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Promoting sign consistency in the cure
model estimation and selection

Xingjie Shi,1 Shuangge Ma2 and Yuan Huang3

Abstract

In survival analysis, when a subset of subjects has extremely long survival, the two-part cure rate model has been

commonly adopted. In the two-part model, the first part is for a binary response and describes the probability of cure.

The second part is for a survival response and describes the probability of survival. Despite their intuitive

interconnections, most of the existing works estimate the two parts without any constraint. The existing works on

proportionality promote similarity in magnitudes (i.e. quantitative similarity) and can be too restrictive. In this study, for

the two-part cure rate model, we propose imposing a sign-based penalty to promote similarity in signs (i.e. qualitative

similarity). The proposed strategy can be more informative than those that neglect the two-part interconnections and be

less restrictive than the existing proportionality works. Penalty is also imposed to select relevant variables and

accommodate high-dimensional data. Numerical studies, including simulation and two data analyses, demonstrate the

advantageous performance of the proposed approach.
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1 Introduction

In survival analysis, when a subset of subjects has extremely long survival, the cure rate model is commonly
adopted.1–3 Among the existing cure rate models, the two-part model, with an intuitive interpretation, has been
popular.4 In the two-part model, the first part is for a binary response, that is, whether a subject is ‘‘cured’’.
For this part, the logistic regression model and other generalized linear models have been commonly adopted.
The second part is for a (censored) survival response. For this part, the Cox and other survival models have been
adopted. Extensive works have been conducted. For relevant discussions, we refer to literature.5,6 In more recent
studies, multi- and high-dimensional covariates are sometimes present. Under certain scenarios, it may be desirable
to select relevant covariates and screen out the noisy ones. For this purpose, regularized especially penalized
estimation has been conducted. For relevant discussions, we refer to literature.7,8

Although the existing works have been successful in multiple aspects, our literature review suggests that most of
them have not paid sufficient attention to the interconnections between the covariate effects in the two model parts.
Specifically, they usually estimate the two sets of covariate effects ‘‘freely’’ without imposing any constraint.
Although the two model parts have different forms and are on different scales, they in fact describe two highly
related processes: from infinite long survival (not susceptible) to finite survival (susceptible), and from finite longer
survival to shorter survival. As such, it is reasonable to expect that the two sets of covariate effects are somewhat
interconnected. In the literature, this has been considered in the proportionality works,9,10 under which it is
assumed that some covariate effects are proportional in the two model parts. Published studies11,12 have argued
convincingly the necessity of considering the interconnections in the covariate effects. Theoretical derivations9 and
numerical studies13 suggest that, under quite general model settings, the proportionality constraint can improve
estimation and variable selection accuracy.
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The proportionality works promote similarity in the magnitudes of the regression coefficients (up to a constant),
that is, quantitative similarity. It needs to be recognized that, although the two model parts are related, they still
describe different ‘‘regions’’ of survival. As such, the assumption of quantitative similarity may be too stringent.
Taking into account the successes of the proportionality works as well as their limitations, in this study, we propose
promoting similarity in the signs of the regression coefficients. That is, with the interconnections between the two
model parts, we expect whether a covariate is positively (or negatively, or not) associated with survival is consistent
to a certain extent. However, we do not further impose constraints on magnitudes. In the context of integrative
analysis of multiple datasets,14 which is dramatically different from the present settings, it has been shown that
promoting qualitative similarity is needed beyond quantitative similarity under certain scenarios and demands new
techniques. However, this issue has not been examined for the two-part cure models. We note that it is possible that a
covariate has different effects and even opposite signs in the two model parts. For example, a treatment may have a
positive short-term effect and a detrimental long-term effect. To accommodate such a scenario, in the proposed
study, the sign consistency is encouraged but not required.

In this study, we consider the two-part cure rate model. Different from most of the existing works, the focus is
on the structure of covariate effects. Complementary to the existing proportionality studies, our goal is to promote
sign consistency, i.e. qualitative similarity in covariate effects, for the two model parts, while being flexible to
accommodate possibly opposite signs. This is achieved using a novel sign-based penalization approach.
In addition, both low-dimensional and high-dimensional cases are considered, advancing from many of the
existing studies that are focused on one case only. A penalization strategy is adopted to accommodate high-
dimensionality, select relevant variables, and conduct regularized estimation. Overall, this study can provide a
practically useful alternative strategy for analyzing many practical data. It is also noted that the proposed method
may be easily extended to other two-part models (for example, the logisticþ linear models as in Fang et al.11) for
heterogeneous data.

2 Methods

2.1 Data and model

For survival data where some subjects may have extremely long survival, we consider the two-part model which
postulates that the population is a mixture of susceptible and ‘‘cured’’ subjects. Let U be the time to event and C be
the time of right censoring. Denote T ¼ minðU,CÞ and � ¼ IðU � CÞ. Note that for subjects that are not
susceptible, U ¼ 1. The susceptibility status is indicated by a binary variable Y, where Y¼ 1 for those who are
susceptible. Denote the length-p vector Z as the covariate of interest. One observation consists of ðT,�,ZÞ.

The first part of the model describes whether a subject is susceptible, for which we adopt the popular logistic

regression model. That is, PrðY ¼ 1jZÞ ¼ �ðZÞ ¼ expð�0þZ
0�Þ

1þexpð�0þZ0�Þ
, where c0 is the intercept and c is the length-p vector

of unknown regression coefficients. For susceptible subjects, we model their survival using the Cox model, where
the conditional hazard function is hðUjZÞ ¼ h0ðUÞ expðZ

0�Þ, h0ðUÞ is the nonparametric baseline hazard function,
and � is the length-p vector of regression coefficients. Further denote f and f0 as the density functions and S and S0

as the survival functions corresponding to h and h0, respectively. The population survival function is
�ðZÞSþ 1� �ðZÞ.

