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Abstract

Censored quantile regression offers a valuable supplement to Cox propor-

tional hazards model for survival analysis. Existing work in the literature of-

ten requires stringent assumptions, such as unconditional independence of the

survival time and the censoring variable or global linearity at all quantile lev-

els. Moreover, some of the work use recursive algorithms making it challeng-

ing to derive asymptotic normality. To overcome these drawbacks, we propose

a new locally weighted censored quantile regression approach that adopts the

redistribution-of-mass idea and employs a local reweighting scheme. Its validity

only requires conditional independence of the survival time and the censoring

variable given the covariates, and linearity at the particular quantile level of

interest. Our method leads to a simple algorithm that can be conveniently im-

plemented with R software. Applying recent theory of M-estimation with infinite

dimensional parameters, we establish the consistency and asymptotic normality

of the proposed estimator. The proposed method is studied via simulations and

is illustrated with the analysis of an acute myocardial infarction dataset.

Key Words: Kaplan-Meier estimator; Kernel; Quantile regression; Random
censoring; Semiparametric; Survival analysis.

∗Huixia Judy Wang is Assistant Professor, Department of Statistics, North Carolina State Uni-
versity, Raleigh, NC 27695 (email: wang@stat.ncsu.edu); and Lan Wang is Assistant Professor, De-
partment of Statistics, University of Minnesota, Minneapolis, MN 55455 (email: lan@stat.umn.edu).
The research is partially supported by the NSF Awards DMS-07-06963 and DMS-07-06842. The
authors thank two referees, an Associate Editor, the Editor and Professor Dennis D. Boos for helpful
comments and suggestions, and Professors Xuming He and Wenbin Lu for inspiring discussions.

1



1 Introduction

Let Ti be an uncensored dependent variable of interest, such as the survival time or

some transformation of the survival time, and let xi be an observable p × 1 vector

of covariates. In many applications, especially in biomedical studies, Ti cannot be

completely observed due to possible censoring, for instance, withdrawal of patients

from the study, or death from a cause unrelated to the specific disease of being studied,

etc. In this paper, we focus on random right censoring, although the methodology

developed can be directly extended to left censoring. Let Ci denote the censoring

variable, whose distribution may depend on xi, i = 1, · · · , n. Due to right censoring,

we only observe the triples (xi, Yi, δi), where

Yi = min(Ti, Ci), δi = I(Ti ≤ Ci) (1)

are the observed (possibly censored) response variable and the censoring indicator,

respectively. Our main objective is to estimate the p-dimensional vector quantile

coefficient β0(τ) for some τ ∈ (0, 1) in the following latent quantile regression model

Ti = xT
i β0(τ) + ei(τ), i = 1, · · · , n, (2)

where ei(τ) is the random error whose τth quantile conditional on xi equals 0. Through-

out the paper we use superscript T to denote the matrix transpose. Together (1) and

(2) specify a censored quantile regression model. When log transformed survival time

is used, (2) corresponds to the familiar accelerated failure time model.

Censored quantile regression provides a valuable complement to traditional Cox

proportional hazards model for survival analysis. It relaxes the proportionality con-

straint on the hazard and allows for modeling heterogeneity of the data. Moreover,

the quantiles of the survival time are directly interpretable. The readers are referred

to Koenker and Geling (2001), and Portnoy (2003) for detailed discussions of censored

quantile regression.
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Censored quantile regression was first studied by Powell (1984, 1986) for fixed

censoring, where the censoring times Ci are known for all observations, even for those

uncensored. The fixed censoring often occurs, for instance, in biomedical studies where

the measurements are censored by some quantification limits, or in social surveys

where data are up to some “top-coding” or ceiling effects. However, in most survival

analysis, censoring times are not always observable. In addition, the non-convexity of

Powell’s objective function imposes computational challenges; see Buchinsky (1994),

Fitzenberger (1997), Koenker and Park (1996), and Fitzenberger and Winker (2007)

for discussions of different algorithms. In this paper, we focus on random censoring,

where censoring points are unknown for uncensored observations.

Existing literature on censored quantile regression often require stringent assump-

tions or complex computation. Assuming that Ti and Ci are unconditionally indepen-

dent, Ying, Jung and Wei (1995) proposed a semiparametric estimation procedure for

a censored median regression model. Their procedure requires solving a discrete and

non-monotone estimating equation and thus can be difficult to implement in prac-

tice. Using the missing information principle (MIP), McKeague, Subramanian and

Sun (2001) proposed an estimating equation approach for median regression, in which

the estimating functions for the censored cases are replaced by the conditional expec-

tation given the data. In the case of discrete covariates, they studied the large sample

properties of the MIP estimator, and showed that it is asymptotically equivalent to the

estimator introduced by Ying, Jung and Wei (1995). For medical cost data with infor-

mative censoring, Bang and Tsiatis (2002) developed two weighted estimating equa-

tion approaches to estimate the parameters in the median regression models. Honoré,

Khan and Powell (2002) extended Powell’s approach to random censoring assuming

that Ci is independent of both xi and Ti. Lindgren (1997) transformed the problem of

finding the τ -th conditional quantile of Ti into a problem of finding the q-th quantile
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of Yi, where q is estimated using a local approach. Lindgren’s method involves an iter-

ative minimization procedure that lacks theoretical justification. Recently, Gannoun,

Saracco and Yu (2007) proposed a local linear estimator of the conditional quantile,

and compared its performance to two kernel estimators in a simulation study.

Under the more relaxed conditional independence assumption, that is, Ti and Ci

are independent given xi, Portnoy (2003) developed a novel “recursive reweighting”

scheme that generalizes the Kaplan-Meier estimator. Extending the redistribution-

of-mass idea of Efron (1967) in the univariate case, Portnoy’s method redistributes

the conditional probability P (Ti > Ci|Ci,xi) of the censored cases to the right. For

each censored observation, the mass is obtained through sequential pivots by fitting an

entire linear quantile process. The recursive approach, however, makes it challenging to

establish the asymptotic normality theory. Recently, Peng and Huang (2008) proposed

a martingale-based estimating procedure that showed similar performance to Portnoy’s

estimator. Both Portnoy’s and Peng and Huang’s approaches rely on a very strong

global assumption, that is, in order to estimate the τ -th conditional quantile of Ti

given xi, it is necessary to assume that the conditional functionals at lower quantiles

are all linear. This global assumption is often found to be too restrictive in practice.

We propose a new estimating procedure that relaxes the global linearity assump-

tion. We adopt a similar redistribution-of-mass idea, but instead of estimating the

censoring probability P (Ti > Ci|Ci,xi) by fitting an entire linear quantile regression

process, we estimate this probability nonparametrically using the local Kaplan-Meier

method. Our work is partly motivated by an acute myocardial infarction study, where

we are interested in the effects of gender and age on patients’ survival time. Ex-

ploratory analysis reveals that age exhibits a nonlinear effect on survival time at lower

quantiles τ ≤ 0.4; see Figure 2 in Section 5. Therefore, Portnoy’s approach may yield

bias for estimating the median survival time. Furthermore, our approach detects a
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significant gender effect, which is missed by Portnoy’s method.

