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Abstract. It was shown by Flesch et al (2010) that every n-person,
perfect information game with lower semicontinuous payoffs has a subgame
perfect ε-equilibrium in pure strategies. Here the same is proved when the
payoffs are upper semicontinuous.

1 Introduction

The games treated here are sequential with perfect information, infinitely
many stages, and no chance moves. There is a finite number of players and
one of them is assigned to choose an action at every stage of the game. The
payoff to each player is a function of the infinite sequence of actions chosen
by the players.

Flesch et al (2010) showed that, if the payoff functions are bounded and
lower semicontinuous, then such a game always has a pure, subgame perfect
ε-equilibrium for ε > 0. Here we prove the same result for bounded, upper
semicontinuous payoffs. Moreover, Example 3 in Solan and Vieille (2003)
shows that if one player has a lower semicontinuous payoff and another player
has an upper semicontinuous payoff, then such an equilibrium need not exist.

The proof of Flesch et al uses an intricate, transfinite construction. The
proof given here uses techniques from the Dubins and Savage (1976) theory
of gambling. It also uses certain methods from Secchi and Sudderth (2001),
who studied stochastic games with upper semicontinuous payoffs.

See the introduction to Flesch et al (2010) for historical details and ref-
erences for perfect information games.

2 The Model and Main Result

The model here and much of the notation will be the same as in Flesch et al
(2010).

Let I = {1, 2, . . . , ν} be the set of players and let A, an arbitrary non-
empty set, be the set of actions for a sequential game. Denote by H the set
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of all finite sequences of actions including the empty sequence e. Elements
of H are called histories. A given function i : H 7→ I assigns an active player
to each history.

Play begins at the empty history e and the player i(e) selects an action
a1 from A. If in the first n stages the players have selected the history hn =
(a1, a2, . . . , an) ∈ H, then player i(hn) selects the next action an+1 so that the
next history is the concatenation hn+1 = hnan+1 = (a1, a2, . . . , an, an+1). The
game is one of perfect information in that the player selecting an+1 knows
the history hn at every stage n. (When a history h = (a) has only one
coordinate, we often write a rather than (a).)

By continuing to select actions at every stage the players generate an
infinite history or play p = (a1, a2, . . .) ∈ AN. Each player j ∈ I has a
bounded payoff function uj : AN 7→ R and receives uj(p) when the play is p.

For j ∈ I, let

Hj = i−1(j) = {h ∈ H : i(h) = j}

be the set of finite histories where j is the active player.
A (pure) strategy σj for player j is a mapping σj : Hj 7→ A. A ν-tuple

σ = (σj)j∈I consisting of a strategy for each player is called a profile. Every
profile σ determines a unique play p = p(σ) = (a1, a2, . . .) where

a1 = σi(e)(e) and an+1 = σi(a1,a2,...,an)(a1, a2, . . . , an), n ≥ 1.

The payoff to player j from the profile σ is uj(σ) = uj(p(σ)). Let u = (uj)j∈I
be the vector of payoff functions, and write G(u, i) for the game with payoff
functions u and assignment function i.

Let σ be a profile and, for j ∈ I, write σ−j for the vector (σk)k∈I\{j} of
strategies for the set of all players except j.

Definition 1. For ε ≥ 0, a profile σ∗ = (σj∗)j∈I is an ε-equilibrium if
uj(σ∗) ≥ uj(σ−j∗ , σ

j) − ε for every player j and every strategy σj for player
j.

Here the interest is in the stronger notion of a subgame perfect ε-equilibrium;
that is, a profile that induces an ε-equilibrium in every subgame. To de-
fine a subgame of G(u, i), let h = (a1, . . . , an) be a finite history and let
uh = (ujh)j∈I , where for each j the function ujh : AN 7→ R is the h-section
of uj defined, for p = (b1, b2, . . .) ∈ AN by

(ujh)(p) = uj(hp) = uj(a1, . . . , an, b1, b2, . . .).
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Similarly, let ih : H 7→ I be the h-section of i defined by (ih)(h′) = i(hh′) for
h′ ∈ H. Here hh′ denotes the history consisting of the elements of h followed
by those of h′.

The subgame G(u, i|h) of G(u, i) associated with the finite history h =
(a1, . . . , an) is now defined to be the game G(uh, ih). Intuitively, this subgame
is just the continuation of the original game after the history h has occurred.
It is also natural to view this subgame as the conditional game given the
history h.