Assume n observations. Let ðti, �i, ziÞ denote the ith realization of ðT,�,ZÞ, i ¼ 1, . . . , n. Then the full log-
likelihood function is

‘ ð�, �,S0Þ ¼ log
Y
i

�i f ðti, ziÞ½ �
�i ð1� �iÞ þ �iSðti, ziÞ½ �

1��i ð1Þ

where �i ¼ �ðziÞ and Sðti, ziÞ ¼ S0ðtiÞ
expðz0i�Þ

2.2 Penalized estimation

Consider the scenario with a moderate to large p, under which some covariates may not be relevant. To accommodate
the potential high data dimensionality and select relevant variables, we adopt penalization. Further, to promote sign
consistency, a new penalty is developed. Specifically, we propose the penalized objective function

�
2

n
‘ð�, �,S0Þ þ

Xp
l¼1

�ðj�lj; �1, �Þ þ
Xp
l¼1

�ðj�lj; �2, �Þ þ
�3
2

Xp
l¼1

signð�lÞ � signð�lÞ½ �
2

ð2Þ
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where �ðt; �s, �Þ ¼ �s
R t
0 ð1�

x
��s
Þ
þ
dx (s¼ 1, 2) is the minimax concave penalty (MCP),15 and �l and cl

(l ¼ 1, 2, . . . , p) are the l-th component of � and c, respectively. � ¼ ð�1, �2, �3Þ are data-dependent tuning
parameters, and m is the regularization parameter.

[Remark 1] Here we consider the same set of covariates Z for both model parts for convenience. For cases
where either prior knowledge or data collection lead to different sets of covariates, we can modify the sign based
penalty term as

P
l2L signð�lÞ � signð�lÞ½ �

2, where L denotes the index set of covariates that are shared by the two
model parts.

Overall, our proposal fits well in the penalized estimation and selection paradigm. In equation (2), the first two
penalties conduct estimation and selection for c and �, respectively. The MCP is adopted for its satisfactory
properties demonstrated in the literature and can be replaced by other penalties. To reduce computational cost,
it is possible to set �1 ¼ �2. The newly proposed penalty �3

2

Pp
l¼ 1 signð�lÞ � signð�lÞ½ �

2 directly promotes sign
consistency between � and c and has an intuitive definition. Different from those in Fan et al.12 and some
other existing works, it is built on the sign function, not magnitude, and hence promotes qualitative similarity.
The tuning parameter �3 adjusts the degree of penalization data-dependently. When there is little support from
data for sign consistency, it may take a small value, and the proposed method simplifies to the ‘‘standard’’
penalized estimation and selection. It is noted that if there is strong prior knowledge that some covariates have
opposite signs, then they can be excluded from the sign penalty.

As a penalty involving the sign function is computationally difficult to optimize, we propose the following
approximation

�3
2

Xp
l¼1

signð�lÞ � signð�lÞ½ �
2
�
�3
2

Xp
l¼1

�l
j�lj þ 	

�
�l

j�lj þ 	

� �2

ð3Þ

where 	4 0 controls the degree of approximation (more discussions below).

2.3 Computation

Computation is challenging for several reasons. First, with the cure rate model, calculation of nonparametric S0

cannot be eliminated. Second, high-dimensionality increases computational cost. For example, the existing Lasso-
penalized algorithm implemented by Liu et al.7 cannot cope with high-dimensional data. Lastly, the sign-based
penalty adds complexity to the objective function. To tackle the challenging computation problems, we propose a
new efficient algorithm, the Expectation/Coordinate Descent (ECD) algorithm, which can be considered as an
Expectation/Conditional Maximization (ECM) algorithm.16 In the E step, the susceptible indicators are
introduced to obtain a full likelihood function that allows the optimization respect to c, �, and S0 to be
conducted separately, using the profile likelihood technique. In the coordinate descent (CD) steps, minimizing
the penalized objective function can be performed by updating a single parameter with the remaining parameters
fixed at their most recent values. Instead of iteratively updating � and c until convergence for each CD step, we use
one-step update that might lead to more iterations of the ECD algorithm, but reduce the overall computational
time,17 which makes it easier to handle high-dimensional data. The details are as follows. We have developed the
code in R and made it publicly available at www.github.com/shuanggema.

2.3.1 E step

Expected complete data log-likelihood: Consider the complete data fðti, �i, zi, yiÞ, i ¼ 1, . . . , ng, which include the
observed data as well as the unobserved yi’s. The complete data log-likelihood is

‘cð�, �,S0; yÞ ¼
X
i

yi log�i þ ð1� yiÞ logð1� �iÞ½ � þ
X
i

½�i log hðti, ziÞ þ yi logSðti, ziÞ� ð4Þ

Note that we include y in the likelihood notation to emphasize the dependence on the unobserved indicators.
The E step of the ECD algorithm calculates the expectation of equation (4) with respect to the distribution of

the unobserved yi’s, given the observed data O and current estimate ~
 of 
 ¼ ð�, �,S0Þ. Denote wi ¼ EðyijO, 
Þ.
Then the expected log-likelihood is the sum of the following functions

‘1ð�;wÞ ¼
X
i

wi log�i þ ð1� wiÞ logð1� �iÞ½ �,

‘2ð�,S0;wÞ ¼
X
i

½�i log hðti, ziÞ þ wi logSðti, ziÞ�
ð5Þ
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Note that wi can be viewed as the posterior probability of the ith subject being susceptible and updated by

~wi ¼ �i þ ð1� �iÞ
~�i ~Sðti, ziÞ

ð1� ~�iÞ þ ~�i ~Sðti, ziÞ
ð6Þ

where ~�i ¼
expð ~�0þz

0
i
~�Þ

1þexpð ~�0þz
0
i
~�Þ and

~Sðti, ziÞ ¼ ~S0ðtiÞ
expðzi

0 ~�Þ. Estimation of S(t, z) in turn involves estimating the baseline

hazard function h0. For h0, we propose using a profile likelihood construction similar to that used in the standard
Cox model, motivated by Peng and Dear.18

