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For the heteroscedastic nonparametric regression model Yni = m(xni)+σ(xni)εni, i = 1, ..., n,
we discuss a novel method for testing some parametric assumptions about the regression
function m. The test is motivated by recent developments in the asymptotic theory for analysis
of variance when the number of factor levels is large. Asymptotic normality of the test statistic
is established under the null hypothesis and suitable local alternatives. The similarity of the
form of the test statistic to that of the classical F -statistic in analysis of variance allows easy
and fast calculation. Simulation studies demonstrate that the new test possesses satisfactory
finite-sample properties.
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1. Introduction

Regression analysis, the cornerstone of applied statistics, often assumes that the
regression function has a certain parametric form. While this is done for mathe-
matical convenience and ease of interpretation, it is well known that model mis-
specification can have detrimental effects on the validity of subsequent inferences.
For instance, it may result in inconsistent parameter estimates. For this reason,
diagnosing the adequacy of the postulated regression function forms an important
research area.

We consider the following heteroscedastic nonparametric regression model:

Yni = m(xni) + σ(xni)εni, i = 1, ..., n, (1)

where m(·) is an unknown regression function, σ2(·) is an unknown variance func-
tion. The design points reside in a bounded interval. Without loss of generality, we
may assume xn1, . . . , xnn form a regular sequence on the interval [0,1] in the sense
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of Sacks and Ylvisaker (1970), i.e., there exists a positive continuous density r(x)
on [0,1] such that

∫ xni

0
r(x)dx =

i

n
, i = 1, ..., n. (2)

The random errors εni in (1) constitute a triangular array of row-wise independent
variables with mean 0 and variance 1. Below we will omit the n in the subscript
when no confusion is caused.

This paper proposes a novel method for testing the adequacy of the parametric
regression function. To illustrate the central idea, we focus on testing the hypothesis
of a constant regression function (or no effect hypothesis):

H0 : m(x) = C for all x, (3)

for some unknown constant C ∈ IR. This hypothesis has been considered by quite
a few authors, for example, Von Neumann (1941), Raz (1990), Barry and Hartigan
(1990), Eubank and Hart (1992), Eubank (2000). To test for the null hypothesis
of a more general parametric functional form, such as a linear regression, we may
apply the same approach to residuals from the parametric fit under the null model.
For more general procedures, we refer to Azzalini and Bowman (1993), González
Manteiga and Cao (1993), Härdle and Mammen (1993), Fan and Li (1996), Stute
(1997), the monograph of Hart (1997), Dette and Munk (1998), Aı̈t-Sahalia, Bickel
and Stoker (2001), Fan and Huang (2001), Fan, Zhang and Zhang (2001), Horowitz
and Spokoiny (2001) and Munk (2002) and the references therein.

The form of the new test is motivated by recent developments in analysis of vari-
ance with large number of factor levels (Akritas and Papadatos, 2004). However,
their methods can not be applied to derive the large sample distribution of the
proposed test and alternative technique has to be developed. Section 2 introduces
the test statistic. Section 3 discusses its asymptotic properties under the null hy-
pothesis and suitable local alternative sequence. For the validity of the large sample
results, it is required that m(·), σ2(·) and r(·) are Lipschitz continuous. Our test
statistic is asymptotically unbiased under the null hypothesis, which enables more
accurate normal approximation, while many other smoothing-based tests normally
have one or more bias terms and require a computing intensive procedure such as
bootstrap for their applications. Simulations reported in Section 4 indicate that
the new test procedure, which uses the proposed test statistic with critical points
determined from its asymptotic distribution, has satisfactory finite sample proper-
ties. In fact, a key merit of the new approach is its practicality. The similarity of
the form of the test statistic to that of the classical F -statistic in analysis of vari-
ance allows one to take advantage of any existing statistical software for easy and
fast calculation, which makes the test especially suitable for diagnostic purpose in
exploratory data analysis.

2. Test Statistic

To describe the test statistic, we first diverge briefly to introduce some recent de-
velopments in analysis of variance with large number of factor levels. Consider a
balanced one-way ANOVA setting with n groups (treatment levels) and k obser-
vations per group. Let Vi1, . . . , Vik denote the k independent observations of group
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i and N = nk be the total sample size. Define

Fn =
MST

MSE

where

MST =
k

n− 1

n∑

i=1

(V i· − V ··)2, MSE =
1

N − n

n∑

i=1

k∑

j=1

(Vij − V i·)2. (4)

Then Fn is simply the classical test statistic for testing for no treatment effects. A
number of authors (Boos and Brownie, 1995; Akritas and Arnold, 2000; Akritas and
Papadatos, 2004) recently studied the asymptotic distribution of

√
n(Fn−1) when

n converges to infinity. Note that this is different from the classical asymptotic
framework where n is fixed and the group sizes tend to infinity. Since MSE tends
to a constant as n tends to infinity, by Slutsky’s theorem the problem reduces to
studying the asymptotic distribution of

√
n(MST −MSE). The basic requirement

in these asymptotic results is that there are at least two observations per cell.
The idea for constructing our test statistic for lack-of-fit test in the present re-

gression setting is to consider each distinct covariate value as a ‘factor level’, as
proposed in Akritas (2000). Of course, we cannot use the asymptotic theory de-
veloped for the ANOVA case because typically there is only one response value
associated with each covariate value. This can be remedied by considering a win-
dow Wi around each xi consisting of the kn nearest covariate values. That is, we
augment the observed data to construct an artificial balanced one-way ANOVA
with n cells, where the responses in the i-th cell are the response values corre-
sponding to the covariate values belonging to Wi. This artificial one-way ANOVA
has overlapping groups (i.e. neighboring groups have common observations), and
thus the asymptotic results for one-way ANOVA with independent observations
and large number of factor levels still do not apply. An alternative theory, which
accommodates dependent observations, has to be developed to derive the asymp-
totic distribution.

