear trend continues beyond
the observed range of the data.

EXAMPLE 12.2 CONTINUED

We previously fit the following least squares regression line that describes the linear rela-
tionship between Olympic winning time of the 200m dash (Time) and the year in which the
Olympics took place (Year):

T̂ime = 22.355− 0.0303 Year

To convince yourself that extrapolating is the wrong thing to do, use the fitted line to predict
the winning dash time in the 2016 and 2640 Olympics.

For the 2016 Olympics:

T̂ime = 22.355− 0.0303 Year = 22.355− 0.0303(2016− 1900) = 18.84

For the 2640 Olympics:

T̂ime = 22.355− 0.0303 Year = 22.355− 0.0303(2640− 1900) = −0.07
The winning time cannot be negative!
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4. Correlation does not necessarily imply causation

Suppose r is the correlation between two quantitative variables x and y. A value of r close
to -1 or 1 suggests these two variables are associated. It does NOT necessarily mean that a
change in x causes a change in y (or vice versa)

When there is an association but no causal relationship between two variables, there is often
an alternative explanation for the association:

Definition: lurking variable

A lurking variable is a variable which is not included in the study, but strongly affects the
relationship among the variables of primary interest. It may either falsely suggest a strong
relationship or hide an important existing relationship.

EXAMPLE 12.3

Based on United Nations data, it can be shown that there is a strong, negative correlation
between a nation’s infant mortality rate (IMR) and the per capita television ownership. How
can this be explained?

Nobody actually thinks that watching more TV causes an im-
provement in infant health.

Lurking variable: National GDP

People in wealthier nations tend to have healthier babies and
own more TV’s.

Association does not imply causation!

In general:

The effects of lurking variables cannot be ruled out in observa-
tional studies.

How can we establish causation?

1. Set up a carefully designed experiment that controls for poten-
tial lurking variables.
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2. Evaluate criteria for establishing causation:

(a) Association is strong.

(b) Association is consistent across many studies.

(c) Alleged cause is plausible.

(d) Alleged cause preceded the effect (in time).

(e) Higher doses evoke stronger responses.
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CHAPTER 13: MULTIPLE REGRESSION

EXAMPLE 13.1
In an experiment at Ohio State University, 16 student volunteers each drank a randomly assigned
number of beers and had their blood alcohol content (BAC) measured 30 minutes later.

Gender Weight Beers BAC
female 132 5 0.1
female 128 2 0.03
male 192 8 0.12
. . . .
. . . .

A full data set can be found at http://www.stat.umn.edu/∼wuxxx725/data/BAC.txt.

An obvious factor in one’s BAC is how many beers they’ve had to drink. However, there are other
factors that may influence BAC. For instance, drinking 3 beers may have a stronger affect on a
person who weighs 140 pounds than a person who weighs 240 pounds.

In general, there are often several explanatory variables that may be good predictors of a single re-
sponse variable. In Chapter 12 we learned how to perform regression analysis using one explanatory
variable at a time.

GOAL:

simultaneously use multiple explanatory variables to predict a single
response variable

Why?

1. using more information improves prediction

2. allows us to analyze the association between 2 variables while
controlling for other factors
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13.1 The Multiple Regression Model

Let y denote the response variable and x1, x2, · · · , xk denote k different explanatory variables.

Then the multiple population regression model is

y = α + β1x1 + β2x2 + · · ·+ βkxk + ε

where α, β1, β2, · · · , βk are unknown regression parameters

Interpretation of α:

α is the expected value of y when x1 = x2 = · · · = xk = 0

This may not be interpretable in the context of the problem

Interpretation of βj :

βj is the expected change in y per unit change in xj when all other
x’s are held constant.