Let �1 5 � � � 5 �k denote the distinct uncensored event times. Denote Dj as the set of dj tied uncensored events
at �j. Let Ej be the set of subjects with censoring times in ½�j, �jþ1Þ, j ¼ 0, . . . , k, where �0 ¼ 0 and �kþ1 ¼ 1. Denote
Rj as the at risk set at time �j. Following the nonparametric profile likelihood method of Breslow,19 maximizing ‘2
with given parameter estimate ~� and weights ~wi’s leads to a discrete baseline hazard with ĥ0ðtÞ ¼ 0 for all
t =2 f�1, . . . , �kg. Thus, ĥ0ð�1Þ, . . . , ĥ0ð�kÞ

n o
that maximizes ‘2 also maximizes

Xk
j¼1

dj log h0ð�jÞ �
Xk
j¼1

h0ð�jÞ
X
i2Rj

~wi expðz
0
i
~�Þ

2
4

3
5 ð7Þ

Differentiating equation (7) with respect to h0ð�jÞ gives the maximum likelihood estimate as

ĥ0ð�jÞ ¼
djP

i2Rj

~wi expðz
0
i
~�Þ

ð8Þ

The estimated baseline survival function S0ðtÞ is then

Ŝ0ðtÞ ¼ exp �
X
j:�j � t

ĥ0ð�jÞ

( )
ð9Þ

To ensure that the susceptible subjects have zero survival at time infinity, we impose Ŝ0ðtÞ ¼ 0 for t4 �k.

2.3.2 CD step

Here with fixed estimates for h0 and w, we optimize with respect to c and �. Substitute the current estimates ~S0 and
~w into ‘2ð�,S0;wÞ, and consider

‘2ð�, ~S0; ~wÞ ¼
Xk
j¼1

�dj log
X
i2Rj

~wi expðz
0
i�Þ þ x0j�

2
4

3
5 ð10Þ

where xj ¼
P

i2Dj
zi.

With a slight abuse of notations, we abbreviate ‘1ð�; ~wÞ and ‘2ð�, ~S0; ~wÞ as ‘1ð�Þ and ‘2ð�Þ, respectively. The
M-step in a standard EM algorithm consists of minimizing

�
2

n
‘1ð�Þ þ ‘2ð�Þ½ � þ

Xp
l¼1

�ðj�lj; �1, �Þ þ �ðj�lj; �2, �Þ½ � þ
�3
2

Xp
l¼1

signð�lÞ � signð�lÞ½ �
2

ð11Þ

(or the approximated objective function) with respect to c and �. This can be achieved using the CD approach.
Below we provide details for the CD step for c. The procedure for � is similar.

Optimization with respect to c: We seek to minimize equation (11) with respect to cl while fixing � and �l0 (l
0 6¼ l)

at their current estimates. Here we adopt a local quadratic approximation approach. Let rl‘ and r
2
l ‘ denote the
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first and second derivatives of ‘ with respect to the lth variable, respectively. With the quadratic approximation, we
have the following objective function for cl

�
1

n
r2
l ‘1ð ~�Þð�l � ~� lÞ

2
�
2

n
rl‘1ð ~�Þð�l � ~� lÞ þ �ðj�lj; �1, �Þ þ

�3
2

~�l

j ~�lj þ 	
�

�l
j ~� lj þ 	

 !2

¼
1

2
a1l�

2
l � b1l�l þ c1lj�lj þ const

ð12Þ

where

a1l ¼ �
2

n
r2
l ‘1ð ~�Þ �

Iðj ~� lj5 ��1Þ

�
þ �3

1

ðj ~� lj þ 	Þ
2
,

b1l ¼
2

n
�r2

l ‘1ð ~�Þ ~� l þ rl‘1ð ~�Þ
� �

þ �3
~�l

ðj ~�lj þ 	Þðj ~� lj þ 	Þ
,

c1l ¼ �1Iðj ~� lj5 ��1Þ

ð13Þ

with

rl‘1ð�Þ ¼
Xn
i¼1

ð ~wi � �iÞzil,

r2
l ‘1ð�Þ ¼ �

Xn
i¼1

�ið1� �iÞz
2
il

ð14Þ

The minimizer of (12) is

�̂l ¼
signðb1lÞ

a1l
ðjb1lj � c1lÞþ ð15Þ

For the intercept, we have

�̂0 ¼ ~�0 �
r0‘1ð ~�Þ

r2
0‘1ð ~�Þ

ð16Þ

Optimization with respect to b: To update �l in a similar way as equation (15), we need

a2l ¼ �
2

n
r2
l ‘2ð

~�Þ �
Iðj ~�lj5 ��2Þ

�
þ �3

1

ðj ~�lj þ 	Þ
2
,

b2l ¼
2

n
�r2

l ‘2ð
~�Þ ~�l þ rl‘2ð ~�Þ

� �
þ �3

~� l

ðj ~�lj þ 	Þðj ~� lj þ 	Þ
,

c2l ¼ �2Iðj ~�lj5 ��2Þ

ð17Þ

and the derivatives of ‘2

rl‘2ð�Þ ¼
Xk
j¼1

xjl � dj

P
i2Rj

~wi expðz
0
i�ÞzilP

i2Rj
~wi expðz

0
i�Þ

" #
,

r2
l ‘2ð�Þ ¼

Xk
j¼1

dj

P
i2Rj

~wi expðz
0
i�Þzil

� �2
P

i2Rj
~wi expðz

0
i�Þ

� �2 �
P

i2Rj
~wi expðz

0
i�Þz

2
ilP

i2Rj
~wi expðz

0
i�Þ

2
64

3
75

ð18Þ
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2.3.3 ECD algorithm

With fixed tunings, the ECD algorithm is summarized in Algorithm 1.

Algorithm 1: the ECD Algorithm

Initialize m¼ 0, 
̂m ¼ ð�̂m, �̂m, Ŝm
0 Þ, and wm.

repeat

� E-Step
– Compute Ŝmþ1

0 from (9),
– Update wmþ1 from (6).
� CD-Step

– For l ¼ 0, . . . , p, update �mþ1l according to (16) and (15) with (13);
– For l ¼ 1, . . . , p, update �mþ1l similarly to (15) with (17).

m ¼ mþ 1;
until the change of 
 is smaller than a threshold;

Following the same arguments as for the ECM algorithm in Meng and Rubin,16 it is easy to see that this
algorithm converges to a stationary point which is also a local optimizer.