In what follows, the windows Wi will be understood as sets containing the indices
j of the covariate values that belong to the window of size kn, that is

Wi =
{

j : |F̂X(xj)− F̂X(xi)| ≤ kn − 1
2n

}
, (5)

where F̂X is the empirical distribution function of the covariate values. Now Vij , j =
1, . . . , kn, in the definition of MST and MSE in (4) will be replaced by Yj , j ∈ Wi,
the observations in the artificial one-way ANOVA. Under the null hypothesis (3),
we expect approximately no cell effects, an intuitive test statistic for this null
hypothesis therefore is MST − MSE. In practice, for those points at the two
edges, symmetric local windows are impossible. One may use asymmetric windows
for those points, which can be shown to have asymptotic negligible effects for the
asymptotic distribution of the test statistic. In simulations, the approach to start
the first window around the kn+1

2 th smallest covariate and the last window around
the kn+1

2 th largest covariate is demonstrated to work satisfactorily.
In the next section, the asymptotic normality of the proposed test statistic is

derived under two different asymptotic frameworks : (1) n → ∞ and kn → ∞
at an appropriate rate; (2) n → ∞ and kn is fixed. Our test therefore does not
require a consistent or direct estimator of the regression function. The next section
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also discusses a comparison with the simpler statistic which uses non-overlapping
groups, which essentially discretizes the covariate and applies the one-way ANOVA
statistic for testing equality of group means.

Our test statistic is different from that of Azzalini and Bowman (1993), which
also has the form of a F-test statistic but requires a direct consistent estimator of
the regression function. Under the assumption of homoscedasticity, the distribution
of their test statistic is approximated by a shifted and scaled χ2 distribution by
fitting the first three moments. The test statistic of Dette and Munk (1998) can
also be considered as an F-test type statistic in the broad sense. Their test statistic
is the difference of two estimators of the integrated variance function, one under
the parametric model and the other under nonparametric alternative. However, the
computation of their test can not directly take advantage of the available ANOVA
procedure in existing statistical software.

3. Main Results

The vector of all the observations in the artificial one-way ANOVA will be denoted
by

V = (Yj , j ∈ W1, . . . , Yj , j ∈ Wn)′. (6)

Our test statistic MST−MSE can be expressed as a quadratic form V ′AV , where

A =
nkn − 1

n(n− 1)kn(kn − 1)
n⊕i=1Jkn

− 1
n(n− 1)kn

Jnkn
− 1

n(kn − 1)
Inkn

, (7)

where Jd is a d × d matrix with all elements equal to 1, Id is the d-dimensional
identity matrix,

n⊕i=1 denotes the Kronecker sum or direct sum (§8.3, Schott, 2005).
We start with the result about the asymptotic equivalence, under H0 in (3), of

the quadratic form (n/kn)1/2V ′AV with another quadratic form involving a block
diagonal matrix.

Lemma 3.1: Assume m(x), σ(x) and r(x) are Lipschitz continuous, n−1kn → 0,
and that E(ε4i ) are uniformly bounded in n and i. Then, under H0 in (3) as n →∞,

(
n

kn

)1/2

[V ′AV − (V − C1N )′Ad(V − C1N )] P→ 0,

where Ad is the block diagonal matrix

Ad = diag{B1, . . . ,Bn}, with Bi =
1

n(kn − 1)
[Jkn

− Ikn
].

Note that since A is a contrast matrix, V ′AV = (V −C1N )′A(V −C1N ). This
equality does not hold true however for Ad. This result enables us to show the
asymptotic normality of the test statistic.

Theorem 3.2 : Under the assumptions of Lemma 3.1 and H0 defined in (3)
(1) If kn = k is fixed, then as n →∞,

n1/2(MST −MSE) → N

(
0,

2k(2k − 1)
3(k − 1)

τ2

)
,
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where τ2 =
∫ 1
0 σ4(x)r(x)dx.

(2) If n →∞ and kn →∞ such that knn−1 → 0, then with τ2 defined above,

(
n

kn

)1/2

(MST −MSE) → N

(
0,

4
3
τ2

)
,

A simple estimator of τ2 is a modification of Rice’s (1984) estimator, see also
Dette and Munk (1998),

τ̂2 =
1

4(n− 3)

n−2∑

j=2

R2
jR

2
j+2, (8)

where Rj = Yj − Yj−1 denote the local residuals, j = 2, ..., n.
The asymptotic power of a test of (3) is often investigated by considering the

probability the test rejects (3) when the alternative approaches to the null at a
certain rate. The form of the local alternative sequence is commonly assumed to
be:

m(x) = C + ρng(x) for all x, (9)

where ρn is a sequence of constants converging to zero, g(x) is some function. If
ρn converges to zero too fast, the test will not be able to distinguish the local
alternative from the null; on the other hand, if ρn converges to zero too slow, the
test will always reject the null hypothesis for large enough sample size. Many of
the nonparametric tests in the literature have nontrivial power only when ρn → 0
at a rate slower than n−1/2. A careful examination of our test reveals this rate to
be (nkn)−1/4. The next theorem gives the asymptotic normal distributions of the
test under the local alternative sequence.