Let σ = (σj)j∈I be a profile for the original game G(u, i) and let h =
(a1, . . . , an) ∈ H. The conditional profile σ[h] = (σj[h])j∈I is the profile
consisting of the conditional strategies σj[h] where, for h′ ∈ H and hh′ ∈ Hj,
σj[h](h′) = σi(hh

′)(hh′) for all j. Thus σ[h] chooses the same action at h′ that
σ chooses at hh′ and determines the play p(σ[h]) = (b1, b2, . . .) where

b1 = σi(h)(h) = σi(a1,...,an)(a1, . . . , an)

and

bk+1 = σ(ih)(b1,...,bk)(h(b1, . . . , bk)) = σi(a1,...,an,b1,...,bk)(a1, . . . , an, b1, . . . , bk)

for k ≥ 1.
Here is a simple equality that will be used later. Let σ be a profile and

let a1 = σi(e)(e) be its initial action. Then

uj(σ) = (uja1)(σ[a1)]), j ∈ I. (2.1)

To verify this equality, let p(σ) = (a1, a2, . . .). The left side is uj(a1, a2, . . .).
But p(σ[a1]) = (a2, . . .). So the right side is (uja1)(a2, . . .) = uj(a1, a2, . . .).

It is also useful to observe that a profile σ can be specified by naming its
first action σi(e)(e) and the collection of all the conditional profiles σ[a] for
a ∈ A.

The conditional payoff to player j from the profile σ given the history h
is

uj(σ|h) = (ujh)(σ[h]) = (ujh)(p(σ[h])).

Definition 2. Let ε ≥ 0. The profile σ∗ = (σj∗)j∈I is a subgame perfect
ε-equilibrium for the game G(u, i) if, for every h ∈ H, the conditional profile
σ∗[h] = (σj∗[h])j∈I is an ε-equilibrium for the subgame G(u, i|h). When σ∗ is
a subgame perfect 0-equilibrium, we say simply that it is subgame perfect.
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The set of actions A is given the discrete topology and the space AN the
corresponding product topology. A function f : AN 7→ R is upper semicon-
tinuous if, for every real number r, the set {p ∈ AN : f(p) ≥ r} is closed.
Here now is the main result of the paper.

Theorem 1. If the payoff function uj is bounded and upper semicontinu-
ous for every player j ∈ I, then the game G(u, i) has a subgame perfect
ε-equilibrium for every ε > 0.

The rest of the paper is devoted to the proof of Theorem 1. The next
section presents a useful lemma based on the stop rule methods of Dubins and
Savage (1976). Section 4 shows how to approximate an upper semicontinuous
function by a finite sum of indicators of nested closed sets. The proof of
Theorem 1 is completed in section 5.

3 A Stop Rule Lemma

A stop rule is a function t : AN 7→ {0, 1, . . .} such that, given plays p, p′ in AN,
if t(p) = n and p and p′ agree in their first n coordinates, then t(p′) = n. This
definition of a stop rule agrees with the more conventional one that requires
that, for all n, the set {p : t(p) ≤ n} belong to the sigma-field generated by
the first n coordinate functions on AN. However, notice that we require that
t(p) be finite for all p.

It follows from the definition that a stop rule is either everywhere strictly
positive or is identically equal to 0. We write 0 for the identically zero stop
rule.

If t is a stop rule, a ∈ A, and t is not 0, then t(a, a1, a2, . . .) ≥ 1 for all
p = (a1, a2, . . .) and the function t[a] defined on AN by

t[a](p) = t[a](a1, a2, . . .) = t(a, a1, a2, . . .)− 1

is easily seen to be a stop rule itself. It is called the conditional stop rule
given a.

Dubins and Savage (1976) proved many results with a technique that
might be called stop rule induction. Here is a formalization of the method.

Lemma 1. Let Φ(t) be a proposition for every stop rule t. Assume (a) Φ(0)
holds and (b) if t is not 0 and Φ(t[a]) holds for all a ∈ A, then Φ(t) holds.
Then Φ(t) holds for all stop rules t.
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This lemma is Theorem 2.3.1, page 10, in Maitra and Sudderth (1996).
Associated to every stop rule t is the mapping ht : AN 7→ H defined for

p = (a1, a2, . . .) ∈ AN by ht(p) = (a1, a2, . . . , at(p)). Thus ht(p) is the history
consisting of the first t(p) coordinates of p. If t = 0, then ht(p) = e for all p.