Compared to existing procedures, our approach enjoys several distinctive advan-

tages. First, our method only assumes linearity at one pre-specified quantile level τ

of interest, and thus relaxes the global assumption of Portnoy (2003) and provides

more flexibility. In fact, when the global linearity assumption is seriously violated,

Portnoy’s approach yields a biased estimator, and the bias does not vanish as n →∞;

see Section 4 for detailed discussion. Second, our algorithm is computationally simple

and easy to implement. In our method, the weights at all censored observations are es-

timated in one single step, and consequently the quantile estimate β̂(τ) is obtained by

minimizing only one convex objective function at the quantile of interest. Finally, our

estimated weights enjoy the nice property of uniform consistency, making it feasible

to establish both the consistency and asymptotic normality of the resulting estimator.

The rest of this article is organized as follows. In Section 2, we present the proposed

estimating procedure. In Section 3, we establish the consistency and asymptotic nor-

mality of the resulting quantile coefficient estimator. The finite sample performance

of the proposed method is investigated and compared to Portnoy’s algorithm in Sec-

tion 4. The proposed method is illustrated with the analysis of the acute myocardial

infarction dataset in Section 5. Section 6 concludes the paper with some discussions.

The technical proofs are in the Appendix.

2 The proposed method

2.1 Background

We note that model (2) amounts to assuming

QTi
(τ |xi) = xT

i β0(τ), (3)

where QTi
(τ |xi) = inf{t : F0(t|xi) ≥ τ} is the τth conditional quantile of Ti given the

covariate xi. Before introducing the locally weighted censored quantile regression, we
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briefly review quantile regression for noncensored data.

When there is no censoring, Yi = Ti are observed everywhere, and β0(τ) in model

(3) can be estimated by minimizing the quantile objective function

Sn(β) = n−1

n∑
i=1

ρτ (Yi − xT
i β), (4)

where ρτ (u) = u {τ − I(u < 0)} is the quantile loss function. Note that a minimizer

for (4) is also a root of the following estimating equation

Dn(β) = n−1

n∑
i=1

xi

{
τ − I(Yi − xT

i β ≤ 0)
}

= op(an),

where an → 0 as n →∞. Under model (3), E [Dn{β0(τ)}] = 0, and thus Dn(β) is an

unbiased estimating function for β0(τ). We refer to Koenker (2005) for a comprehen-

sive presentation of the methodology and theory of quantile regression for noncensored

data.

2.2 Locally weighted censored quantile regression

Similar to Portnoy’s approach, our method also adopts Efron’s redistribution-of-mass

idea that redistributes the mass of each censored observation to the uncensored ones

to the right. In the censored quantile regression setting, the idea is to redistribute

the probability mass P (Ti > Ci|Ci,xi) of the censored cases to the right; see Remark

1 for more explanation of the intuition. Since the quantile regression estimator is

determined by the signs of residuals, the mass that is redistributed can be sent to

+∞.

We first consider an ideal situation where F0(t|xi), the conditional cumulative

distribution function of the (sometimes unobservable) survival time Ti given xi, is

assumed to be known. In this case, we define the following weight function

wi(F0) =

{
1 δi = 1 or F0(Ci|xi) > τ
τ−F0(Ci|xi)
1−F0(Ci|xi)

δi = 0 and F0(Ci|xi) < τ,
(5)
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i = 1, · · · , n. If F0(t|x) is known, the quantile coefficient β0(τ) can be estimated by

minimizing the following weighted objective function

Qn(β, F0) = n−1

n∑
i=1

[
wi(F0)ρτ (Yi − xT

i β) + {1− wi(F0)}ρτ (Y
+∞ − xT

i β)
]
, (6)

where Y +∞ is any value sufficiently large to exceed all xT
i β0(τ). It is easy to derive

the negative subgradient of Qn(β, F0) with respect to β:

Mn(β, F0) = n−1

n∑
i=1

xi

{
τ − wi(F0)I(Yi − xT

i β < 0)
}

. (7)

Remark 1. To understand the weighting scheme, we note that in quantile regres-

sion, the contribution of each point to the subgradient condition only depends on the

sign of the residual Ti − xT
i β0(τ). For uncensored observations, Yi = Ti < Ci and

I(Ti − xT
i β0(τ) < 0) are observed. For censored observations, if Yi = Ci > xT

i β0(τ),

we immediately know that I(Ti − xT
i β0(τ) < 0)=0 since Ti > Ci. The ambiguous

situation is δi = 0 and Ci < xT
i β0(τ) (or equivalently F0(Ci|xi) < τ), in which case,

when given (xi, Ci),

E
{
I(Ti − xT

i β0(τ) < 0)|Ti > Ci

}
=

P
(
Ci < Ti < xT

i β0(τ)
)

P (Ti > Ci)
=

τ − F0(Ci|xi)

1− F0(Ci|xi)
.

Therefore, in the first two situations, we assign weight wi(F0) = 1 to the observed

data (xi, Yi). In the ambiguous situation, we assign weight wi(F0) = τ−F0(Ci|xi)
1−F0(Ci|xi)

to the

“pseudo observation” at (xi, Ci) and redistribute the complimentary weight 1−wi(F0)

to any point above (xi, Ci), for example, (xi, Y
+∞), or (xi, +∞) without altering the

quantile fit.

In reality, F0(Ci|xi) and the corresponding weights wi(F0) are unknown and have

to be estimated. We propose to estimate F0(·|xi) nonparametrically using the local

Kaplan-Meier estimators F̂0(·|xi). Specifically, we estimate F0(t|x) by

F̂ (t|x) = 1−
n∏

j=1

{
1− Bnj(x)∑n

k=1 I(Yk ≥ Yj)Bnk(x)

}ηj(t)

, (8)
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where ηj(t) = I(Yj ≤ t, δj = 1), and Bnk(x) is a sequence of nonnegative weights

adding up to 1. When Bnj(x) = 1/n for all j, 1− F̂ (t|x) is just the classical Kaplan-

Meier estimator of the survival function of T . Here we employ the commonly used

Nadaraya-Watson’s type weights, i.e.,

Bnk(x) =
K(x−xk

hn
)∑n

i=1 K(x−xi

hn
)
, (9)

where K is a density kernel function, and hn ∈ R+ is the bandwidth converging to

zero as n →∞.

Remark 2. Nonparametric estimation of the conditional distribution function of

the survival time under random censoring was first introduced by Beran (1981), and

further studied by Dabrowska (1989), Gonzalez-Manteiga and Cadarso-Suarez (1994),

Leconte, Poiraud-Casanova and Thomas-Agnan (2002), among others. In practice, a

variety of Bnk(x) sequences are possible, and the readers are referred to Leconte et al.