Theorem 3.3 : Assume the conditions of Theorem 3.2 are satisfied. Let g(x) be a
Lipschitz continuous function on [0,1], and consider the local alternative sequence
H1 : m(x) = C + (nkn)−1/4g(x).
(1) If kn = k is fixed, then under H1,

(n

k

)1/2
(MST −MSE) → N

(
γ2,

2(2k − 1)
3(k − 1)

τ2

)
,

where τ2 is defined as in Theorem 3.2 and γ2 =
∫ 1
0 g2(t)r(t)dt − (

∫ 1
0 g(t)r(t)dt)2.

Thus, the efficacy of the test statistic is given by

(
3(k − 1)
2(2k − 1)

)1/2 γ2

τ
.

(2) If kn →∞ such that n−3k5
n = o(1), then under H1,

(
n

kn

)1/2

(MST −MSE) → N

(
γ2,

4
3
τ2

)
,

where γ2 and τ2 are defined as above. The efficacy of the test statistic is given by
√

3γ2

2τ
.
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Remark 1 : The efficacy formulas show that as kn increases so does the efficacy.
For example, the fixed kn values of 2, 5 and 10 give efficacies of 0.707, 0.816 and
0.843, respectively. If kn → ∞, the efficacy is 0.866. Thus, when the convergence
to normality is slower (which happens when kn → ∞) the efficacy is the largest.
On the other hand, the rate at which kn →∞ does not influence the efficacy, even
though it does influence the rate of convergence to normality.

Remark 2 : As mentioned in the introduction, the need for considering windows
around each covariate value arose from the requirement of the asymptotic theory
of ANOVA with large number of factor levels to have more than one observation
per group. An alternative way of satisfying this requirement is to discretize the
covariate. This results in non-overlapping groups, which allows for direct applica-
tion of the asymptotic theory for the ANOVA case (Akritas and Papadatos, 2004).
Thus, if we consider non-overlapping groups of size kn, and consider for simplicity
the case that kn → ∞, then under the same sequence of local alternatives as in
Theorem 2.3,

(
n

kn

)1/2

(MST −MSE) → N
(
γ2, 2τ2

)
,

so its efficacy is γ2/(
√

2τ), implying it is about 82% as efficient as the statistic
based on overlapping windows.

Remark 3 : Several tests allow ρn ∝ n−1/2, however these tests cannot have non-
trivial power uniformly over reasonable classes of functions g(x), see Horowitz and
Spokoiny (2001) for more discussions. Recently, some adaptive rate optimal tests
have been investigated, including Fan and Huang (2001), Horowitz and Spokoiny
(2001), among others. These new tests have the property of adapting to the un-
known smoothness of the alternative model and are uniformly consistent against
alternatives whose distance from the null model converges to zero at the fastest
possible rate. To perform the tests, computationally intensive bootstrap methods
have to be used to obtain the critical values. On the other hand, the asymptotic
properties tell little about what happens with moderately large sample size. In the
next section, some comparison of the finite sample behaviors of our test and one
such optimal test is provided. And our test is demonstrated to be quite competitive.

The goodness-of-fit test for no effect hypothesis described above can be gen-
eralized to testing whether m(x) belongs to a specified parametric family. The
alternative is only required to be smooth and its form needs not to be specified.
More specifically, let SΘ = {f(·, θ), θ ∈ Θ} be any parametric family of functions
and we wish to test:

H0 : m(x) ∈ SΘ,

against a general alternative. Let θ̂ be our “best estimator” of the true parameter θ
under the null hypothesis. Under the null hypothesis, such estimators are often

√
n-

consistent. Then we may apply the above test to the residuals: êi = Yi −m(Xi, θ̂),
i = 1, ..., n. The êi’s are not independent in general, but the dependence can be
shown to be negligible in the asymptotic sense. As an example, we consider testing
the null hypothesis that m(x) is a simple linear function:

H0 : m(x) = a + bx, (10)
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for some unknown parameters a, b. Letting â and b̂ denote the usual least squared
estimators, and applying the above test statistic to the residuals êi = Yi − â− b̂xi,
then the asymptotic results given in Theorem 3.2 still hold. More specifically,

Theorem 3.4 : Assume the assumptions of Lemma 3.1, let MST and MSE
be calculated from the hypothetical one-way ANOVA constructed by augmenting
(xi, êi), i = 1, . . . , n. Then, under H0 defined in (10)
(1) If kn = k is fixed, then as n →∞,

n1/2(MST −MSE) → N

(
0,

2k(2k − 1)
3(k − 1)

τ2

)
,

(2) If n →∞ and kn →∞ such that k
3/2
n n−1 → 0, then

(
n

kn

)1/2

(MST −MSE) → N

(
0,

4
3
τ2

)
,

where τ2 is defined as in Theorem 3.2.