Lemma 2. Assume that each of the payoff functions uj, j ∈ I, has a finite
range. Let t be a stop rule and suppose that, for every history h in the range
of ht, there exists a subgame perfect equilibrium σh for the conditional game
G(u, i|h). Then there is a subgame perfect equilibrium σ∗ for G(u, i).

Proof. The proof is an application of Lemma 1 in which Φ(t) is the assertion
of Lemma 2. So it suffices to verify conditions (a) and (b) of Lemma 1.

If t = 0, then the range of ht is the singleton e, and , by hypothesis, there
is a subgame perfect equilibrium for the conditional game G(u, i|e). But this
conditional game is just the original game G(u, i). So (a) holds.

To check (b), suppose that t ≥ 1, and assume that the assertion holds for
the conditional stop rule t[a] for every a ∈ A. Suppose h = ht[a](p) for some
play p and action a. Thus h is in the range of ht[a]. Now

ah = aht[a](p) = ht(ap)

is in the range of ht. By hypothesis, the conditional game G(u, i|ah) has a
subgame perfect equilibrium σah. However, the game G(u, i|ah) is the same
as G(ua, ia|h). (Indeed, both are the same as G(uah, iah).) So, for every h
in the range of ht[a], there is a subgame perfect equilibrium, namely σah, for
the game G(ua, ia|h). Thus, by the inductive hypothesis, there is, for every
a, a subgame perfect equilibrium σ̃a for the game G(ua, ia).

To define the profile σ∗, first select the first action a∗1 = σ
i(e)
∗ (e) to be the

action a that maximizes (ui(e)a)(σ̃a). (This expression achieves a maximum
because of the assumption that payoff functions have a finite range.) Next
define the conditional profile σ∗[a] to be σ̃a for every a. It remains to be
checked that σ∗ is a subgame perfect equilibrium for G(u, i).

Consider a deviation by player j (say) from σj∗ to another strategy σj and
let σ be the profile (σ−j∗ , σ

j). If player j moves first; that is, if i(e) = j, let
a1 = σj(e) be the first move. Then use formula (2.1) and calculate:

uj(σ) = (uja1)(σ[a1]) ≤ (uja1)(σ∗[a1]) ≤ (uja∗1)(σ∗[a
∗
1]) = uj(σ∗).

Here the two equalities are instances of (2.1), the first inequality holds be-
cause σ∗[a1] = σ̃a1 is subgame perfect for the game G(ua1, ia1), and the second
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inequality holds because of the choice of a∗1. If player j does not move first,
then the first move a∗1 is unaffected by the deviation and the calculation is
shortened to

uj(σ) = (uja∗1)(σ[a1]) ≤ (uja∗1)(σ∗[a
∗
1]) = uj(σ∗).

So far it has only been established that σ∗ is an equilibrium for G(u, i).
Consider now a subgame G(uh, ih) where h = (a1, . . . , an) with n ≥

1. To see that σ∗[h] is an equilibrium for this subgame, note that σ∗[h] =
σ̃a1 [(a2, . . . , an)] and σ̃a1 is subgame perfect for G(ua1, ia1).In particular,
σ̃a1 [(a2, . . . , an)] is an equilibrium for G(ua1, ia1|(a2, . . . , an)) = G(uh, ih).
This completes the proof.

One can also prove a variation on Lemma 2 for subgame perfect ε-
equilibria without the assumption that the payoff functions have finite range.

Remark 1. The game G(u, i) is said to be determined if there is a stop rule
t such that the values of the payoffs uj(p), j ∈ I, depend only on ht(p) for
every play p. Equivalently, the sections ujh are constant functions for h in
the range of ht. An easy corollary of Lemma 2 is that determined games have
subgame perfect equilibria if the payoff functions have finite ranges. (They
have subgame perfect ε-equilibria in general.)

Stochastic games that are determined are used by Maitra and Sudderth
(2007), where they are called finitary games. Blackwell (1981) shows how
to define the class of Borel subsets of the real line using certain two-person,
zero-sum determined games. He remarks that the classical construction of the
Borel sets uses the ordinals and that he has substituted stop rules. Likewise
we use stop rules whereas Flesch et al (2010) used the ordinals.