(2002) for more detailed discussions.

By plugging the local Kaplan-Meier estimator of F0(Ci|xi) into (5), we obtain

the estimated local weights wi(F̂ ). Our proposed locally weighted censored quantile

regression estimator, denoted by β̂(τ), is defined as the value of β that minimizes the

locally weighted objective function

Qn(β, F̂ ) = n−1

n∑
i=1

[
wi(F̂ )ρτ (Yi − xT

i β) + {1− wi(F̂ )}ρτ (Y
+∞ − xT

i β)
]
. (10)

Our method only requires the linear dependence of Ti on xi at the particular quantile

of interest and thus works for a wide class of data. In addition, with our method, the

weights for all the censored observations can be obtained in one single step, and we

only need solve one minimization problem at the quantile level τ .

2.3 Computation

The locally weighted censored quantile regression is simple to implement with cur-

rently available R software. With estimated weights, it reduces to a weighted quantile
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regression on a set of appropriately defined pseudo observations. To illustrate the

algorithm, we assume without loss of generality that the first n0 observations are

censored. Appending n0 pseudo paired observations {(x1, Y
+∞), · · · , (xn0 , Y

+∞)} to

the original observed data {(xi, Yi), i = 1, · · · , n}, we obtain an augmented data set

{(xi, Yi), i = 1, · · · , n+n0}. We first compute the local Kaplan-Meier estimator F̂ (·|xi)

and weights wi(F̂ ), i = 1, · · · , n, following (8) and (5). Then the quantile estimator

β̂(τ) can be readily computed by regressing (Y1, · · · , Yn+n0)
T onto (x1, · · · , xn+n0)

T

using the function “rq” in R package quantreg, with corresponding local weights
(
w1(F̂ ), · · · , wn(F̂ ), 1− w1(F̂ ), · · · , 1− wn0(F̂ )

)T
. Since the subgradient (7) only de-

pends on the signs of the residuals, we may take Y +∞ = +∞. In our implementation,

we take Y +∞ = 100 max{Y1, · · · , Yn}.
When computing the local Kaplan-Meier estimator, we use the biquadratic kernel,

i.e, K(x) = 15
16

(1 − x2)2I(|x| ≤ 1). Different types of kernel functions may also be

used and they result in little difference in practice. For multivariate covariates, it

is customary to adopt a product kernel. For example, in the bivariate case we use

K(x1, x2) = K1(x1)K2(x2), where K1(·) and K2(·) are two univariate biquadratic

kernel functions.

Although we observe in the simulations that the proposed estimator is not sen-

sitive to the choice of smoothing parameter (see Section 4 and Remark 3 therein),

for practical data analysis we recommend the computationally more intensive m-fold

cross-validation method for choosing hn; see, for example, Section 7.10 of Hastie, Tib-

shirani and Friedman (2001). More specifically, we randomly divide the data into m

non-overlapped and roughly equal-sized parts. For the jth part, we fit the model using

the data from the other m − 1 parts, and calculate the quantile loss from predicting

the τth conditional quantile of T for the uncensored cases in the jth part of the data.

We repeat the above procedure for j = 1, · · · ,m and calculate the averaged prediction
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error. The hn that yields the smallest averaged prediction error is selected. Based on

our simulation experience, we recommend m = 10 for practical use.

3 Large sample properties

3.1 Notations and assumptions

Before stating the main theoretical results, we first define the following functions,

(i) 1− F0(t|x) = P (Ti > t|x), the survival function of Ti conditional on x;

(ii) 1−G(t|x) = P (Ci > t|x), the survival function of Ci conditional on x;

(iii) ~(x), the marginal density function of x.

To establish the asymptotic results in this paper, we require the following assump-

tions.

A1 There exists a constant Kx such that E‖x‖3 ≤ Kx. In addition, max1≤i≤n ‖xi‖ =

Op(n
1/2(log n)−1), and E(xxT ) is a positive definite p× p matrix.

A2 The functions F0(t|x) and G(t|x) have first derivatives with respect to t, de-

noted as f0(t|x) and g(t|x), which are uniformly bounded away from infinity. In

addition, F (t|x) and G(t|x) have bounded (uniformly in t) second-order partial

derivatives with respect to x.

A3 For β in the neighborhood of β0(τ), E
[
xxT f0(x

T β|x){1−G(xT β|x)}] is posi-

tive definite.

A4 The bandwidth is such that hn = O(n−1/2+γ0), where 0 < γ0 < 1/4.

A5 The kernel function K(·) ≥ 0 has a compact support. It is Lipschitz continuous

of order 1 and satisfies
∫

K(u)du = 1,
∫

uK(u)du = 0,
∫

K2(u)du < ∞, and
∫ |u|2K(u)du < ∞.
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Assumption A1 states some tail and moment conditions on the covariate x. These

conditions are standard in the quantile regression literature. Assumption A2 is needed

for the local Kaplan-Meier estimator. It allows us to obtain the local expansions of

F0(t|x) and G(t|x) in the neighborhood of xT β0(τ), and to obtain the uniform con-

sistency and the linear representation of F̂ (t|x), which are needed for deriving the

consistency and asymptotic normality results in Sections 3.2 and 3.3. Assumption A3

ensures that the expectation of the estimating function E{Mn(β, F0)} has a unique

zero at β0(τ), and it is needed to establish the asymptotic distribution of β̂(τ). As-

sumptions A4 and A5 specify the conditions on the bandwidth and the kernel function.

These are regular assumptions for kernel-based nonparametric smoothing.

3.2 Consistency

The following Theorem 1 states the consistency of the locally weighted censored quan-

tile regression estimator β̂(τ). Its proof is given in the Appendix.

Theorem 1 At a given quantile level 0 < τ < 1, let β̂(τ) be the minimizer of the

locally weighted objective function defined in (10). Assume that the triples {xi, Yi, δi},
i = 1, · · · , n, constitute an i.i.d. multivariate random sample, and that the censoring

variable Ci is independent of Ti conditional on the covariate xi. Under Model (3) and

the assumptions A1-A5,

β̂(τ) → β0(τ) (11)

in probability, as n →∞.

We show in the Appendix that E {Mn(β0(τ), F0)} = 0 under model (2), there-

fore Mn(β, F ) is an unbiased estimating function for β0(τ). To prove consistency,

the main complexity comes from the fact that the objective function (10) is a non-

smooth function involving a preliminary nonparametric estimator of the conditional
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distribution function F0(·|x). As a result, standard M-estimation theory that involves

only finite dimensional parameters such as in Pakes and Pollard (1989), He and Shao

(1996), among others, is not applicable in our situation.

In this paper, we employ the recently developed empirical-process-based general

theory of Chen, Linton and Van Keilegom (2003) on nonsmooth objective functions

with infinite dimensional parameters. The application of their theory is possible by

using the uniform consistency of F̂ (·|x) for F0(·|x); see Lemma 1 in the Appendix.