4. Simulations

In this section, we investigate the finite-sample behaviors of our test under the
null hypothesis and different alternative hypotheses. The test statistic is calculated
using the asymptotic normality results in Theorems 3.2 and 3.4 with the asymptotic
variance estimated by (8). Our simulations are based on 5,000 runs at nominal level
0.05. Random numbers are generated using Matlab.

4.1. Level of the test

We generate random data from a regression function that is constant zero and
equally-spaced design points on the interval (0,1]: xi = i/n, i = 1, ..., n, where
n = 60 and 100.

We first consider three different error distributions: the standard normal, the
sinh−1-normal and the lognormal. The sinh−1-normal distribution is symmetric
with moderately large kurtosis. The lognormal distribution is highly skewed with
very large kurtosis. For comparison purpose, we standardize the error distributions
so that they all have mean 0 and variance 1. In Table 1, the observed proportion of
rejections are reported for different local window sizes kn. The observed levels are
close to the specified nominal levels under normal distributions. Under heavier-tail
errors, the observed level is a little conservative.

To investigate the effects of heteroscedastic errors on the level, we consider the
following three different functional forms for σ(x): (1) σ(x) = exp(0.5x), (2) σ(x) =
0.5 + x, (3) σ(x) = 1 + sin(x). The εi’s in (1) are taken to be standard normal
random variables. The observed proportions of rejection are reported in Table 2,
which confirms that our test maintains the type I error fairly accurately.

4.2. Power of the test

Example 4.1. Testing for a constant regression function. In Table 3, we compare
our test with a recent procedure proposed by Munk (2002). Munk’s test is based on
a quadratic measure of the discrepancy between the postulated parametric model
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Table 1. Proportion of rejection under H0 for homoscedastic errors.

ε N(0,1) Lognormal Sinh−1-normal
n kn level level level

60

7 0.048 0.037 0.041
9 0.040 0.033 0.035
11 0.039 0.027 0.037

100

9 0.054 0.037 0.046
11 0.047 0.034 0.038
13 0.042 0.029 0.044

Table 2. Proportion of rejection under H0 for heteroscedastic errors.

σ(x) exp(0.5x) 0.5 + x 1 + sin(x)
n kn level level level

60

7 0.050 0.061 0.057
9 0.042 0.052 0.049
11 0.034 0.043 0.043

100

9 0.053 0.055 0.053
11 0.045 0.047 0.045
13 0.041 0.041 0.042

and the true model, which is estimated by random Toeplitz forms. Within a general
class of Toeplitz-matrices, the asymptotic efficiency of the proposed test can be
maximized and lead to an optimal test in this class. Munk derived the asymptotic
normality for testing general linear and nonlinear parametric assumptions. When
the null hypothesis is a constant regression model, his test statistic reduces to:

√
n


Y ′Dα∗,r,nY −

(
n∑

i=1

Yi/n

)2

 ,

where Dα∗,r,n is the Toeplitz band matrix with optimal weights. In Table 3, the
new test (denoted by ANOVA test) is calculated for different window size kn;
Munk’s test (denoted by Toeplitz test) is calculated for different band size r without
any correction. Jackknife correction has been suggested by Munk, which leads to
a potentially more accurate and powerful procedure. Due to the fact it is more
computing intensive, it is not adopted here. The sample size n is 60. The random
errors are iid standard normal. Four different regression functions are considered:

m(x) = 0, (11)

m(x) = 2x, (12)

m(x) = 64x3(1− x)3, (13)

m(x) = (1 + sin(3πx))/2. (14)

The two tests display quite competitive performance. Munk’s test is more pow-
erful for the alternative (13), while the new test seems to be more power for the
alternatives (12) and (14).
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Table 3. Proportion of rejection for different regression functions in Example 4.1.

m(x) (11) (12) (13) (14)

ANOVA test
kn=7 0.05 0.87 0.45 0.46
kn=9 0.04 0.87 0.45 0.47
kn=11 0.04 0.86 0.43 0.46

Toeplitz test
r=2 0.07 0.78 0.40 0.32
r=4 0.05 0.83 0.52 0.36
r=6 0.04 0.82 0.56 0.35
r=8 0.03 0.80 0.62 0.31

Table 4. Proportion of rejection for the regression model in Example 4.2.

model kn normal mixture extreme

null
7 0.049 0.043 0.045
9 0.047 0.040 0.039
11 0.040 0.040 0.038

τ = 1.0
7 0.880 0.843 0.896
9 0.914 0.875 0.922
11 0.938 0.896 0.944

τ = 0.25
7 1.000 1.000 1.000
9 1.000 1.000 1.000
11 1.000 1.000 1.000

Example 4.2. Testing for a simple linear regression function. In this example,
we take the simulation setting of Horowitz and Spokoiny (2001). Their test is based
on the distance of a kernel nonparametric estimator of the regression function and
a kernel-smoothed parametric estimator. The distance is computed for a range of
different values of the smoothing parameter. If the distance obtained with any one
of the bandwidths is too large, then the null hypothesis is rejected. Their test has
the advantage of being uniformly consistent against alternatives whose distance
from the null converges to zero at the fastest possible rate.