Model Assumptions:

The assumptions about the multiple regression model are similar to those for the regression model
with only one explanatory variable:

1. Linearity: There is a linear relationship between y and each of the explanatory variables.

Check:

a scatterplot matrix displays scatterplots of y versus each of the
x’s

2. Normality: The distribution of the y values at a given set of (x1,x2,...,xk) values is

N(α + β1x1 + β2x2 + · · ·+ βkxk, σ)

Check:

normal quantile plot of residuals

3. Constant variance: The standard deviation of y, σ, is the same at each set of (x1,x2,...,xk)
values.

Check:

residual plot of residuals versus fitted values
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13.2 Estimation of the Multiple Regression Model

Least Squares Regression

As with simple linear regression with one explanatory variable, we use the least squares procedure

to obtain an estimate of the population regression model. The resulting sample prediction equation

is

ŷ = a+ b1x1 + b2x2 + · · ·+ bkxk

EXAMPLE 13.1 CONTINUED

Recall: We want to explore how one’s BAC is affected by their weight and the number of beers

they drink. Let the true model be represented as

BAC = α + β1 Beers + β2 Weight + ε

Use R to fit a least squares line for this model:

> myfit <- lm(BAC ~ Beers + Weight)
> summary(myfit)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.986e-02 1.043e-02 3.821 0.00212 **
Beers 1.998e-02 1.263e-03 15.817 7.16e-10 ***
Weight -3.628e-04 5.668e-05 -6.401 2.34e-05 ***
–-
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.01041 on 13 degrees of freedom
Multiple R-squared: 0.9518, Adjusted R-squared: 0.9444
F-statistic: 128.3 on 2 and 13 DF, p-value: 2.756e-09

(a) Use the following plots to check the model assumptions.

> pairs(cbind(BAC, Beers, Weight), pch=16) #scatterplot matrix
> qqnorm(myfit$residuals, ylab="residuals", pch=16) #normal quantile plot
> qqline(myfit$residuals)
#Residual plot:
> plot(myfit$fitted, myfit$residuals, xlab="fitted values",
> ylab="residuals",pch=16)
> abline(h=0)
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(b) Write down the equation of the predicted regression line.

B̂AC = a+b1Beers+b2Weight = .0399+0.02Beers−0.00036Weight

(c) Predict the BAC for a 200 pound person after drinking 3 beers.

B̂AC = .0399 + 0.02(3)− 0.00036(200) = 0.0279
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(d) State and interpret the estimated value of β1, the parameter associated with ‘Beers’.

b1 = 0.02

At any fixed weight, BAC increases by 0.02 percent on average
for every one beer drank.

(e) State and interpret the estimated value of β2, the parameter associated with ‘Weight’.

b2 = −0.00036
Fix the number of beers one drinks. Then for every 10 pound in-
crease in a person’s weight, BAC decreases by 10(0.00036)=0.0036
percent on average.

13.3 Inference for the Multiple Regression Model

We can extend the inferential techniques we learned for the simple regression model to multiple
regression models.

r2: Measuring the Strength of the Multiple Regression Relationship

As in simple linear regression with a single explanatory variable, we can use r2 to measure the
strength of the linear association between y and x1, x2, · · · , xk.

Interpretation:

R2 = proportion of the variation in y accounted for by its linear
relationship with x1, x2, · · · , xk.

Properties of r2, the sample estimate of R2:

1. r2 is always between 0 and 1, and equals the square of the sample
correlation between ŷ and y.

r2 =

(
1

n− 1

∑(
ŷi − y
sŷ

)(
yi − y
sy

))2
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2. r2 will almost always increase (and will never decrease) when any new explanatory variable
is added to the model, even if that variable is not helpful for predicting y in the population.

Example:

> set.seed(123456)
> random.nums<-rnorm(16)
> overfit<-lm(BAC~Beers+Weight+random.nums)
> summary(overfit)

Call:
lm(formula = BAC ~ Beers + Weight + random.nums)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.093e-02 1.060e-02 3.862 0.00226 **
Beers 2.074e-02 1.546e-03 13.420 1.38e-08 ***
Weight -3.857e-04 6.285e-05 -6.136 5.05e-05 ***
random.nums -3.854e-03 4.396e-03 -0.877 0.39784
–-
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.0105 on 12 degrees of freedom
Multiple R-squared: 0.9547, Adjusted R-squared: 0.9434
F-statistic: 84.29 on 3 and 12 DF, p-value: 2.486e-08

EXAMPLE 13.1 CONTINUED

(a) Use R to estimate the correlation between BAC and Beers as well as between BAC and
Weight:

> cor(Beers,BAC)
[1] 0.8943381
> cor(Weight,BAC)
[1] -0.1549634

Use the above output to estimate...