3.3 Asymptotic normality

In censored quantile regression, establishing asymptotic normality turns out to be

much more challenging than proving consistency. Although several authors derived

asymptotic normality of quantile estimators in censored regression, stringent model

assumptions are needed. For instance, Powell (1986) assumed fixed censoring, and

Honoré et al. (2002) assumed unconditional independence of Ti and Ci.

Portnoy (2003), and Neocleous, Branden and Portnoy (2006) relaxed the uncondi-

tional independence condition, but they only verified consistency or
√

n-consistency of

the quantile coefficient estimator, and they assumed global linearity. We next briefly

discuss the difficulties faced by these two papers as they are more related to our work.

Portnoy (2003) used a simplex pivoting algorithm in which a linear quantile regres-

sion model is fitted at a sequence of breakpoints. The censoring probability F0(Ci|xi)

is then estimated by the quantile level τ̂i at which the fitted quantile regression line

crosses Ci. On the other hand, Neocleous et al. (2006) proposed an improved “grid” al-

gorithm. For both algorithms, the estimates at upper quantiles are determined by the

fits at lower quantiles. This recursive nature makes it difficult to obtain the stochas-

tic expansion of F̂ (Ci|xi)− F0(Ci|xi), thus complicating the derivation of asymptotic

normality.

For the proposed locally weighted censored quantile regression, the local Kaplan-
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Meier estimator F̂ (·|x) is uniformly consistent for F0(·|x), and it possesses a nice

linear representation. This allows us to apply the general theory of Chen, Linton and

Van Keilegom (2003). More specifically, Chen et al. (2003) suggests that to establish

the asymptotic normality of β̂(τ), the key is to show that the pathwise derivative

of E(Mn(β, F )), denoted as Γ2(β0(τ), F0)[F̂ − F0], is a smooth linear function of

F̂ − F0. Using the Bahadur representation of F̂ (·|x), we verify in the Appendix

that Γ2(β0(τ), F0)[F̂ − F0] is approximately a sum of independent mean zero random

vectors, and this permits an application of the central limit theorem. The limiting

distribution of β̂(τ) is given in the following theorem.

Theorem 2 Under the assumptions of Theorem 1, we have

n1/2(β̂(τ)− β0(τ))
D−→ N(0,Γ−1

1 VΓ−1
1 ), (12)

where Γ1 = E
[
xxT{1−G(xT β0(τ)|x)}f0(x

T β0(τ)|x)
]
, and

V = Cov
(
mi(β0, F0) + (1− τ)φ(Yi, δi,x

T
i β0(τ),xi)

)
, (13)

with mi(β0, F0) = xi{τ − wi(F0)I(Yi < xT
i β0(τ))}, and φ(Yi, δi,x

T
i β0(τ),xi) defined

in equation (27) in the Appendix.

Inference on β0(τ) is of practical importance. However, it is seen from Theorem 2

and its proof that the asymptotic covariance matrix of β̂(τ) takes a complex form, and

both V and Γ1 involve unknown density functions f0(·|x) and g(·|x) that are difficult to

estimate in finite samples. For practical implementation, we adopt a simple percentile

bootstrap approach through resampling the triples (xi, Yi, δi) with replacement. The

95% bootstrap confidence interval for β0(τ) is constructed by taking the 2.5th and

97.5th percentiles of the bootstrap coefficients as the end points. The performance

of the percentile bootstrap approach is shown to be satisfactory in the Monte Carlo

studies carried out in Section 4.
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4 Simulation results

In this section, we assess the finite sample performance of the proposed method via

Monte Carlo simulations. We are mainly interested in comparing the performance

of the locally weighted censored regression of quantiles (Lcrq) with that of Portnoy’s

censored regression of quantiles (crq). We also include another two procedures: the

omniscient procedure (omni) that assumes knowledge of the sometimes unobservable

Ti in (2) and applies the regular quantile regression to (xi, Ti); and the naive procedure

(naive) that completely ignores censoring and applies the regular quantile regression

to (xi, Yi).

The four procedures are evaluated in two different settings. In the first example,

we consider a conditional quantile function that is linear in the covariate at every

quantile; while in the second example, the conditional quantile function is linear in

the covariate only at a particular quantile.

For each example, we report the bias and mean squared error of each procedure

based on 500 simulation runs. For Lcrq and crq, we also report the average coverage

probabilities and average interval lengths of related resampling-based 95% confidence

intervals. The results of crq are obtained by using the default options in the R package

quantreg version 4.24. In this package, the crq confidence intervals are computed

by adjusting the interquartiles of the bootstrap coefficients based on normality as

described in Portnoy (2003). For both crq and lcrq, 300 bootstrap samples are used

to obtain the confidence intervals in each simulation run.

Example 1. We generate random data (xi, Ti, Ci) from the model

Ti = b0 + b1xi + εi, i = 1, . . . , n, (14)

where b0 = 3, b1 = 5, xi ∼ U(0, 1), εi = ηi − Φ−1(τ), with η1, . . . , ηn being i.i.d.

standard normal random variables and Φ−1 being the quantile function of the standard
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normal distribution. Therefore, the random errors εi are centered to have zero τ -

th quantile. The censoring variable Ci has a uniform distribution on the interval

(0, 14), resulting in 40% censoring at the median. The observed response variable is

Yi = min(Ti, Ci). The global linearity assumption required for crq is satisfied in this

example.

Table 1 summarizes the simulation results for two different values of τ : 0.5 and

0.7, and two different sample sizes n = 200 and 500. For Lcrq, the results are reported

for hn = 0.1 and 0.05 at n = 200 and 500, respectively. We also report the results of

LcrqCV , i.e., the Lcrq with hn chosen by the 10-fold cross-validation method.

For this ideal example, the performance of Lcrq and LcrqCV is very close to that

of crq and to that of the omniscient procedure in terms of bias and mean squared

error. Not surprisingly, the naive procedure performs poorly. The bootstrap confidence

intervals of Lcrq or LcrqCV have empirical coverage probabilities (ECP ) close to the

nominal level 95%. In contrast, the crq bootstrap confidence intervals have ECP

generally below 95%, especially those for the intercept. In addition, crq leads to

universally wider confidence intervals than Lcrq and LcrqCV . Similar patterns are

observed for n = 1000 and censoring probabilities 0.2, 0.3 and 0.5, and the results are

not reported due to space limitation.

Put Table 1 about here

Example 2. We generate random data (xi, Ti, Ci), i = 1, . . . , n, such that

Ti = b0 + b1xi + (0.2 + 2(xi − 0.5)2)εi, (15)

where b0 = 2, b1 = 1, xi ∼ N(0, 1), and εi are generated following the same way as in

Example 1. The censoring variable Ci has a uniform distribution on the interval (0, 7)

yielding 40% censoring at the median.