The null model is Yi = β0 + β1xi + εi, where β0 and β1 are constants. The
covariates xi’s are sampled from the N(0, 25) distribution truncated at its 5th
and 95th percentiles. Under the null hypothesis, β0 = β1 = 1. Three different
distributions for εi’s are considered: N(0, 4); a mixture of normals in which εi is
sampled from N(0, 1.56) with probability 0.9 and from N(0, 25) with probability
0.1; and the Type I extreme value distribution scaled to have variance 4. The
mixture distribution is leptokurtic with variance 3.9, and the type I extreme value
distribution is asymmetrical. The alternative model is:

Yi = 1 + xi +
5
τ
φ

(xi

τ

)
+ εi, (15)

where τ = 1 or 0.25, φ(·) is the density function of standard normal distribution.
The sample size is 250. The simulation results are presented in Table 4. We observe
that the power of our test is a little higher than that presented in Table 1 of
Horowitz and Spokoiny (2001).
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Example 4.3. We take the simulation setting of Dette and Munk (1998), where
the design points are xi = (i− 1/2)/n, i = 1, . . . , 100, the alternative is

m(x) = 1 + θcos(10πx), (16)

with θ = 0.00, 0.25, 0.50, 0.75, 1.00, and the random errors are iid standard normal.
Table 5 summarizes the estimated power of the proposed test for testing a constant
null hypothesis at nominal levels α = 0.05 and 0.10. Compared with the results in
Table 2 of Dette and Munk (1998), the power of our test is significantly higher.

Table 5. Proportion of rejection for the regression model in Example 4.3.

θ 0.00 0.25 0.50 0.75 1.00
α kn level power power power power

0.05
5 0.063 0.137 0.456 0.876 0.994
7 0.055 0.106 0.391 0.812 0.991
9 0.045 0.086 0.266 0.685 0.948

0.10
5 0.105 0.194 0.558 0.918 0.997
7 0.085 0.165 0.491 0.887 0.994
9 0.079 0.134 0.374 0.787 0.973

The above simulations suggest that the performance of the new test is not very
sensitive to the choice of the smoothing parameter kn. How to choose a smoothing
parameter to achieve the optimal power performance is still an open problem faced
by all smoothing-based lack-of-fit tests; and it is very different from the problem
of choosing a smoothing parameter for optimal curve fitting. The test of Horowitz
and Spokoiny (2001) circumvents this problem by considering the maximum of the
standardized smoothing test over a sequence of smoothing parameters.

5. Real Data Examples

Example 5.1. In the 1960’s, a large scale study of the effect of maternal age on
the incidence of Down’s syndrome, a genetic disorder caused by an extra chromo-
some 21 or a part of chromosome 21 being translocated to another chromosome,
was conducted at the British Columbia Health Surveillance Registry (Geyer, 1991).
There are 30 different age groups, the proportion of Down’s syndrome among the
babies born to mothers of that age group was calculated. Of interest is to test if
the incidence of Down’s syndrome is affected by maternal age. Another hypothesis
of interest is that the incidence of Down’s syndrome only starts rising after age 30.
Using age as covariate and proportion of the disease as response variable, we per-
formed the classical F test (denoted by CF, corresponding to fit a linear regression
model and test if the slope is zero) and our nonparametric test (denoted by NP).
For the overall data, the p-value of the CF test is 0; the p-values of the NP test are
all 0 for kn = 3, 5, 7. Both the parametric and nonparametric approaches suggest
that the incidence of Down’s syndrome is influenced by maternal age. For the data
corresponding to the first 14 age groups (up to age 30.5), the p-value of the CF
test is 0.379; the p-value of the NP test is 0.908 for kn = 3, 0.768 for kn = 5, 0.828
for kn = 7. Both methods agree that the influence of maternal age only becomes
obvious after age 30.
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Figure 1. Scatter Plot of Proportion of Disease Incidence vs Maternal Age
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Example 5.2. Consider the monthly average temperature data of central Penn-
sylvania between 1990 and 1994 (http://climate.met.psu.edu/data/state.php). See
Figure 2 for a scatter plot of the 60 data points.

Figure 2. Scatter Plot of Central PA Monthly Average Temperature
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To test for the effect of time on the temperature, the classical F test gives a
p-value 0.914, while the NP test gives p-values 0 for kn = 3, 5, 7. The classical F
test therefore has little power to detect the oscillating influence of the covariate in
this case.

6. Discussion

We have presented a novel procedure for testing the hypothesis of a constant re-
gression function which does not require consistent estimation of the regression
function. Compared to nonparametric smoother based tests, our test imposes min-
imal smoothness assumptions, it is asymptotically unbiased under the null and
has good finite sample performance. It is closely related to the classical lack-of-fit
statistic used in the case of replicated observations, and to the one-way ANOVA
test statistic. In fact, the only difference lies in the fact that the replications or
groups are artificially generated from observations with neighboring covariate val-
ues. Thus, our statistic can be very easily computed with any software package.

The statistic belongs to the category of test statistics based on difference or
ratio of two estimators of the integrated variance function

∫
σ2(t)r(t)dt. One is

asymptotically unbiased under the null hypothesis only, and the other is so under
both the null and alternative hypotheses. Indeed, MSE is asymptotically unbiased
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under general nonparametric alternatives while MST is asymptotically unbiased
under the null model only and asymptotically positively biased under the alterna-
tive.

A natural application of the results presented here is to test the parallelism of
two curves when two data sets are observed at the same design points. Assume we
observe triple variables: (xi, Yi, Zi), i = 1, ..., n. If

Yi = m1(xi) + σ1(xi)ε1i,

Zi = m2(xi) + σ2(xi)ε2i,

then to test the hypothesis that m1(·), m2(·) are parallel we may apply our test
to Yi −Zi, i = 1, ..., n. This type of problem arises frequently in practice; see Hart
(1997), §9.6.