2.3.4 Tuning parameter selection

To reduce computational cost, the value of m in MCP can be fixed, as suggested in the literature. In our
numerical study, we fix m¼ 6. For approximating the sign function, a smaller value of 	 may lead to a better
approximation but at the same time less stable estimation. In our numerical study, we fix 	 ¼ 0:1, which
leads to satisfactory results. � is selected using V-fold cross validation. As only simple updates are involved
and no iteration is needed in the CD step, the overall computational cost is affordable. For example, with
fixed tunings, one replicate of Scenario (1) in Example 1 takes about 11 s on a standard PC. In practice,
with the computation run over a grid of tuning parameters, the overall computational cost can increase
accordingly.

3 Simulation

We set n¼ 400 and consider both the low-dimensional case with p¼ 30 and high-dimensional case with
p¼ 300. The covariates are generated from a multivariate normal distribution with marginal means
zero and variances one. Covariates l and l0 have correlation �ll0 ¼ �

jl�l0 j with � ¼ 0:5. The cure indicator is
generated from a logistic model. For susceptible subjects, the event times are generated from the Cox model
hðUjZÞ ¼ 2U expðZ0�Þ. The censoring times are generated independently from exponential distributions. In all
simulations, the overall censoring rate is about 60%, with about 37% cured. Therefore, the effective sample
size (number of events) is about 160. More specifications are discussed below. We analyze data with the
proposed approach as well as two alternatives. (Alt.1) The sign-based penalty is replaced by �3

Pp
l¼1 ð�l � ��lÞ

2.
This is a magnitude-based penalty and has been considered in Fan et al.12 under a different two-part model.
Here � also needs to be estimated data-dependently. (Alt.2) This approach does not consider any
interconnection between the two model parts (i.e. �3 ¼ 0 in the proposed approach). It serves as
benchmark. Note that this approach is a version of Liu et al.7 but uses MCP instead of Lasso to achieve
sparsity. To compare different approaches, we consider identification accuracy measured using the true positive
rate (TPR) and false positive rate (FPR). In addition, we also consider prediction performance evaluated using
the relative model error (RME)20 and estimation performance evaluated using the estimation error (ERR). For
�, the four measures are defined as below

TPR ¼

Pp
l¼1 Ið�

0
l 6¼ 0 \ �̂l 6¼ 0ÞPp
l Ið�

0
l 6¼ 0Þ

,

FPR ¼

Pp
l¼1 Ið�

0
l ¼ 0 \ �̂l 6¼ 0ÞPp
l Ið�

0
l ¼ 0Þ

,
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RME ¼
ð�̂� �0Þ

T
�ð�̂� �0Þ

ð�̂
�
� �0Þ

T
�ð�̂

�
� �0Þ

,

ERR ¼
ð�̂� �0Þ

T
ð�̂� �0Þ

ð�̂
�
� �0Þ

T
ð�̂
�
� �0Þ

ð19Þ

where �0, �̂, and �̂� are the true, estimated, and estimated parameters as if the nonzero ones are known.
The measures can be defined similarly for c. All the summary statistics are calculated based on 1000 replications.

Example 1. We consider cases where c and � have the same signs and same/similar magnitudes. Let the first six
components of c and � be nonzero. Consider the following six scenarios: (1) the nonzero components of
� are generated from Unif ð0:2, 0:6Þ, and � ¼ �. (2) The first three nonzero components of
� are generated from Unif ð0:2, 0:4Þ, and the next three are from Unif ð0:6, 0:8Þ. � ¼ �. (3) The nonzero
components of � are generated from Unif ð0:6, 0:8Þ, and � ¼ �. Scenarios (1) and (2) contain some weak signals
while all signals in Scenario (3) are strong. Scenarios (4) to (6) are similar to Scenarios (1) to (3), with
� ¼ � þNð0, 0:01Þ.

Table 1 shows the summary statistics for the high-dimensional cases. Although Example 1 can favor both the
proposed method and Alt.1 by design, the proposed method outperforms Alt.1, and both of them outperform
Alt.2. Consider for example Scenario 5 in high-dimensional cases (Table 1). For c, the TPR values are 0.73
(proposed), 0.58 (Alt.1), and 0.21 (Alt.2), respectively. All three approaches have close to zero FPRs. The
proposed approach also excels in terms of prediction and estimation. The RME values are 0.96 (proposed),
1.32 (Alt.1), and 4.40 (Alt.2), respectively. The ERR values are 0.30 (proposed), 0.34 (Alt.1), and 1.47 (Alt.2),

Table 1. Simulation Example 1, high-dimensional data.

c �

Scenario Proposed Alt.1 Alt.2 Proposed Alt.1 Alt.2

RME 1.24 (0.89) 2.26 (1.80) 3.91 (2.62) 3.11 (2.17) 4.23 (3.15) 5.05 (3.31)

1 ERR 0.34 (0.23) 0.60 (0.30) 0.96 (0.28) 0.27 (0.17) 0.32 (0.16) 0.43 (0.21)

TPR 0.64 (0.27) 0.41 (0.28) 0.14 (0.15) 0.73 (0.20) 0.73 (0.21) 0.62 (0.23)

FPR 0.01 (0.01) 0.01 (0.01) 0.00 (0.00) 0.02 (0.02) 0.03 (0.02) 0.02 (0.01)

RME 0.94 (0.51) 1.36 (1.09) 4.99 (3.12) 2.19 (1.31) 2.70 (1.82) 3.51 (2.17)

2 ERR 0.28 (0.15) 0.35 (0.17) 1.49 (0.34) 0.21 (0.11) 0.23 (0.09) 0.29 (0.12)

TPR 0.72 (0.22) 0.55 (0.21) 0.18 (0.15) 0.78 (0.14) 0.78 (0.14) 0.73 (0.16)

FPR 0.01 (0.01) 0.00 (0.01) 0.00 (0.00) 0.01 (0.02) 0.02 (0.02) 0.02 (0.01)

RME 0.74 (0.19) 0.62 (0.52) 6.76 (5.45) 0.98 (0.26) 1.31 (0.75) 2.13 (1.12)

3 ERR 0.20 (0.15) 0.18 (0.17) 2.51 (0.51) 0.07 (0.05) 0.09 (0.06) 0.15 (0.10)

TPR 0.99 (0.09) 0.95 (0.17) 0.24 (0.18) 1.00 (0.00) 1.00 (0.02) 0.99 (0.04)