Table 2 summarizes the simulation results for τ = 0.5 and 0.7 with sample sizes
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n = 200 and 500, respectively. In this example, the conditional quantile of Ti is linear

in xi only at the τth quantile and is quadratic in xi everywhere else. The crq procedure

is quite robust to the linearity assumption in the sense that its bias is not unreasonably

large; however, we observe that the bias does not diminish with increased sample size.

The bias of crq for estimating b1 increases to around 0.10 when the sample size n

increases from 200 to 500. Even for sample size 1000 (not reported), we observe that

the bias of crq is still around 0.1, while that of Lcrq or LcrqCV is below 0.01 at both

τ = 0.5 and 0.7. Similarly as in Example 1, the crq bootstrap confidence intervals have

coverage probabilities considerably below 95%. The Lcrq and LcrqCV intervals not

only maintain more accurate coverage probabilities, but also are shorter than those of

crq. More specifically, the average lengths of the Lcrq confidence intervals are about

89% of those of crq for estimating b0, and about 90% of those of crq for estimating b1.

Put Table 2 about here

Remark 3. In the extensive simulation studies carried out, we note that the

performance of Lcrq is not sensitive to the choice of hn. To give an idea of the

sensitivity, we plot in Figure 1 the MSE versus hn for estimating b0 and b1 in Example

1 with n = 200. The figure suggests that the MSE varies little for hn ∈ [0.01, 0.15].

5 Analysis of the acute myocardial infarction dataset

To illustrate the proposed method, we analyze a subset of data from a study con-

ducted at the University Clinical Center in Ljubljana. The purpose of the study was

to investigate the survival of patients after acute myocardial infarction. The data

set contains information on 972 patients age 40 to 80, of which 48% have censored

outcomes. More details about the study can be found in Pohar and Stare (2006), and

the data set is included in the R package relsurv. We are interested in estimating the

conditional median of the log survival time (in days), a quantity of interest to medical
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Figure 1: Plot of MSE versus hn in Example 1 with n = 200. The dashed and solid

lines represent the MSE for estimating b0 and b1, respectively.

doctors, given age (in years) and gender (1=male, 0=female).

To explore the dependence of log survival time and age at different quantiles, in a

preliminary analysis we fit a partially linear model by using polynomial B-splines to

approximate the effect of age. Figure 2 plots the estimated log survival times against

age at quantiles τ = 0.01, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5. This plot reveals that at

lower quantiles the assumption of linearity of age on survival time might be violated.

This suggests that Lcrq may be more appropriate than crq for analyzing this data set.

Next, we report and compare results from both Lcrq and crq for estimating the

median survival time. As the interaction effect of age and gender is shown to be

insignificant in the preliminary analysis, we consider the model with main effects of

age and gender. Let y denote the conditional median log survival time. The Lcrq

yields that at τ = 0.5,

y = 10.506− 0.042age + 0.222gender. (16)

The 95% bootstrap confidence interval for age is (−0.052,−0.031) and for gender is

(0.012, 0.355). This suggests that increased age and being a female are associated with
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Figure 2: Acute myocardial infarction data: the fitted log survival times (from a partial

linear model) against age at quantiles 0.01, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5. The

open circles denote uncensored observations, and the crosses represent censored points.

significantly shorter median survival time. For comparison, Portnoy’s crq gives

y = 11.466− 0.055age + 0.157gender. (17)

The associated 95% bootstrap confidence interval for age is (−0.072,−0.037) and

for gender is (−0.125, 0.439). As observed in the simulation study, crq gives wider

confidence intervals than Lcrq. Moreover, crq fails to identify the significant gender

effect.

Figure 3 shows the estimated conditional median survival time (on log scale) from

Lcrq and crq for female patients. The dashed line is the conditional median estimation

from crq, and the solid line is from Lcrq. The shaded area represents a 95% pointwise

bootstrap confidence band following our method. For age < 60, the median estimates

from crq fall outside the confidence band, suggesting a noticeable difference from the

Lcrq estimates. Such difference is also observed in the estimation of male median
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Figure 3: The estimated conditional median survival time from crq and Lcrq for

female. The dashed and solid lines are the estimation from crq and Lcrq, respectively.

The shaded area represents the 95% pointwise bootstrap confidence band from Lcrq.

6 Concluding remarks

We propose a new locally weighted censored quantile regression approach that relaxes

the stringent model assumptions, such as unconditional independence or global linear-

ity, required by many existing procedures. Our approach employs the redistribution-

of-mass idea and is computationally simpler, as it directly estimates the quantile of

interest and avoids fitting an entire quantile process. The new procedure adopts a

preliminary local Kaplan-Meier estimator and leads to a weighted quantile regression.

Utilizing results in modern empirical process theory, we establish the consistency and

asymptotic normality of the resulted estimator. Both simulation studies and the analy-

sis of acute myocardial infarction data show that the proposed method leads to shorter

interval estimates than Portnoy’s crq procedure.

For right censored data, quantile functions with τ close to 1 may not be identifiable
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due to censorship. To ensure β0(τ) is estimable, we need some area of x where not

all censoring happens below the τth conditional quantile line, otherwise the matrix

E
[
xxT f0(x

T β|x){1−G(xT β|x)}] in condition A3 may be singular. A sufficient but

not necessary condition to ensure the identifiability is that on some subset of x with

positive measure, we have 1 − G(xT β0(τ)|x) = P (C > xT β0(τ)|x) > 0. In principle,

the quantile level τ is chosen according to practical interest. To check whether β0(τ)

is estimable, empirically we can estimate G(·|xi) by the local Kaplan-Meier estimator

Ĝ(·|xi) following the procedure described in Section 2.2. If a large fraction of {1 −
Ĝ(xT

i β̂(τ)|xi), i = 1, · · · , n} are zero, we should be cautious about estimating and

making inference of the τth quantile.

The interquartile range method was introduced in Portnoy (2003) to construct

confidence intervals. The purpose was to account for the randomness of the τ -cutoff

point (the largest quantile level up to the identifiability constraint) in different boot-

strap samples. We find that in finite samples the empirical distribution of β̂(τ) from

the bootstrap samples often deviates from normality. Our simulations also confirm

that the interquartile range method often gives confidence intervals that tend to under

cover the true coefficients. When the τth quantile is identifiable, we recommend use

of the simpler percentile method described in Section 3.3.

Finally, we observe in our empirical studies that Portnoy’s crq algorithm exhibits

good robustness against modest violation of the global linearity assumption. However,

when global linearity is seriously violated, crq leads to estimators with bias that does

not diminish with increased sample size. In such cases, the results from the proposed

Lcrq method are more trustable.