Generalization of the proposed test to random design setting is straightforward.
The extension to more complicated hypotheses and to more covariates is being
investigated.
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Appendix: Proofs of the Theorems

In all proofs that follow, we will take kn be odd for simplicity.

Proof of Lemma 3.1. It is easy to see that the block diagonal elements of Ad

equal those of A. Hence, it suffices to prove that the off diagonal blocks of A are
negligible. For i1 6= i2, every element of the block (i1, i2) equals c = − 1

n(n−1)kn
.

Hence, letting Wi = {j : wij 6= 0}, we have

(
n

kn

)1/2

(V − C1N )′(A−Ad)(V − C1N )

=
(

n

kn

)1/2

c
∑

i1 6=i2

n∑

j1=1

n∑

j2=1

(Yj1 − C)(Yj2 − C)I(j1 ∈ Wi1)I(j2 ∈ Wi2).

It is easy to show that E

[(
n
kn

)1/2
(V − C1N )′(A−Ad)(V − C1N )

]
is o(1), while

n

kn
E[(V − C1N )′(A−Ad)(V − C1N )]2

=
n

kn
c2

∑

i1 6=i2

∑

i3 6=i4

n∑

j1,...,j4=1

E[(Yj1 − C)(Yj2 − C)(Yj3 − C)(Yj4 − C)

×I(jk ∈ Wik
, k = 1, . . . , 4)]. (17)

The expected value in this sum is different from zero, only if Yj1 , . . . , Yj4 consists
of two pairs of equal observations, or j1 = j2 = j3 = j4. Since there are O(n2k4

n)
terms for the former case to happen and O(nk4

n) for the latter case to happen, the
order of (17) is

O

(
n

kn

1
n4k2

n

n2k4
n

)
= O(knn−1) = o(1),

and this finishes the proof.

Proof of Theorem 3.2. We can assume without loss of generality that C = 0.

V ′AdV =
1

n(kn − 1)

n∑

i=1

n∑

j1 6=j2

Yj1Yj2I(j1, j2 ∈ Wi),
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it’s obvious that E(V ′AdV ) = 0.

E[V ′AdV ]2 =
1

n2(kn − 1)2

n∑

i1,i2

n∑

j1 6=`1

n∑

j2 6=`2

E[Yj1Y`1Yj2Y`2 ]I(js ∈ Wis
, `s ∈ Wis

, s = 1, 2)

=
2

n2(kn − 1)2

n∑

i1=1

n∑

i2=1

n∑

j 6=`

σ2(xj)σ2(x`)I(j, ` ∈ Wi1 ∩Wi2)

=
2

n2(kn − 1)2

n∑

i1=1

n∑

i2=1

n∑

j 6=`

σ2(xj)
(

σ2(xj) + O

(
kn

n

))
I(j, ` ∈ Wi1 ∩Wi2)

=
2

n2(kn − 1)2

n∑

j=1

σ4(xj)
n∑

l 6=j

n∑

i1=1

n∑

i2=1

I(j, l ∈ Wi1 ∩Wi2) + O

(
k2

n

n2

)

=
2

n2(kn − 1)2

n∑

j=1

σ4(xj)2
[
1 + 22 + 32 + · · ·+ (kn − 1)2

]
+ O

(
k2

n

n2

)

=
2

n2(kn − 1)2
kn(kn − 1)(2kn − 1)

3

n∑

j=1

σ4(xj) + O

(
k2

n

n2

)
,

where the third equality is a result of the assumptions that σ2(x) is Lipschitz
continuous and the design density is r bounded away from zero, while the second
last equality follows from the fact that if 1 ≤ |j1 − j2| = s ≤ kn − 1, then they are
in (kn− s)2 pairs of windows (including two identical windows) whose intersection
includes both j1 and j2. Thus,

E

(√
n

kn
V ′AdV

)2

=
2(2kn − 1)
3(kn − 1)

1
n

n∑

j=1

σ4(xj) + O

(
kn

n

)

=
2(2kn − 1)
3(kn − 1)

n∑

j=1

σ4(xj)
∫ xj

xj−1

r(t)dt + o(1)

→
{

4
3τ2, if kn →∞
2(2kn−1)
3(kn−1) τ2, if kn is fixed.

It remains to verify the asymptotic normality of (n/kn)1/2(V ′AdV ). We will make
use of Markov’s blocking technique (see proof of Theorem 27.5 in Billingsley, 1986).
Write

V ′AdV = n−1
n∑

i=1

Ai = n−1Sn,

where

Ai =
1

kn − 1

n∑

j1 6=j2

Yj1Yj2I(j1, j2 ∈ Wi).
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We will establish the weak convergence of (nkn)−1/2Sn. First note that

E(S4
n) = O

(
1
k4

n

) ∑

i1,i2,i3,i4

∑

j1 6=l1

...
∑

j4 6=l4

E(Yj1Yl1 ...Yj4Yl4)I(jk, lk ∈ Wik
, k = 1, 2, 3, 4).