FPR 0.00 (0.01) 0.00 (0.01) 0.00 (0.00) 0.01 (0.01) 0.02 (0.02) 0.02 (0.01)

RME 1.28 (1.02) 2.34 (1.88) 4.09 (2.71) 3.04 (2.25) 4.01 (2.77) 5.17 (3.23)

4 ERR 0.35 (0.28) 0.57 (0.31) 1.02 (0.36) 0.27 (0.18) 0.32 (0.17) 0.43 (0.20)

TPR 0.63 (0.29) 0.44 (0.27) 0.15 (0.14) 0.74 (0.21) 0.73 (0.22) 0.63 (0.23)

FPR 0.01 (0.01) 0.01 (0.01) 0.00 (0.00) 0.02 (0.02) 0.03 (0.02) 0.02 (0.02)

RME 0.96 (0.66) 1.32 (1.10) 4.40 (3.09) 2.42 (1.64) 2.90 (1.93) 3.43 (2.28)

5 ERR 0.30 (0.19) 0.34 (0.20) 1.47 (0.46) 0.20 (0.10) 0.23 (0.10) 0.29 (0.12)

TPR 0.73 (0.20) 0.58 (0.20) 0.21 (0.17) 0.78 (0.14) 0.79 (0.15) 0.73 (0.15)

FPR 0.01 (0.01) 0.00 (0.01) 0.00 (0.00) 0.01 (0.02) 0.03 (0.02) 0.02 (0.01)

RME 0.73 (0.20) 0.65 (0.51) 6.72 (5.18) 1.00 (0.30) 1.28 (0.72) 2.22 (1.21)

6 ERR 0.23 (0.17) 0.20 (0.17) 2.55 (0.59) 0.07 (0.05) 0.09 (0.05) 0.15 (0.10)

TPR 0.98 (0.12) 0.95 (0.15) 0.23 (0.18) 1.00 (0.01) 1.00 (0.01) 0.99 (0.05)

FPR 0.00 (0.01) 0.00 (0.01) 0.00 (0.00) 0.01 (0.01) 0.02 (0.02) 0.02 (0.01)

Note: In each cell, mean (sd).
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respectively. Similar satisfactory performance is observed for �. Performance of Scenarios (4) to (6) is similar to
that of Scenarios (1) to (3).

Signal level plays an important role in the design. As shown in Table 1, the proposed method clearly
outperforms Alt.1 when there are weak signals (Scenarios (1) and (2)). For scenarios where signals are all
strong, the proposed method still shows an advantage in selection, but Alt.1 may have better estimation.
An inspection of the estimated coefficients reveals that Alt.1 has difficulty in identifying weak signals correctly.
That is, Alt.1 may shrink both coefficients to zero when they are small, resulting in a smaller TPR.

Summary statistics for the low-dimensional cases are provided in Table A1, Supplementary material.
Comparisons of the low-dimensional cases are similar to those of the high-dimensional cases. Signal level again
shows a great impact over the comparison. As a result, the advantage of Alt.1 in terms of estimation shows up
when signals are large by design (Scenarios (3) and (6)).

Example 2. We consider cases where c and � have the same signs but magnitudes can get less proportional. Denote
 ¼ ð0:2, 0:4, 0:6Þ. The following six scenarios are considered. (1) � ¼ � ¼ ð,Þ0. (2) � ¼ ð2,Þ0 and � ¼ ð, 2Þ0.
(3) � ¼ ð3,Þ0 and � ¼ ð, 3Þ0. (4) � ¼ ð4,Þ0 and � ¼ ð, 4Þ0. (5) � ¼ ð5,Þ0 and � ¼ ð, 5Þ0. (6) Components
1–3 of c and 4–6 of � are generated from Unif ð2, 2:4Þ. Components 4–6 of c and 1–3 of � are generated from
Unif ð0:2, 0:6Þ.

Table 2 shows the summary statistics for the high-dimensional cases. Unlike Example 1 which favors both the
proposed method and Alt.1, Example 2 may only favor the proposed method as the proportionality assumption is
further violated. As shown in Table 2, the proposed method has superior performance over the two alternatives,
and the advantage can be more evident as signal levels are large as in Scenarios (4) and (5). For c, the TPR values
for the proposed method, Alt.1, and Alt.2 for Scenario (1) are 0.63, 0.45, and 0.16, respectively, and are 0.94, 0.50,
and 0.42 for Scenario (5). As signal level increases, performance of the proposed method improves, which might
not hold for Alt.1. The increase of signal at the same time means more deviation from the proportionality

Table 2. Simulation Example 2, high-dimensional data.

c �

Scenario Proposed Alt.1 Alt.2 Proposed Alt.1 Alt.2

RME 1.04 (0.60) 1.77 (1.37) 4.20 (2.89) 2.49 (1.75) 3.20 (2.27) 4.18 (2.75)

1 ERR 0.27 (0.19) 0.43 (0.28) 1.11 (0.18) 0.20 (0.12) 0.24 (0.13) 0.32 (0.16)

TPR 0.63 (0.20) 0.45 (0.22) 0.16 (0.15) 0.70 (0.14) 0.70 (0.16) 0.63 (0.18)

FPR 0.01 (0.01) 0.00 (0.01) 0.00 (0.00) 0.01 (0.02) 0.03 (0.02) 0.02 (0.01)

RME 1.12 (0.76) 2.02 (1.54) 4.32 (3.17) 1.93 (1.30) 2.90 (2.03) 3.62 (2.65)

2 ERR 0.35 (0.22) 0.57 (0.29) 1.41 (0.52) 0.17 (0.13) 0.24 (0.14) 0.33 (0.19)

TPR 0.82 (0.19) 0.58 (0.20) 0.30 (0.17) 0.87 (0.13) 0.82 (0.16) 0.74 (0.18)

FPR 0.01 (0.01) 0.00 (0.00) 0.00 (0.00) 0.01 (0.02) 0.02 (0.02) 0.02 (0.01)

RME 1.12 (0.75) 2.56 (1.98) 3.46 (2.77) 1.48 (0.89) 2.83 (2.01) 3.23 (2.34)