7 Appendix

Throughout the appendix, the τ will be omitted in various expressions such as β0(τ)

and ei(τ), but we should bear in mind that these quantities are all τ -specific. Let B de-
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note a compact finite dimensional parameter set, and H denote an infinite dimensional

parameter space. Let F = F (·|x) ∈ H be a nonparametric conditional distribution

function. For notational simplicity, from now on we shall write F0(t|xi), F (t|xi),

G(t|xi), g(t|xi) as F0i(t), Fi(t), Gi(t) and gi(t), respectively, whenever clear from the

context. Recall that the negative subgradient of the objective function Qn(β, F ) is

defined in (7) as

Mn(β, F ) = n−1

n∑
i=1

mi(β, F ), (18)

where

mi(β, F ) = xi

{
τ − wi(F )I(Yi ≤ xT

i β)
}

= xi

[
I(Ti ≤ Ci)

{
τ − I(Ti ≤ xT

i β)
}

+ I(Ti > Ci)
{

τ − (
1− 1− τ

1− Fi(Ci)
I(Fi(Ci) < τ)

)
I(Ci ≤ xT

i β)
}]

= xi

[
I(Ci ≤ xT

i β)
{

I(Ti ≤ Ci)(τ − 1) + I(Ti > Ci)
(
τ − 1 +

1− τ

1− Fi(Ci)
I(Fi(Ci) < τ)

)}

+ I(Ci > xT
i β)

{
τI(Ti ≤ Ci)− I(Ti ≤ xT

i β) + τI(Ti > Ci)
} ]

(19)

= xi

[{
τ − I(Ci > xT

i β, Ti ≤ xT
i β)− I(Ci ≤ xT

i β, Ti ≤ Ci)
}

−I(Ci ≤ xT
i β, Ti > Ci)

(
1− 1− τ

1− Fi(Ci)
I(Fi(Ci) < τ)

)]
.

By the conditional independence of T and C given x, we have

E {I (C > t, T < t) |x} = P (C > t|x)P (T < t|x) = {1−G(t|x)}F0(t|x),

E {I(C < t, T < C)|x} = EC|x {I(C < t)P (T < C|C,x)} =

∫ t

−∞
F0(u|x)g(u|x)du.

Therefore,

M(β, F )
.
= E [mi(β, F )] = E

[
x

{
τ −H(xT β|x)−R(β, F |x)

}]
,
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where

H(t|x) = {1−G(t|x)}F0(t|x) +

∫ t

−∞
F0(u|x)g(u|x)du,

R(β, F |x) =

∫ xT β

−∞
{1− F0(u|x)}

[
1− 1− τ

1− F (u|x)
I {F (u|x) < τ}

]
g(u|x)du.

In M(β, F ), the expectation is with respect to the distribution of x.

We first state and prove two lemmas. We use ‖ · ‖ to denote the Euclidean norm,

and ‖ · ‖H to denote a sup-norm metric.

Lemma 1 Assume assumptions A2, A4 and A5 hold. Then

‖F̂ − F0‖H .
= sup

t
sup

x
|F̂ (t|x)− F0(t|x)| = Op

(
(log n)1/2n−1/4−γ0/2

)
, (20)

where 0 < γ0 < 1/4.

Proof: This follows directly from Theorem 2.1 of Gonzalez-Manteiga and Cadarso-

Suarez (1994).

Lemma 2 For all positive values εn = o(1), we have

sup
‖β−β0‖≤εn,‖F−F0‖H≤εn

‖Mn(β, F )−M(β, F )−Mn(β0, F0)‖ = op(n
−1/2). (21)

Proof : Let xij and mij denote the jth coordinates of xi and mi, respectively. For

notational simplicity, in the following we omit the subscript i in various expressions

such as xi, xij, Ti, Ci, Fi and Gi. Let Kj, j = 1, · · · , 5, be some positive constants.

Note that for j = 1, · · · , p, |mj(β, F )−mj(β
′, F ′)|2 ≤ B1 + B2 + B3, where

B1 = x2
j

∣∣I(C > xT β, T < xT β)− I(C > xT β′, T < xT β′)
∣∣

B2 = x2
j

∣∣I(C < xT β, T < C)− I(C < xT β′, T < C)
∣∣ ,

B3 = x2
j

∣∣∣I(C < xT β, T > C)
[
1− 1− τ

1− F (C)
I {F (C) < τ} ]

− I(C < xT β′, T > C)
[
1− 1− τ

1− F ′(C)
I {F ′(C) < τ} ]∣∣∣.
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It’s easy to verify that

sup
β′:‖β−β′‖≤εn

∣∣I(xT β < C)− I(xT β′ < C)
∣∣ ≤ ‖x‖{

I(xT β − εn < C)− I(xT β + εn < C)
}

.

Therefore, by assumptions A1 and A2,

E
(

sup
β′:‖β−β′‖≤εn

B1

)

≤ E
[

sup
β′:‖β−β′‖≤εn

x2
j

{|I(C > xT β′)− I(C > xT β)|+ |I(T < xT β′)− I(T < xT β)|}
]

≤ E
[‖x‖3

{
G(xT β + εn)−G(xT β − εn)

}
+ ‖x‖3

{
F0(x

T β + εn)− F0(x
T β − εn)

}]

≤ K1εn.

Following the similar arguments, we can show that E
(

sup
β′:‖β−β′‖≤εn

B2

)
≤ K2εn. Note

that

B3 ≤ x2
jI(C < xT β)

∣∣∣∣
1− τ

1− F ′(C)
I {F ′(C) < τ} − 1− τ

1− F (C)
I {F (C) < τ}

∣∣∣∣

+x2
j

[
1− 1− τ

1− F ′(C)
I {F ′(C) < τ}

] ∣∣I(C < xT β)− I(C < xT β′)
∣∣

≤ x2
j

∣∣∣∣
1− τ

1− F ′(C)
I {F ′(C) < τ} − 1− τ

1− F (C)
I {F (C) < τ}

∣∣∣∣
+ x2

j

∣∣∣I(C < xT β)− I(C < xT β′)
∣∣∣

.
= B31 + B32.

It is easy to see that

B31 = x2
jI {F (C) < τ, F ′(C) < τ} |F (C)− F ′(C)|(1− τ)

{1− F ′(C)}(1− F (C))

+x2
jI {F (C) < τ < F ′(C)} 1− τ

1− F (C)
+ x2

jI {F ′(C) < τ < F (C)} 1− τ

1− F ′(C)

≤ x2
j

1− τ
|F (C)− F ′(C)|+ x2

jI {F (C) < τ < F ′(C)}+ x2
jI {F ′(C) < τ < F (C)} .

Since

E

[
sup

F ′:‖F−F ′‖H≤εn

I {F (C) < τ < F ′(C)}
]
≤ P {F (C) < τ < F (C) + εn}

= G{F−1(τ)} −G{F−1(τ − εn)} ≤ K3εn.
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Therefore, by assumption A1, we have E
(
supF ′:‖F−F ′‖H≤εn

B31

) ≤ K4εn. Following

similar arguments used in proving B1, we obtain E
(
supβ′:‖β−β′‖≤εn

B32

) ≤ K5εn.