4 A Reduction to Simple Payoff Functions

It was assumed in Theorem 1 that the payoff functions uj, j ∈ I are bounded
and upper semicontinuous. Clearly, there is no real loss of generality in
assuming, as we now do, that the range of each uj is contained in the unit
interval [0, 1]. Our object in this section is to show that it suffices to prove
Theorem 1 when each uj has the special form

ujm = 1Cj,1 + 1Cj,2 + · · ·+ 1Cj,m , (4.1)
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where, for each j ∈ I, the sets Cj,k, k = 1, . . . ,m are closed subsets of AN

that are nested in the sense that

Cj,1 ⊇ Cj,2 ⊇ · · · ⊇ Cj,m. (4.2)

(For sets C ⊆ AN, 1C denotes the indicator function that equals 1 on C and
0 on the complement of C.)

To see that this simplification is possible, let m be a positive integer, and,
for each j ∈ I and k = 1, . . . ,m, define

Cj,k = {p ∈ AN : uj(p) ≥ k − 1

m
}.

Notice that, for every j ∈ I,
Cj,1 = AN, (4.3)

since uj ≥ 0. Let ujm be given by (4.1).

Lemma 3. For all j ∈ I, supp∈AN |uj(p)− 1
m
ujm(p)| ≤ 1

m
.

This lemma is identical with Lemma 2.3 of Secchi and Sudderth (2001),
and is also easy to prove directly.

Let ε > 0 be from the statement of Theorem 1, and choose m so that 1
m
<

ε so that the functions 1
m
ujm are, by the lemma, uniformly within distance ε

of the uj. So it will suffice for Theorem 1 to prove that there is a subgame
perfect equilibrium for the game with payoffs the functions 1

m
ujm, j ∈ I. In the

next section, it is shown that there does exist a subgame perfect equilibrium
for the game with payoffs the ujm, j ∈ I, but this is equivalent.

5 Completion of the Proof of Theorem 1

Consider a game G(um, i) where the payoff functions um = (ujm)j∈I are as
in (4.1). Let C be the collection of closed sets {Cj,k : j ∈ I, k = 1, . . . ,m}
satisfying (4.2) and (4.3). In this section, the notation G(C, i) is used for
the game G(um, i). As was mentionned at the end of the previous section,
Theorem 1 will be established once G(um, i) = G(C, i) is seen to have a
subgame perfect equilibrium.

Here is a simple fact about closed sets.

Lemma 4. Let C be a closed subset of AN and let p = (a1, a2, . . . ) ∈ AN be a
play such that, for all n, the section C(a1, . . . , an) is not empty. Then p ∈ C.
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Proof. For each n, there is, by hypothesis, a play qn such that the play
pn = (a1, . . . , an)qn ∈ C. Now pn → p as n→∞. Hence, p ∈ C.

For a finite history h ∈ H, let Ch be the collection of sets {Cj,kh , : Cj,k ∈
C} where, for C ⊆ AN, Ch = {hp ∈ C : p ∈ AN} is the h - section of C.
The subgame G(umh, ih) of G(um, i) is, in the notation of this section, the
same as G(Ch, ih). Theorem 1 will follow from the next lemma. Its proof
uses ideas from the proof of Lemma 4.2 in Secchi and Sudderth (2001).

Lemma 5. The game G(C, i) has a subgame perfect equilibrium σ = (σj)j∈I .

Proof. The proof is by induction on the integer λ(C) defined to be the num-
ber of sets Cj,k ∈ C that are nonempty, proper subsets of AN. Notice that
λ(Ch′) ≥ λ(Ch) whenever h and h′ are histories such that h′ is an initial seg-
ment of h. The reason is that a section of the empty set or the whole space
is always equal to the set itself. Thus the number of proper, nonempty sets
cannot increase as play proceeds along a history. Also, if a set C is empty
or equal to the whole space AN, then the indicator function 1C is a constant.
Thus, if λ(C) = 0, the game G(C, i) has constant payoff functions and every
profile is a subgame perfect equilibrium.

Assume now that λ(C) = λ0 > 0 and make the inductive assumption that
the assertion holds for all games G(C ′, i′) where C ′ is another such collection
of closed sets with λ(C ′) < λ0.

To define the profile σ, an action σi(h)(h) must be assigned to every history
h ∈ H. Three cases will be considered.