• how much of the variability in BAC can be accounted for by its linear relationship with
‘Beers’ alone (when a person’s weight is unknown).

r2 = .8942 = .799 (About 80%)

• how much of the variability in BAC can be accounted for by its linear relationship with
‘Weight’ alone (when the number of beer a person has had is unknown).

r2 = (−.155)2 = .024 (not much at all!)

189



Stat 3011 Chapter 13

(b) Use the output on page 186 to state and interpret the estimated value of R2 for the linear
regression of BAC using predictors ‘Beers’ and ‘Weight’.

.9518

The F -test

Before testing for the existence of a significant effect of the individual explanatory variables, we
should perform an F -test for the existence of a significant collective effect of the explanatory
variables on the response variable y.

Assumptions:

1. Random sample of n sets of (y, x1, x2, · · · , xk) data

2. Model Assumptions:

(a) Linear relationships are appropriate between y and each xj
(b) Normality

(c) Constant variance

Hypothesis:

H0: β1 = β2 = · · · = βk = 0
Ha: At least one β parameter is not equal to 0

Interpretation:

H0: y is independent of all the x’s
Ha: at least one of the x’s is linearly associated with y

Test Statistic:

F =
Mean Square for Regression

Mean Square Error

p-value:

p-value = P (Fdf1,df2 > F )

Conclusion:

If p-value < α, reject H0

If p-value ≥ α, fail to reject H0
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• If we fail to reject H0 of the F test:

Stop. None of the x’s are good predictors of y.

• If we reject H0 of the F test and conclude that y is significantly associated with at least one
of the explanatory variables:

Investigate further. Run individual t-tests for each of the x’s to
determine which are significantly associated with y.

Hypothesis Tests for βj

Assumptions: Same assumptions as for the F test.

Hypothesis:

H0: βj = 0

Ha: βj 6= 0

Interpretation:

H0: When all other x’s are known, xj does not add a significant
amount of predictive information about y.

(If we have the other x’s, we don’t need xj.)

Test Statistic:

t =
bj

se(bj)
∼ tn−(k+1) when H0 true

p-value:

p-value = 2P (tn−(k+1) > |t|)

Conclusion:

If p-value < α, reject H0

If p-value ≥ α, fail to reject H0
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Confidence Intervals for βj

Under the same assumptions as the F test, the 1− α confidence level CI for βj is

bj ± tα/2,dfse(bj)
where df = n− (# of parameters in the mean function) = n− (k+1)

EXAMPLE 13.1 CONTINUED

Perform inference for the multiple regression model for BAC and the explanatory variables ‘Weight’
and ‘Beers’:

BAC = α+ β1 Beers + β2 Weight + ε

(a) Use the R output from page 186 to perform the F test at the 0.05 level.

Assumptions:

We would need to assume that the data represent a random
sample from the population. From the plots on page 187, the
linearity, normality, and constant variance assumptions are ap-
proximately satisfied.

Hypotheses:

H0: β1 = β2 = 0

Ha: At least one of the β’s doesn’t equal 0.

Test Statistic:

F = 128.3

p-value:

p-val = P (F2,13 ≥ 128.3) = 2.756× 10−9

Conclusion:

p-value < 0.05: Reject H0. We conclude that either the number
of beers one drinks or one’s weight (or both) has a significant
effect on BAC.
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(b) If necessary, perform individual t-tests for the explanatory variables ‘Weight’ and ‘Beers’ at
the 0.01 level.

As we have rejected H0 in the F test, it is necessary to perform
the individual t-tests.

1. Assumptions:
Same as that of the F test.

Hypotheses:
H0: β1 = 0

HA: β1 6= 0

Test statistic:
t = 15.817

p-value:
p-val = 7.16× 10−10

Conclusion:
p-value < 0.05: Reject H0. Conclude that even if a person’s
weight is known, the number of beers one drinks adds a
significant amount of predictive information about BAC.

2. Assumptions:
Same as that of the F test.

Hypotheses:
H0: β2 = 0

Ha: β2 6= 0

Test statistic:
t = −6.401
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p-value:
p-val = 2.34× 10−5

Conclusion:
p-value < 0.05: Reject H0. Conclude that even if we know
how much beer a person has had, knowing his/her weight
adds a significant amount of predictive information about
BAC.