Therefore, condition (3.2) of Chen et al. (2003) holds with r = 2 and sj = 1/2, and

condition (3.3) is satisfied by Remark 3(ii) of their paper. Thus, Lemma 2 holds by

applying Theorem 3 of Chen et al. (2003).

Proof of Theorem 1: Note that F0(t|x) < τ is equivalent to t < xT β0, and

F0(x
T β0|x) = τ . Therefore, when plugging in the true β0 and F0 into M, we get

M(β0, F0) = E
(
x

[
τ − τ

{
1−G(xT β0|x)

}− τG(xT β0|x)
])

= 0.

Because β0 is the solution of M(β, F0) = 0 with M(β, F0) being a monotone function

of β, it is in the interior of a compact parameter space B. Therefore, the consistency

of β̂ is the direct conclusion of Theorem 1 of Chen et al. (2003), and we only need

verify the conditions (1.1)-(1.2) and (1.5’) in their paper, as (1.3) is trivially satisfied

and (1.4) follows from Lemma 1.

(1.1) By the subgradient condition of quantile regression (Koenker, 2005), there exists

a vector v with coordinates |vi| ≤ 1 such that

‖Mn(β̂, ŵ)‖ = n−1‖(xivi : i ∈ Ξ)‖ = op(n
−1/2), by assumption A1, (22)

where Ξ denotes a p-element subset of {1, 2, · · · , n}.

(1.2) For any ε > 0 and β ∈ B,

inf
‖β−β0‖>ε

‖M(β, F0)‖ = inf
‖β−β0‖>ε

||M(β0, F0)−M(β, F0)||

= inf
‖β−β0‖>ε

∥∥∥E
[
x
{

H(xT β|x)−H(xT β0|x) + R(β, F0|x)−R(β0, F0|x)
}] ∥∥∥

≥ inf
‖β−β0‖>ε

∥∥∥E
[
xxT (β − β0){1−G(ξ∗|x)}f0(ξ

∗|x)
] ∥∥∥,

which is strictly positive under assumptions A1 and A3. Here ξ∗ is some value

between xT β and xT β0.
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(1.5’) Let {an} be a sequence of positive numbers approaching zero as n → ∞. Note

that E
{‖xiwiI(Yi ≤ xT

i β)‖2
} ≤ E (‖xi‖2) ≤ Kx, under assumption A1. It then

follows from Chebyshev’s inequality that

sup
β∈B,‖F−F0‖H≤an

‖Mn(β, F )−M(β, F )‖ = op(1).

Proof of Theorem 2 : The asymptotic normality of β̂ relies on the results of Theorem

2 in Chen et al. (2003). We need prove the conditions (2.1)-(2.4), (2.5’) and (2.6’) in

their paper. The conditions (2.1), (2.4) and (2.5’) hold directly by (22), Lemmas 1 and

2, respectively. Note that for any Ci lying above the τth conditional quantile xT
i β0,

the quantile fit will not be affected if we assign the entire weight to either (xi, Ci) or

(xi, Y
+∞). Bearing this in mind, we obtain

Γ1(β0, F0) =
∂M(β, F0)

∂β

∣∣∣
β=β0

= −E
[
xxT

{
1−G(xT β0|x)

}
f0(x

T β0|x)
]
,

which is continuous at β0 and of full rank under assumption A3. For all β ∈ B, we

define the functional derivative of M(β, F ) at F0 in the direction [F − F0] as

Γ2(β, F0)[F − F0] = E

(
lim
ε→0

1

ε
[M {β, F0 + ε(F − F0)} −M(β, F0)]

)

= (1− τ)E

[
x

∫ xT β

−∞

F (t|x)− F0(t|x)

1− F0(t|x)
I(F0(t|x) < τ)g(t|x)dt + E {xA(β)}

]
, (23)

where A(β) = lim
ε→0

ε−1
∫ xT β

−∞ g(t|x)[I{Fε(t|x) < τ} − I{F0(t|x) < τ}]dt and Fε(t|x) =

F0(t|x) + ε(F (t|x) − F0(t|x)). Firstly, it’s easy to verify that for β such that xT β ≤
xT β0, A(β) = 0. For β such that xT β > xT β0, F−1

ε (τ |x) < xT β for ε sufficiently

small. In this case,

A(β) = lim
ε→0

ε−1

∫ xT β

−∞
g(t|x) [I{Fε(t|x) < τ} − I{F0(t|x) < τ}] dt

= lim
ε→0

ε−1

∫ xT β

−∞
g(t|x)

[
I{xT β0 ≤ t ≤ xT β} − I{F−1

ε (τ |x) ≤ t ≤ xT β}] dt

= lim
ε→0

ε−1[G{F−1
ε (τ |x)|x} −G(xT β0|x)].
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For β = β0, note that I{F0(t|x) < τ} = 1 for t ∈ (−∞,xT β), so

A(β0) = − lim
ε→0

ε−1

∫ xT β0

−∞
g(t|x)I{Fε(t|x) > τ}dt = lim

ε→0
ε−1[G{F−1

ε (τ |x)|x} −G(xT β0|x)].

By expanding G{F−1
ε (τ |x)} (treated as a function of ε) around ε = 0, and using the

fact that d
dε

F−1
ε (τ |x)|ε=0 = τ−F (xT β0)

f0(xT β0)
(Example 20.5 in van der Vaart, 1998), we obtain

G(F−1
ε (τ |x)|x) = G(xT β0|x) + g(xT β0|x)

τ − F (xT β0|x)

f0(xT β0|x)
ε + O(ε2).

Therefore, for β such that xT β ≥ xT β0,

A(β) = g(xT β0|x)
F0(F

−1
0 (τ))− F (F−1

0 (τ))

f0(xT β0|x)
. (24)

Following the routine Taylor expansion, we can verify condition (2.3) under assump-

tions A1 and A2. We now verify condition (2.6). Combining (23) and (24), we have

Γ2(β0, F0)[F̂ − F0]

= (1− τ)E

[
x

∫ xT β0

−∞

F̂ (t|x)− F0(t|x)

1− F0(t|x)
g(t|x)dt + x

g(xT β0|x)

f0(xT β0|x)
{F0(x

T β0|x)− F̂ (xT β0|x)}
]

= (1− τ)
[ ∫ +∞

−∞
x~(x)

∫ xT β0

−∞

g(t|x)

1− F0(t|x)
{F̂ (t|x)− F0(t|x)}dtdx

−
∫ +∞

−∞
x~(x)

g(xT β0|x)

f0(xT β0|x)
{F̂ (xT β0|x)− F0(x

T β0|x)}dx
]
. (25)

It follows from Theorem 2.3 of Gonzalez-Manteiga and Cadarso-Suarez (1994) that

under assumptions A2-A5,

F̂ (t|x)− F0(t|x) = (nhn)−1

n∑
j=1

K

(
x− xj

hn

)
ξ(Yj, δj, t,x) + Op((

log n

nhn

)3/4 + h2
n),

where ξ(Yj, δj, t,x) = {1−F0(t|x)}
[
− ∫ min(Yj ,t)