The nonzero terms in the sum must be one of the following forms: E(Y 4
j1

Y 4
j2

),
which is of order O(nk5

n); E(Y 4
j1

Y 2
j2Y

2
j3

) or E(Y 3
j1

Y 3
j2

Y 2
j3

), which are both of order
O(nk6

n); and E(Y 2
j1

Y 2
j2

Y 2
j3

Y 2
j4

), which is of order O(n2k6
n). Thus by the boundedness

assumptions of the moments of error terms, E(S4
n) ≤ K1(n2k2

n), for some positive
constant K1. Next, define

Uni = A(i−1)(bn+ln)+1 + . . . + A(i−1)(bn+ln)+bn

Vni = A(i−1)(bn+ln)+bn+1 + . . . + Ai(bn+ln),

i = 1, . . . , rn, where

bn ∼ n2/3k1/3
n , ln ∼ kn, rn ∼ b−1

n n = n1/3k−1/3
n ,

and assume for simplicity that n is a multiple of bn + ln. Then,

Sn =
rn∑

i=1

Uni +
rn∑

i=1

Vni.

The idea is to show that
∑rn

i=1 Vni = oP ((nkn)−1/2), such that by Slutsky’s result,
the asymptotic normality of Sn will follow from that of

∑rn

i=1 Uni. First consider

P

(
(nkn)−1/2

∣∣∣∣∣
rn∑

i=1

Vni

∣∣∣∣∣ ≥ ε

)
≤

rn∑

i=1

P (|Vni| ≥ ε(nkn)1/2r−1
n )

≤ Kε−4(nkn)−2r5
n(lnkn)2 = O(n−2r5

nk2
n) = O(k1/3

n n−1/3) = o(1),

where the second inequality follows by Markov’s inequality using the fact that
E(V 4

ni) ≤ K(lnkn)2 (for some K > 0 and for all i), which follows in a similar way
as for E(S4

n). Hence,

rn∑

i=1

Vni = oP ((nkn)−1/2).

Since Un1, . . . , Unrn
are independent, the asymptotic normality of

∑rn

i=1 Uni can be
established by verifying Lyapounov’s condition:

rn∑

i=1

E(U4
ni)[∑rn

i=1 E(U2
nj)

]2 → 0, as n →∞. (18)

Since E(S2
n) = n2Var(V ′AdV ) ∼ nkn and since E(S4

n) ∼ (nkn)2, it follows in a
similar way that E(U2

ni) ∼ bnkn and that E(U4
ni) ∼ (bnkn)2. Hence, the order of
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(18) is

O

(
rn

b2
nk2

n

r2
nb2

nk2
n

)
= O(r−1

n ) = o(1).

Hence, the asymptotic normality of
∑rn

i=1 Uni follows, which finishes the proof.

Before stating the proof of Theorem 3.3, we prove a lemma which will be
needed in the proof.

Lemma 6.1: For any Lipschitz continuous function g(x) on [0,1], we have

k−1
n

n∑

j=1

g(xj)I(j ∈ Wi)− g(xi) = O

(
kn

n

)
,

uniformly in i = 1, . . . , n. In this lemma, g(xi) can be replaced with any g(xm) with
xm ∈ Wi.

Proof. Using the Lipschitz condition and the mean value theorem, the left side
is less than or equal to

1
kn

n∑

j=1

|g(xj)− g(xi)|I
[
|F̂X(xj)− F̂X(xi)| ≤ kn − 1

2n

]

≤ M

kn infx r(x)

n∑

j=1

|j − i|
n

I

[
|F̂X(xj)− F̂X(xi)| ≤ kn − 1

2n

]

≤ M1

nkn
(2 + 4 + · · ·+ 2(kn − 1)) = O

(
kn

n

)
,

where M and M1 are some positive constants. This completes the proof.

Proof of Theorem 3.3. The proof is given for the case kn →∞, the case kn is
fixed can be proved the same way. Let V be defined by (6) and set

g = ((g(xj), j ∈ W1, . . . , g(xj), j ∈ Wn)′.

Thus, under H1 : m(x) = C + (nkn)−1/4g(x), we have E(V ) = C1N + (nkn)−1/4g.
Further denote Z = V − C1N − (nkn)−1/4g so that

MST −MSE = V ′AV

= Z ′AZ + 2(nkn)−1/4g′AZ + (nkn)−1/2g′Ag. (19)

We will show that

(nkn)−1/4g′AZ = oP (n−1/2k1/2
n ) (20)

(nkn)−1/2g′Ag = n−1/2k1/2
n γ2 + oP (n−1/2k1/2

n ) (21)

from which it will follow that (19) equals

Z ′AZ + n−1/2k1/2
n γ2 + oP (n−1/2k1/2

n ).
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Since E(Z) = 0N , Z satisfies the null hypothesis, hence it follows from Theorem
3.2 and Slutsky’s theorem that the above converges in distribution to the stated
normal distribution, concluding the proof of the theorem.