(c) Compute and interpret a 90% confidence interval for β2.

df = n− (k + 1) = 16− (2 + 1) = 13

b2 ± tα/2,dfse(b2) = −0.00036± 1.771(0.000057)

= (−0.00046,−0.00026)

We are 90% confident that when the amount of beer one drinks
is held constant, BAC decreases between 0.00026 and 0.00046
on average for every one pound increase in weight.

EXAMPLE 13.2: AN EXAMPLE OF CONFOUNDING

The file http://www.stat.umn.edu/∼wuxxx725/data/sat.txt contains the following state-level
data from 1982:

state: Name of the state
sat: Average SAT score for the state (response variable)
takers: Percentage of total eligible students that took the SAT
expend: money spent on education, per student (in $100s)

For example, here is the record for Minnesota, where the average score was 1028, 7% of all el-
igible students took the test, and the amount spent on education per student was $2,484.

> sat.data[state=="Minnesota", ]
state sat takers expend

7 Minnesota 1028 7 24.84

First we consider the relationship between SAT scores and education expenditures alone. The
scatterplot of these two variables with the least squares regression line looks like this:
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Note: The outlier you see with the high value of education expenditures is Alaska. However, the
correlation and regression equations are not largely influenced by this outlier.

(a) Use the scatterplot to describe the association between average SAT score and education
expenditures in words. What policy argument could be supported by this scatterplot and the
fact that the slope of the least squares line is negative?

The mean SAT score decreases as the per capita expenditure on
secondary schools increases.

This could support the argument that the government should
reduce its expenditure on secondary schools.
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Multiple Regression with expend and takers

Now we consider the multiple linear regression with average SAT score (sat) as the response
variable and education expenditures (expend) and percentage of eligible students taking the
test (takers) as explanatory variables.

It turns out that the states with the highest average SAT scores tend to be the states in
which relatively few students take the SAT. For example, compare the following sample of
midwestern states with a sample of states on the East Coast:

> sat.data[state=="Iowa" | state=="Nebraska" | state=="Minnesota",]
state sat takers expend

1 Iowa 1088 3 25.60
5 Nebraska 1045 5 21.05
7 Minnesota 1028 7 24.84
> sat.data[state=="Delaware" | state=="NewYork" | state=="NorthCarolina",]

state sat takers expend
34 Delaware 897 42 27.81
36 NewYork 896 59 33.58
48 NorthCarolina 827 47 19.92
> cor(sat,takers)
[1] -0.85781

(b) Why do you think sat has such a strong negative association with takers, the percentage of
students taking the test?

The states with low percentages of high school seniors taking
SAT are the ones which dominantly use the ACT scores.

In these ACT-dominated states, the high school seniors who
take SAT mostly intend to apply for out-of-state colleges, and
therefore they might actually represent a sample from the sub-
population of high school seniors who are competitive in SAT.

As a result, for these states, the observed mean SAT score might
be considerably higher than the true population mean SAT score
of all high school seniors.
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Now consider the following multiple linear regression model:

sat = α+ β1(expend) + β2(takers) + ε

Here is the R output for the least squares estimate of this model:

> summary(multiple.reg)

Call:
lm(formula = sat ~ expend + takers)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 973.0426 19.1239 50.881 < 2e-16 ***
expend 2.2624 0.8389 2.697 0.00969 **
takers -2.9390 0.2341 -12.556 < 2e-16 ***
–-
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 34.6 on 47 degrees of freedom
Multiple R-squared: 0.7712, Adjusted R-squared: 0.7615
F-statistic: 79.23 on 2 and 47 DF, p-value: 8.821e-16

(c) Find and interpret the residual for Minnesota, which in 1982 had an average SAT score of
1028, with education expenditures of $2,484 per student (expend=24.84) and 7 percent of
eligible students taking the SAT.

residual = y − ŷ
= 1028− (973.04 + 2.2624(24.84)− 2.9390(7))

= 1028− 1008.67

= 19.33.

The actual mean SAT score for Minnesota is 19.33 points higher
than the value predicted by the linear model based on the ex-
penditure and the percentage of eligible students taking SAT.
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(d) Calculate and interpret a 95% confidence interval for β1, the coefficient associated with the
expend variable in this model. For your interpretation, remember that the expend variable
is measured in units of $100’s of dollars per student.