0
f0(s|x)ds

{1−F0(s|x)}2{1−G(s|x)} +
I(Yj≤t,δj=1)

{1−F0(Yj |x)}{1−G(Yj |x)}

]

are independent random variables with mean zero and finite variances for any given t

and x.
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We now plug this linear representation of F̂ (t)−F0(t) in Γ2(β0, F0)[F̂ −F0]. Using

standard change of variables and Taylor expansion arguments, and the assumption

that
∫

K(u)du = 1, we obtain

Γ2(β0, F0)[F̂ − F0] = (1− τ)n−1

n∑
i=1

φ(Yi, δi,x
T
i β0,xi) + op(n

−1/2), (26)

where

φ(Yi, δi,x
T
i β0,xi)

= xi~(xi)
{ ∫ xT

i β0

−∞

g(t|xi)ξ(Yi, δi, t,xi)

1− F0(t|xi)
dt− g(xT

i β0|xi)

f0(xT
i β0|xi)

ξ(Yi, δi,x
T
i β0,xi)

}
(27)

is a random vector with mean 0 and E
{‖φ(Yi, δi,x

T
i β0,xi)‖2

}
< ∞ under assump-

tions A1-A3. Recall that Mn(β0, F0) = n−1
∑n

i=1 mi(β0, F0) with mi(β0, F0) being

independent mean 0 random vectors. From (19), it’s easy to verify that

Cov{mi(β0, F0)}
= E{x,C}

[
xxT

{
I(C ≤ xT β0)

F0(C|x)(1− τ)2

1− F0(C|x)
+ I(C > xT β0)τ(1− τ)

}]

.
= d1.

Combining (18) and (26), and applying the central limit theorem gives

n1/2
{
Mn(β0, w0) + Γ2(β0, F0)[F̂ − F0]

}
D−→ N(0,V),

where

V = Cov
{
mi(β0, F0) + (1− τ)φ(Yi, δi,x

T
i β0,xi)

} .
= d1 + d2 + d3,

d2 = (1− τ)E
{
mi(β0, F0)φ

T (Yi, δi,x
T
i β0,xi)

}
,

d3 = (1− τ)2E
{
φ(Yi, δi,x

T
i β0,xi)φ

T (Yi, δi,x
T
i β0,xi)

}
.

The proof for (12) is thus complete by Theorem 2 of Chen et al. (2003).
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Table 1: Simulation results for Example 1, based on 500 simulation runs. The ECP

and EML are the empirical coverage probabilities and empirical mean lengths for

different confidence interval procedures with a nominal level of 0.95. The last two

rows are the averaged Monte Carlo standard errors of different measurements for crq

and LcrqCV , respectively.

Bias MSE ECP EML

τ n Method b0 b1 b0 b1 b0 b1 b0 b1

0.5 200 omni 0.004 −0.002 0.029 0.092

crq −0.010 −0.011 0.042 0.157 0.916 0.942 0.835 1.567

Lcrq −0.005 −0.019 0.041 0.157 0.960 0.968 0.816 1.564

LcrqCV −0.010 −0.024 0.041 0.157 0.966 0.976 0.816 1.562

naive −0.208 −1.120 0.102 1.540

500 omni −0.003 0.003 0.012 0.036

crq −0.008 −0.005 0.016 0.058 0.928 0.936 0.512 0.987

Lcrq −0.008 −0.014 0.016 0.059 0.966 0.956 0.512 0.979

LcrqCV −0.010 −0.016 0.016 0.060 0.968 0.954 0.512 0.977

naive −0.212 −1.099 0.068 1.324

0.7 200 omni 0.003 −0.005 0.034 0.098

crq −0.014 0.001 0.045 0.158 0.900 0.932 0.882 1.691

Lcrq −0.005 −0.010 0.047 0.163 0.958 0.964 0.862 1.656

LcrqCV −0.009 −0.018 0.048 0.164 0.946 0.964 0.858 1.644

naive −0.172 −0.609 0.073 0.526

500 omni −0.006 0.003 0.013 0.041

crq −0.010 −0.000 0.018 0.063 0.908 0.930 0.545 1.035

Lcrq −0.008 −0.007 0.018 0.063 0.944 0.968 0.531 1.017

LcrqCV −0.010 −0.007 0.018 0.063 0.936 0.964 0.531 1.019

naive −0.165 −0.605 0.045 0.428

crq 0.008 0.014 0.002 0.007 0.013 0.011 0.011 0.016

LcrqCV 0.008 0.014 0.002 0.007 0.009 0.008 0.007 0.011
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Table 2: Simulation results for Example 2, based on 500 simulation runs. The ECP

and EML are the empirical coverage probabilities and empirical mean lengths for

different confidence interval procedures with a nominal level of 0.95. The last two

rows are the averaged Monte Carlo standard errors of different measurements for crq

and LcrqCV , respectively.

Bias MSE ECP EML

τ n Method b0 b1 b0 b1 b0 b1 b0 b1

0.5 200 omni −0.004 0.013 0.020 0.079

crq 0.034 −0.084 0.025 0.102 0.928 0.900 0.641 1.247

Lcrq −0.053 0.007 0.022 0.074 0.952 0.948 0.577 1.131

LcrqCV −0.065 0.020 0.022 0.073 0.948 0.948 0.571 1.113

naive −0.417 −0.264 0.194 0.123

500 omni −0.002 0.001 0.009 0.034

crq 0.035 −0.099 0.011 0.051 0.904 0.878 0.387 0.762

Lcrq −0.052 −0.001 0.011 0.035 0.898 0.960 0.353 0.697

LcrqCV −0.061 0.013 0.011 0.033 0.900 0.952 0.353 0.702

naive −0.414 −0.256 0.179 0.086

0.7 200 omni −0.000 0.015 0.023 0.089

crq 0.042 −0.091 0.028 0.108 0.912 0.892 0.658 1.268

Lcrq −0.034 −0.007 0.023 0.086 0.942 0.956 0.583 1.150

LcrqCV −0.049 0.000 0.023 0.081 0.930 0.950 0.567 1.125

naive −0.216 −0.134 0.062 0.077

500 omni −0.001 0.008 0.010 0.037

crq 0.043 −0.106 0.014 0.055 0.890 0.852 0.407 0.781

Lcrq −0.037 −0.010 0.011 0.039 0.902 0.932 0.368 0.723

LcrqCV −0.045 0.002 0.011 0.040 0.918 0.932 0.364 0.717

naive −0.220 −0.128 0.055 0.040

crq 0.006 0.012 0.001 0.005 0.013 0.014 0.007 0.014

LcrqCV 0.005 0.010 0.001 0.004 0.012 0.010 0.004 0.008
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