3 ERR 0.56 (0.34) 1.08 (0.36) 1.30 (0.58) 0.13 (0.08) 0.22 (0.13) 0.30 (0.21)

TPR 0.90 (0.15) 0.55 (0.21) 0.36 (0.14) 0.92 (0.10) 0.84 (0.14) 0.76 (0.17)

FPR 0.01 (0.01) 0.00 (0.00) 0.00 (0.00) 0.01 (0.01) 0.02 (0.02) 0.01 (0.01)

RME 1.13 (0.88) 2.39 (2.20) 2.57 (2.10) 1.26 (0.75) 2.75 (2.18) 3.15 (2.36)

4 ERR 0.79 (0.57) 1.47 (0.69) 1.48 (0.67) 0.12 (0.08) 0.28 (0.20) 0.36 (0.28)

TPR 0.93 (0.11) 0.52 (0.20) 0.40 (0.14) 0.93 (0.10) 0.80 (0.16) 0.73 (0.16)

FPR 0.00 (0.01) 0.00 (0.00) 0.00 (0.00) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)

RME 1.20 (1.03) 2.71 (2.43) 2.34 (2.04) 1.21 (0.78) 3.12 (2.85) 3.12 (2.49)

5 ERR 0.97 (0.76) 1.81 (1.04) 1.82 (1.08) 0.14 (0.10) 0.35 (0.28) 0.44 (0.30)

TPR 0.94 (0.12) 0.50 (0.16) 0.42 (0.12) 0.94 (0.10) 0.74 (0.16) 0.69 (0.17)

FPR 0.01 (0.03) 0.00 (0.00) 0.00 (0.00) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)

RME 0.95 (0.88) 1.54 (1.40) 1.36 (0.99) 1.02 (0.65) 2.91 (2.74) 3.33 (2.81)

6 ERR 0.78 (0.47) 1.20 (0.66) 1.07 (0.62) 0.13 (0.10) 0.37 (0.21) 0.43 (0.23)

TPR 0.98 (0.10) 0.54 (0.11) 0.50 (0.06) 0.97 (0.09) 0.74 (0.17) 0.69 (0.17)

FPR 0.00 (0.01) 0.00 (0.00) 0.00 (0.00) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)

Note: In each cell, mean (sd).
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assumption, which negatively affects Alt.1. As an example, for c, the TRP values for Alt.1 are 0.58, 0.55, and 0.50
for Scenarios (2), (3), and (5), respectively. This indicates the drawback of Alt.2.

Similar performance is observed in the low-dimensional cases as shown in Table A2, Supplementary material.
For the proposed method, its performance constantly improves due to increased signal levels from Scenarios (1) to
(5). For Alt.1, performance improves from Scenarios (1) to (2) due to increased signal levels but gets worse for
Scenarios (3) to (5) due to the violation of proportionality.

Example 3. In the previous two examples, the components of c and � have the same signs and, therefore, both
favor the proposed method. Example 3 aims to study robustness of the proposed method. In this example, we
consider settings where the components of c and � can have different signs. Under Scenarios (1) to (6), the first six
components of c are generated from Unif ð0:4, 0:8Þ. Scenarios (1) to (3) consider cases where � has nonzero
elements different from c. That is, we have covariates having a positive sign in c but being zero in �. Here for
�, components 3–8 (Scenario (1)), 5–10 (Scenario (2)), and 7–12 (Scenario (3)) are generated from Unif ð0:2, 0:6Þ.
Scenarios (4) to (6) consider the more extreme cases where � and c have the same nonzero components but various
conflicting signs. Here the first six components of � are also generated from Unif ð0:2, 0:6Þ, but 2 (Scenario (4)), 4
(Scenario (5)), and 6 (Scenario (6)) of them have signs conflicting with c.

Table 3 shows the summary statistics for the high-dimensional cases. We note that the design of coefficients’
magnitudes for Example 3 is similar to that in Example 1, but signs/nonzero positions change, so that sign
consistency or proportionality no longer holds. For the proposed method and Alt.1, all measures (TPR, FRP,
RME, and ERR) are negatively affected as expected. However, the proposed method and also Alt.1 still have an
advantage over Alt.2. On one hand, despite the violation of sign consistency/proportionality, there is still similarity
shared between the two model parts due to the large number of zero coefficients. By exploiting such information,
both the proposed method and Alt.1 result in better selection and estimation than Alt.2. On the other hand, the
tuning parameter that controls the sign consistency or proportionality penalty is data-driven and can be adaptive

Table 3. Simulation Example 3, high-dimensional data.

c �

Scenario Proposed Alt.1 Alt.2 Proposed Alt.1 Alt.2

RME 2.73 (2.05) 2.96 (2.44) 4.09 (2.77) 3.84 (2.82) 4.05 (3.05) 5.41 (3.89)

1 ERR 1.28 (0.51) 1.33 (0.58) 1.96 (0.48) 0.39 (0.21) 0.40 (0.19) 0.57 (0.27)

TPR 0.53 (0.24) 0.47 (0.27) 0.24 (0.17) 0.67 (0.23) 0.69 (0.25) 0.54 (0.25)

FPR 0.01 (0.01) 0.00 (0.01) 0.00 (0.00) 0.02 (0.02) 0.02 (0.02) 0.01 (0.01)

RME 3.86 (2.99) 3.68 (3.04) 4.16 (2.99) 4.93 (3.35) 4.79 (3.35) 5.77 (3.79)

2 ERR 1.68 (0.49) 1.52 (0.48) 1.92 (0.48) 0.51 (0.25) 0.46 (0.28) 0.62 (0.25)

TPR 0.38 (0.18) 0.38 (0.22) 0.25 (0.16) 0.59 (0.23) 0.61 (0.25) 0.49 (0.23)

FPR 0.01 (0.01) 0.00 (0.01) 0.00 (0.00) 0.02 (0.02) 0.02 (0.02) 0.01 (0.01)

RME 4.11 (3.08) 4.05 (3.08) 4.05 (3.00) 6.14 (4.56) 5.55 (4.31) 6.51 (4.77)