The following result from R will be helpful:

> qt(0.975,df=47)
[1] 2.011741

95% CI for β1 = β̂1 ± tα2 ,n−p−1 · se(β̂1)
= 2.2624− (2.0117)(0.8389)

= 2.2624± 1.6877

= (0.5748, 3.9500).

We are 95% confident that when all other conditions are fixed,
for each additional $100 per student a state spent on secondary
schools, the state mean SAT score increases between 0.57 and
3.95 points.

It is interesting that our confidence interval suggests that β1 is almost certainly positive, even
though we saw earlier that education expenditures have a negative correlation with average SAT
scores.

In the plot below, imagine fitting lines through the circle points and the triangle points separately.
These lines roughly represent the relationship between SAT scores and education expenditures
while adjusting for the percentage of students taking the test.

198



Stat 3011 Chapter 13

●

●
●

●●
●●

● ●
●

●●● ●●
●● ●●● ●● ● ●●●

●

●

20 30 40 50

80
0

85
0

90
0

95
0

10
00

1982 State−Level Average SAT Scores vs. 
  Education Expenditures

Education Expenditures per Student ($100s)

A
ve

ra
ge

 S
AT

 S
co

re

● Less than 20% took SAT
At least 20% took SAT

This apparent paradox occurs because takers is a confounding variable for the relationship between
education expenditures and SAT scores.

Definition: confounding variable

A confounding variable in an analysis is an explanatory variable associated with both the response
and with one or more other explanatory variables of interest.

In our example, states with a higher percentage of students taking the test have lower SAT scores
(for obvious reasons), and they also tend to spend more on education (perhaps due to geographic
differences). Once we adjust for this confounding variable, we see that education expenditures are
positively associated with higher SAT scores when we control for the percentage of takers.

What is the difference between a lurking variable and a confounding variable?

• A confounding variable is a variable included in the study which
is associated with both the explanatory and response variables,
and therefore would affect the relationship between the explana-
tory and response variables.
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• A lurking variable is a variable which is not included in the
study but could potentially be confounding if it were taken into
account.

Including confounding variables in a multiple regression is a good thing, because the model can
then describe the relationship between a response (here, SAT scores) and an explanatory variable
of interest (here, education expenditures) while imagining that the confounding variable (here,
percentage of students taking the test) is held fixed.

So, now that we have accounted for this confounding variable (takers), does our inference that β1
is positive mean that higher education expenditures cause higher SAT scores?

Since this study is observational, we cannot definitely establish the
causal relationship between education expenditure and SAT score
from it. However, given that the current model has taken the con-
founding variable takers into account, it is more likely to reflect
the true relationship between the variables expend and sat than the
model without takers.
In fact, when Powell and Steelman published this study in 1984, they
have considered many other confounding variables: sex composition;
racial composition; median income; average number of years study-
ing social sciences, natural sciences and humanities; percentage of
students attending public schools; and southern vs. non-southern
states. Among these confounding variables, only the effects of tak-
ers, sex composition, and racial composition are significant. After
adjusting for the potential confounding variables, the effect of ex-
penditure remains significant.
With more confounding variables adjusted in the studies and more
studies on different populations showing consistent associations, it
is less likely that the association between the explanatory variables
and response is due to some other lurking variables rather than
a causation. In this case, we would conclude that it is plausible,
albeit not definitely, that higher expenditure in education causes
higher SAT scores.
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NOTATION

Sample Statistics Population Parameters

n sample size
p̂ sample proportion p population proportion
s sample standard deviation σ population standard deviation
s2 sample variance σ2 population variance
x sample mean µ population mean
r sample correlation R population correlation
IQR interquartile range
M sample median
Q1 first quartile
Q3 third quartile
LSL least squares (regression) line
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TABLE A   Appendix A 