We start with verifying (20). Using (7), write

g′AZ

=
nkn − 1

n(n− 1)kn(kn − 1)

n∑

i=1




n∑

j=1

g(xj)I(j ∈ Wi)




[
n∑

k=1

ZkI(k ∈ Wi)

]

− 1
n(n− 1)kn

[
kn

n∑

i=1

g(xi)

][
kn

n∑

i=1

Zi

]
− kn

n(kn − 1)

n∑

i=1

g(xi)Zi. (22)

Using Lemma 6.1, the sum in the first term can be written as

kn

n∑

i=1

[
g(xi) + O(n−1kn)

]
[

n∑

k=1

ZkI(k ∈ Wi)

]

≤ kn

n∑

k=1

[
n∑

i=1

g(xi)I(i ∈ Wk)

]
Zk + k2

nO(n−1kn)
n∑

k=1

|Zk|

= k2
n

n∑

k=1

g(xk)Zk + OP (k3
n),

where the last equality is an application of central limit theorem for independent
but not identically distributed random variables. Hence, (22) equals

(nkn − 1)kn

n(n− 1)(kn − 1)

n∑

i=1

g(xi)Zi − kn

n(n− 1)

[
n∑

i=1

g(xi)

][
n∑

i=1

Zi

]

− kn

n(kn − 1)

n∑

i=1

g(xi)Zi + OP (n−1k2
n)

=
nkn

n− 1

{[
n−1

n∑

i=1

g(xi)Zi

]
−

[
n−1

n∑

i=1

g(xi)

][
n−1

n∑

i=1

Zi

]}
+ OP (n−1k2

n).

Denote D = [n−1
∑n

i=1 g(xi)Zi] − [n−1
∑n

i=1 g(xi)][n−1
∑n

i=1 Zi], then it’s easy
to check that E(D) = 0, V ar(D) = 1

n2

∑n
i=1 σ2(xi)(g(xi) − n−1

∑n
j=1 g(xj))2 =

O(n−1), thus D = Op(n−1/2) and

g′AZ = Op(knn−1/2) + OP (n−1k2
n).

So (20) is satisfied provided n−3k5
n → 0. Similarly, we have

g′Ag =
nkn

n− 1





[
n−1

n∑

i=1

g2(xi)

]
−

[
n−1

n∑

i=1

g(xi)

]2


 + O(n−1k2

n).
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Using the definition (2) of the design points it is straightforward to show that

∣∣∣∣∣
∫ 1

0
u(t)r(t)dt− 1

n

n∑

i=1

u(xi)

∣∣∣∣∣ =

∣∣∣∣∣
n∑

i=1

∫ xi

xi−1

u(t)r(t)dt−
n∑

i=1

u(xi)
∫ xi

xi−1

r(t)dt

∣∣∣∣∣

=

∣∣∣∣∣
n∑

i=1

∫ xi

xi−1

(u(t)− u(xi))r(t)dt

∣∣∣∣∣

≤
n∑

i=1

∫ xi

xi−1

|u(t)− u(xi)|r(t)dt

≤ c
n∑

i=1

∫ xi

xi−1

|t− xi|δr(t)dt

≤ c

(nminp r(p))δ

n∑

i=1

∫ xi

xi−1

r(t)dt

=
c

(nminp r(p))δ

∫ 1

0
r(t)dt = O(n−δ),

where we assume x0 = 0, and u(t) is Hölder continuous of order δ > 0. Thus

[
n−1

n∑

i=1

g2(xi)

]
−

[
n−1

n∑

i=1

g(xi)

]2

=
∫ 1

0
g2(t)r(t)dt−

(∫ 1

0
g(t)r(t)dt

)2

+ O(n−δ),

and so

g′Ag = knγ2 + O(knn−δ) + O(n−1k2
n),

which establishes (21). This concludes the proof.

Proof of Theorem 3.4. The proof is given for the case kn → ∞, the case kn

is fixed can be proved the same way. êi = ei + (a − â) + (b − b̂)xi. Let e and x
be respectively the nkn observations in the hypothetical ANOVA constructed by
augmenting (xi, ei), i = 1, . . . , n and (xi, xi), i = 1, . . . , n, then

MST −MSE = e′Ae + (a− â)21′NA1N + (b− b̂)2x′Ax

+2(a− â)e′A1N + 2(b− b̂)e′Ax + 2(a− â)(b− b̂)1′NAx

= e′Ae + (b− b̂)2x′Ax + 2(b− b̂)e′Ax,

where the second step follows because A is a contrast matrix. n1/2k
−1/2
n e′Ae con-

verges in distribution to the designated normal distribution. It’s sufficient to show
that

n1/2k−1/2
n (b− b̂)e′Ax = op(1), and n1/2k−1/2

n (b− b̂)2x′Ax = o(1).



March 13, 2008 22:32 Journal of Nonparametric Statistics GOF˙final1

REFERENCES 19

We have similarly as in the proof of Theorem 3.3,

e′Ax

=
nkn − 1

n(n− 1)kn(kn − 1)

n∑

i=1




n∑

j=1

xjI(j ∈ Wi)




[
n∑

k=1

ekI(k ∈ Wi)

]

− kn

n(n− 1)kn

[
n∑

i=1

xi

][
n∑

i=1

ei

]
− kn

n(kn − 1)

n∑

i=1

xiei

=
nkn

n− 1

{[
n−1

n∑

i=1

xiei

]
−

[
n−1

n∑

i=1

xi

][
n−1

n∑

i=1

ei

]}
+ OP (n−1k2

n).

By checking the mean and variance of the first term of the above display, we have
n1/2k

−1/2
n (b − b̂)e′Ax = Op(n−1k

3/2
n ) = op(1). We similarly prove n1/2k

−1/2
n (b −

b̂)2x′Ax = o(1). ¤