3 ERR 1.76 (0.44) 1.60 (0.48) 1.88 (0.42) 0.60 (0.33) 0.54 (0.28) 0.68 (0.36)

TPR 0.29 (0.17) 0.34 (0.20) 0.26 (0.15) 0.49 (0.23) 0.53 (0.23) 0.44 (0.20)

FPR 0.01 (0.01) 0.00 (0.01) 0.00 (0.00) 0.02 (0.02) 0.02 (0.02) 0.01 (0.01)

RME 3.81 (2.63) 3.80 (2.81) 5.30 (3.77) 4.76 (3.16) 4.98 (3.14) 5.80 (3.53)

4 ERR 1.23 (0.49) 1.22 (0.52) 1.85 (0.50) 0.42 (0.21) 0.44 (0.23) 0.52 (0.22)

TPR 0.55 (0.22) 0.50 (0.23) 0.29 (0.19) 0.67 (0.19) 0.65 (0.22) 0.55 (0.22)

FPR 0.01 (0.01) 0.01 (0.01) 0.00 (0.00) 0.02 (0.02) 0.03 (0.02) 0.02 (0.02)

RME 5.03 (3.64) 5.12 (3.60) 6.01 (4.02) 6.70 (4.67) 6.37 (4.22) 7.14 (4.72)

5 ERR 1.70 (0.46) 1.55 (0.50) 1.84 (0.49) 0.64 (0.26) 0.61 (0.27) 0.70 (0.27)

TPR 0.37 (0.16) 0.36 (0.17) 0.26 (0.16) 0.48 (0.17) 0.49 (0.20) 0.42 (0.18)

FPR 0.00 (0.01) 0.00 (0.01) 0.00 (0.00) 0.02 (0.02) 0.02 (0.02) 0.02 (0.01)

RME 5.86 (3.61) 6.08 (3.96) 5.89 (3.71) 8.62 (5.78) 8.56 (6.33) 8.82 (5.82)

6 ERR 1.92 (0.48) 1.84 (0.49) 1.99 (0.52) 0.79 (0.28) 0.78 (0.29) 0.80 (0.28)

TPR 0.23 (0.14) 0.26 (0.15) 0.21 (0.15) 0.29 (0.19) 0.31 (0.20) 0.26 (0.19)

FPR 0.00 (0.01) 0.00 (0.01) 0.00 (0.00) 0.02 (0.02) 0.02 (0.02) 0.01 (0.01)

Note: In each cell, mean (sd).
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to the level of support provided by data. When data show little support to the assumption, the selected tuning may
be small which can reduce the effect of the extra penalty. Therefore, this ‘‘counterintuitive’’ observation is actually
reasonable.

Results for the low-dimensional cases are shown in Table A3, Supplementary material. Different from the high-
dimensional cases, Alt.1 has high FPR values in all six scenarios, and the proposed method has a similar problem
in Scenarios (1) to (3). Also, when the assumption is completely violated, advantages of the proposed method
diminish.

To examine performance under an even smaller sample size, we conduct simulation for all three examples with a
sample size of 200. Here the effective sample size is about 80. Results are shown in Tables B1–B6, Supplementary
material. As expected, performance of all methods deteriorates. However, the relative performance remains similar
to that observed above.

4 Data analysis

4.1 Analysis of SEER breast cancer data

Breast cancer is the most common invasive cancer among women in the USA and worldwide. It has been
recognized that, with the advancement of treatment, some breast cancer patients can have extended survival,
which can be viewed as cured. Here we analyze data from SEER, which is the largest cancer registry in the USA.
The analyzed cohort consists of patients diagnosed between 2001 and 2005 and registered in the State of
Connecticut, allowing for as long as 10 years of follow-up. The spatial variations in cancer survival have been
noted in the literature. As such, it is reasonable to focus on one registry. Following the literature,21 we consider
female patients with active follow-up and breast cancer confirmed as the first primary cancer. The age at diagnosis
was between 20 and 85, and the stage at diagnosis was worse than stage 0 (in situ). The analyzed covariates are
provided in Table 4. It is noted that the covariates in SEER have been manually selected and are expected to have
some role in breast cancer survival. After excluding records with missing covariates, 9550 cases are available for
analysis. The survival plot is shown in Figure C1, Supplementary material. Although the plateau is not very long,
there is very dense censoring in the tail, and the tail survival probability is greater than 0.6. To formally test
whether the follow-up is sufficient, we apply the test developed by Maller and Zhou.22 The test statistic is
ð1�NnnÞ

n, where Nn is the number of uncensored subjects in the time interval ð2T �n � Tn,TnÞ, where Tn is the

Table 4. Analysis of SEER breast cancer data: estimated coefficients.

Proposed Alt.1 Alt.2

c � c � c �

Race (reference¼White)

Black 0.19 0.15 0.16 0.08

Others 0.02 0.02

Ethnicity (reference¼Non-Spanish)

Spanish 0.12 0.12 0.12 0.03

Age (reference¼50–60)

20–30 0.45 0.40

30–40

40–50 0.10 0.14 0.09 0.06

60–70 0.87 0.04 1.17 �0.21 1.19 �0.17

Above 70 2.47 0.12 2.65 2.70

Marital status (reference¼Married)

Single 0.15 0.12 0.10 0.05

Separated/Divorced 0.09 0.08 0.04

Widowed 0.09 0.10 0.06

Receptor Status (reference¼Positive)

Negative 0.48 0.06 0.84 �0.07 0.86 �0.01

Stage (reference¼Localized)

Regional 0.74 0.06 0.93 �0.01 0.95

Distant 4.36 1.39 4.35 1.35 4.59 1.34
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last observed survival time and T�n is the last observed uncensored survival time. The test statistic is smaller than
10�10 compared to a 0.05 threshold,22 and there is a strong evidence that the follow-up is sufficient. Also given the
fact that breast cancer is medically curable, it is reasonable to apply the cure model. As there is no prior
information regarding opposite signs, all the covariates are included in the sign-based penalty.