Table A Standard Normal Cumulative Probabilities 

z  .00  .01  .02  .03  .04  .05  .06  .07  .08  .09 

 −3.4  .0003  .0003  .0003  .0003  .0003  .0003  .0003  .0003  .0003  .0002 

 −3.3  .0005  .0005  .0005  .0004  .0004  .0004  .0004  .0004  .0004  .0003 

 −3.2  .0007  .0007  .0006  .0006  .0006  .0006  .0006  .0005  .0005  .0005 

 −3.1  .0010  .0009  .0009  .0009  .0008  .0008  .0008  .0008  .0007  .0007 

 −3.0  .0013  .0013  .0013  .0012  .0012  .0011  .0011  .0011  .0010  .0010 

 −2.9  .0019  .0018  .0018  .0017  .0016  .0016  .0015  .0015  .0014  .0014 

 −2.8  .0026  .0025  .0024  .0023  .0023  .0022  .0021  .0021  .0020  .0019 

 −2.7  .0035  .0034  .0033  .0032  .0031  .0030  .0029  .0028  .0027  .0026 

 −2.6  .0047  .0045  .0044  .0043  .0041  .0040  .0039  .0038  .0037  .0036 

 −2.5  .0062  .0060  .0059  .0057  .0055  .0054  .0052  .0051  .0049  .0048 

 −2.4  .0082  .0080  .0078  .0075  .0073  .0071  .0069  .0068  .0066  .0064 

 −2.3  .0107  .0104  .0102  .0099  .0096  .0094  .0091  .0089  .0087  .0084 

 −2.2  .0139  .0136  .0132  .0129  .0125  .0122  .0119  .0116  .0113  .0110 

 −2.1  .0179  .0174  .0170  .0166  .0162  .0158  .0154  .0150  .0146  .0143 

 −2.0  .0228  .0222  .0217  .0212  .0207  .0202  .0197  .0192  .0188  .0183 

 −1.9  .0287  .0281  .0274  .0268  .0262  .0256  .0250  .0244  .0239  .0233 

 −1.8  .0359  .0351  .0344  .0336  .0329  .0322  .0314  .0307  .0301  .0294 

 −1.7  .0446  .0436  .0427  .0418  .0409  .0401  .0392  .0384  .0375  .0367 

 −1.6  .0548  .0537  .0526  .0516  .0505  .0495  .0485  .0475  .0465  .0455 

 −1.5  .0668  .0655  .0643  .0630  .0618  .0606  .0594  .0582  .0571  .0559 

 −1.4  .0808  .0793  .0778  .0764  .0749  .0735  .0721  .0708  .0694  .0681 

 −1.3  .0968  .0951  .0934  .0918  .0901  .0885  .0869  .0853  .0838  .0823 

 −1.2  .1151  .1131  .1112  .1093  .1075  .1056  .1038  .1020  .1003  .0985 

 −1.1  .1357  .1335  .1314  .1292  .1271  .1251  .1230  .1210  .1190  .1170 

 −1.0  .1587  .1562  .1539  .1515  .1492  .1469  .1446  .1423  .1401  .1379 

 −0.9  .1841  .1814  .1788  .1762  .1736  .1711  .1685  .1660  .1635  .1611 

 −0.8  .2119  .2090  .2061  .2033  .2005  .1977  .1949  .1922  .1894  .1867 

 −0.7  .2420  .2389  .2358  .2327  .2296  .2266  .2236  .2206  .2177  .2148 

 −0.6  .2743  .2709  .2676  .2643  .2611  .2578  .2546  .2514  .2483  .2451 

 −0.5  .3085  .3050  .3015  .2981  .2946  .2912  .2877  .2843  .2810  .2776 

 −0.4  .3446  .3409  .3372  .3336  .3300  .3264  .3228  .3192  .3156  .3121 

 −0.3  .3821  .3783  .3745  .3707  .3669  .3632  .3594  .3557  .3520  .3483 

 −0.2  .4207  .4168  .4129  .4090  .4052  .4013  .3974  .3936  .3897  .3859 

 −0.1  .4602  .4562  .4522  .4483  .4443  .4404  .4364  .4325  .4286  .4247 

 −0.0  .5000  .4960  .4920  .4880  .4840  .4801  .4761  .4721  .4681  .4641 

A-1

Cumulative
probability

z
Cumulative probability for  z is the area under 
the standard normal curve to the left of  z

z   .00 

 −5.0  .000000287 

 −4.5  .00000340 

 −4.0  .0000317 

 −3.5  .000233 
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A-2 Appendix A

Table A Standard Normal Cumulative Probabilities (continued)

  z   .00  .01  .02  .03  .04  .05  .06  .07  .08  .09 

 0.0  .5000  .5040  .5080  .5120  .5160  .5199  .5239  .5279  .5319  .5359 

 0.1  .5398  .5438  .5478  .5517  .5557  .5596  .5636  .5675  .5714  .5753 

 0.2  .5793  .5832  .5871  .5910  .5948  .5987  .6026  .6064  .6103  .6141 

 0.3  .6179  .6217  .6255  .6293  .6331  .6368  .6406  .6443  .6480  .6517 

 0.4  .6554  .6591  .6628  .6664  .6700  .6736  .6772  .6808  .6844  .6879 

 0.5  .6915  .6950  .6985  .7019  .7054  .7088  .7123  .7157  .7190  .7224 

 0.6  .7257  .7291  .7324  .7357  .7389  .7422  .7454  .7486  .7517  .7549 

 0.7  .7580  .7611  .7642  .7673  .7704  .7734  .7764  .7794  .7823  .7852 

 0.8  .7881  .7910  .7939  .7967  .7995  .8023  .8051  .8078  .8106  .8133 

 0.9  .8159  .8186  .8212  .8238  .8264  .8289  .8315  .8340  .8365  .8389 

 1.0  .8413  .8438  .8461  .8485  .8508  .8531  .8554  .8577  .8599  .8621 

 1.1  .8643  .8665  .8686  .8708  .8729  .8749  .8770  .8790  .8810  .8830 

 1.2  .8849  .8869  .8888  .8907  .8925  .8944  .8962  .8980  .8997  .9015 

 1.3  .9032  .9049  .9066  .9082  .9099  .9115  .9131  .9147  .9162  .9177 

 1.4  .9192  .9207  .9222  .9236  .9251  .9265  .9279  .9292  .9306  .9319 

 1.5  .9332  .9345  .9357  .9370  .9382  .9394  .9406  .9418  .9429  .9441 

 1.6  .9452  .9463  .9474  .9484  .9495  .9505  .9515  .9525  .9535  .9545 

 1.7  .9554  .9564  .9573  .9582  .9591  .9599  .9608  .9616  .9625  .9633 

 1.8  .9641  .9649  .9656  .9664  .9671  .9678  .9686  .9693  .9699  .9706 

 1.9  .9713  .9719  .9726  .9732  .9738  .9744  .9750  .9756  .9761  .9767 

 2.0  .9772  .9778  .9783  .9788  .9793  .9798  .9803  .9808  .9812  .9817 

 2.1  .9821  .9826  .9830  .9834  .9838  .9842  .9846  .9850  .9854  .9857 

 2.2  .9861  .9864  .9868  .9871  .9875  .9878  .9881  .9884  .9887  .9890 

 2.3  .9893  .9896  .9898  .9901  .9904  .9906  .9909  .9911  .9913  .9916 

 2.4  .9918  .9920  .9922  .9925  .9927  .9929  .9931  .9932  .9934  .9936 

 2.5  .9938  .9940  .9941  .9943  .9945  .9946  .9948  .9949  .9951  .9952 

 2.6  .9953  .9955  .9956  .9957  .9959  .9960  .9961  .9962  .9963  .9964 

 2.7  .9965  .9966  .9967  .9968  .9969  .9970  .9971  .9972  .9973  .9974 

 2.8  .9974  .9975  .9976  .9977  .9977  .9978  .9979  .9979  .9980  .9981 

 2.9  .9981  .9982  .9982  .9983  .9984  .9984  .9985  .9985  .9986  .9986 

 3.0  .9987  .9987  .9987  .9988  .9988  .9989  .9989  .9989  .9990  .9990 

 3.1  .9990  .9991  .9991  .9991  .9992  .9992  .9992  .9992  .9993  .9993 

 3.2  .9993  .9993  .9994  .9994  .9994  .9994  .9994  .9995  .9995  .9995 

 3.3  .9995  .9995  .9995  .9996  .9996  .9996  .9996  .9996  .9996  .9997 

 3.4  .9997  .9997  .9997  .9997  .9997  .9997  .9997  .9997  .9997  .9998 

Cumulative
probability

z
Cumulative probability for  z is the area under 
the standard normal curve to the left of  z

  z   .00 

 3.5  .999767 

 4.0  .9999683 

 4.5  .9999966 

 5.0  .999999713 
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