The estimated coefficients using the three approaches are shown in Table 4. It is observed that different
approaches lead to different findings. The proposed approach identifies more covariate effects as being
associated with cure and survival. As all of the analyzed covariates have been previously associated with
breast cancer survival, this finding is reasonable. The individual findings are mostly consistent with the
literature. It is observed that by introducing the sign-based penalty, the proposed approach has more
consistent findings. For example for the variable receptor status, the proposed approach leads to the same
sign in c and �, whereas the two alternatives lead to conflicting signs. The sign consistent results can be easier
to interpret in practice.

With real-world data, it is difficult to evaluate identification accuracy. We resort to a multi-splitting-based
approach to evaluate prediction performance,12 which may provide support to the overall validity of analysis. For
the logistic and Cox parts, we use the AUC (area under the ROC curve) and C-statistic to assess prediction. They

are calculated as follows: (1) split the data randomly into a training set of size 2n
3 and a testing set of size n

3; (2)

obtain estimates �̂ and �̂ based on the training set for each method; (3) calculate risk scores z>i �̂ and z>i �̂ for

samples in the testing set; (4) compute the imputation-based AUC23 based on z>i �̂ for the logistic part and the

inverse-probability-weighting-based C-statistic24 based on z>i �̂ for the Cox part. With 200 splits, the median AUC

and C-statistics are (0.76, 0.65), (0.78, 0.37), and (0.79, 0.36) for the proposed method, Alt.1, and Alt.2,
respectively. The three approaches have similar performance for the logistic part. However, the proposed
approach has significantly better prediction performance for the Cox model part.

4.2 Analysis of TCGA-KIRC data

We analyze the TCGA (The Cancer Genome Atlas) data on kidney renal clear cell carcinoma (KIRC), which is the
most common subtype of kidney cancer. Data are available on 521 patients, among whom 172 died during follow-
up. The survival plot is shown in Figure C2, Supplementary material. Bussy et al.25 suggest that considering longer
survivors can lead to more satisfactory results compared to the Cox model.

Applying the Maller and Zhou test gives a test statistic less than 10�10, suggesting that it may be reasonable to
apply the cure rate model. Similar to some published studies,25–27 the goal is to identify genetic risk factors that are
potentially associated with survival. Specifically, in this analysis we focus on gene expressions. We refer to the
literature28 for more details on gene expression profiling and data processing. In principle, the proposed approach
(and alternatives) can be directly applied. To generate more reliable results, we focus on the MAPK (mitogen-
activated protein kinase) signaling pathway. This pathway plays an essential role in cell proliferation and
differentiation. It has been shown that its activation has an important effect in the tumorigenesis, metastasis, and
angiogenesis of multiple cancers, including kidney renal cell carcinoma.29,30 The set of analyzed genes is identified
from Gene Ontology using the GSEA annotation package (http://www.broadinstitute.org/gsea). A total of 306 genes
are analyzed. It is noted that the number of genes is larger than the effective sample size (number of events).

The analysis results are shown in Table 5. The estimates are sparser than in the previous example, which is
reasonable considering the small set of KIRC related genes. Different approaches lead to different findings. The
proposed approach has qualitatively more consistent findings for the two model parts. For example for gene
SHC1, the proposed approach identifies positive effects for both model parts, whereas the two alternatives only
identify its effects in c.

Literature search suggests that the findings can be biologically sensible. For TRAF2 and WNT5A which
are identified by all the three approaches, TRAF2 has been reported as a driver oncogene in many cancers,31

and WNT5A has been reported as a tumor suppressor in KIRC.32 There is also literature support for genes
that are identified only by the proposed approach. Several of them are involved in the etiology and
oncogenesis of KIRC and other cancers. For example, DAB2IP plays an important role in KIRC
development as a tumor suppressor.33 PAK1 belongs to multiple signaling pathways and contributes to the
development and progression of tumor.34

Prediction evaluation is again conducted using the multi-splitting approach. The median AUC and C-statistic
are computed as (0.78, 0.60), (0.77, 0.58), and (0.50, 0.57) for the three approaches. The proposed approach has a
small advantage over Alt.1. Both approaches significantly outperform Alt.2.
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5 Discussion

For the two-part cure rate model, in this study, we have focused on the structure of covariate effects. This may
complement the existing works on estimation and selection. Different from the proportionality studies, the
proposed method promotes sign consistency, that is, qualitative similarity in the two covariate effects. It adopts
a novel penalization technique, has an intuitive formulation, and can be effectively realized. Extensive simulations
and analysis of both low- and high-dimensional data establish its satisfactory properties. The two-part cure rate
model is a special case of the mixture model. As such, the proposed method can be extended to more general
mixture models. The penalization technique has been adopted for the promotion of sign consistency, variable
selection, and regularized estimation. Other regularization techniques may also be applicable. In practice, there
might be scientific reasoning or strong evidence on whether the long-term and short-term effects have consistent
signs. If there is strong evidence on conflicting signs, the corresponding effects can be excluded from the sign
penalty term. Without prior information, we can rely on the tuning parameter to decide how much weight to
assign to the sign penalty. That is, penalty weight on sign difference can be data-adaptive under the penalization
framework. In our data analysis, we compare different methods using AUC and C-statistic. It would be desirable
to have a test that can test the significance between models with and without promoting sign consistency. Such
work can be a future direction. Another future work is to establish the theoretical properties and develop methods
for inference such as constructing confidence intervals using computer intensive methods.
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Table 5. Analysis of TCGA-KIRC data: estimated coefficients.

Proposed Alt.1 Alt.2

Gene c � c � c �

BIRC7 0.02 0.11 0.06

BMP4 �0.06 �0.07 �0.16 �0.17

BRAF �0.03

DAB2IP �0.02

DVL3 0.14 0.27 0.21 0.37 0.20

GHR �0.01

GRM1 �0.02

IGF1R �0.05

IRAK1 0.02 0.12 0.09

MAP3K13 �0.16 �0.15 �0.48

MAPK8IP1 �0.05 �0.09 �0.03 �0.07

MAPKAPK3 �0.01 �0.07

NOD2 0.02

PAK1 0.01

PIK3R6 0.01

RAPGEF1 �0.05

SHC1 0.08 0.23 0.03 0.09

TRAF2 0.14 0.23 0.07 0.14

WNT5A 0.36 0.40 0.33 0.41
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