Case 1. λ(Ch) < λ0.
Let h = (a1, . . . , an), and let l be the least positive integer in {1, . . . , n}

such that, for h′ = (a1, . . . , al), λ(Ch′) < λ0. By the inductive hypothesis,
there is a subgame perfect equilibrium σh′ for the game G(Ch′, ih′). Define

σi(h)(h) = σ
i(h)
h′ (al+1, . . . , an) = σ

(ih′)(al+1,...,an)
h′ (al+1, . . . , an).

Indeed, the definition of σi(h
′′)(h′′) is made in the same way for every his-

tory h′′ for which h′ is an initial segment. To be more specific, if h′′ =
(a1, . . . , al, b1, . . . , br), then h′′ also satisfies Case 1 and we set

σi(h
′′)(h′′) = σ

i(h′′)
h′ (b1, . . . , br).

This consistently defines σi(h)(h) for all h satisfying Case 1 in such a way
that the conditional profile σ[h] = σh′ [(al+1, . . . , an)] is subgame perfect for
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G(Ch, ih) = G(Ch′(al+1, . . . , an), ih′(al+1, . . . , an). In particular, σ[h] is an
equilibrium for G(Ch, ih).

To specify the remaining two cases, let, for each j ∈ I = {1, . . . , ν},
the integer kj be the largest k in {1, . . . ,m} such that the set Cj,k is not
empty. Then a play p in Cj,kj results in the largest possible reward to player
j, namely

1Cj,1(p) + · · ·+ 1Cj,kj (p) = kj.

Case 2. λ(Ch) = λ0 and (C1,k1 ∩ · · · ∩ Cν,kν )h 6= ∅.
In this case, there must be an action b1 such that (C1,k1∩· · ·∩Cν,kν )hb1 6=

∅. Set σi(h)(h) = b1. Similarly b2, b3, . . . are defined so that, for all n,
σi(h(b1,...,bn))(h(b1, . . . , bn)) = bn+1 and (C1,k1∩· · ·∩Cν,kν )h(b1, . . . , bn) is nonempty.
Then, by the previous lemma, the conditional profile σ[h] results in a play
p = (b1, b2, . . .) such that hp ∈ C1,k1 ∩ · · · ∩ Cν,kν . Thus every player receives
his or her maximum possible payoff and σ[h] is an equilibrium for the game
G(Ch, ih).

Case 3. λ(Ch) = λ0 and (C1,k1 ∩ · · · ∩ Cν,kν )h = ∅.
Each of the sets Cj,kjh, j ∈ I, must be nonempty because λ(Ch) would

be smaller than λ0 otherwise.
The history h of this case cannot have an initial segment h′ satisfying

Case 1 because, as was already pointed out, λ(Ch′) ≥ λ(Ch) whenever h′ is
an initial segment of h. However, h could have initial segments satisfying
Case 2. In general, if h = (a1, . . . , an) is not the empty history e, then there
is an integer l, 1 ≤ l ≤ n such that the histories hr = (a1, . . . , ar) satisfy Case
2 for r = 1, . . . , l − 1 and Case 3 for r = l, . . . , n. Thus h′ = (a1, . . . , al) is
the first initial segment of h satisfying Case 3. So (C1,k1 ∩ · · · ∩Cν,kν )h′ = ∅.

Let p = (b1, b2, . . .) be an arbitrary play. Then it cannot be the case
that, for all j ∈ I and all nonnegative integers q, the section (C1,k1 ∩ · · · ∩
Cν,kν )h

′(b1, . . . , bq) is nonempty. For if this were the case, it would follow
from the previous lemma that p would belong to (C1,k1 ∩ · · · ∩ Cν,kν )h′, a
contradiction.

Thus there is, for every play p = (b1, b2, . . .), some j ∈ I and some nonneg-
ative integer q such that the section Cj,kjh

′(b1, . . . , bq) is empty. (When q = 0,
the history (b1, . . . , bq) = e.) Let t(p) be the least integer q for which this
occurs. Then t is a stop rule and, for each p, the collection Cp = Ch′ht(p) con-
tains at least one additional empty set. Hence λ(Cp) < λ0. By the inductive
hypothesis, the game G(Ch′ht(p), ih′ht(p)) has a subgame perfect equilibrium
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for every p. By Lemma 2, the game G(Ch′, ih′) also has a subgame perfect
equilibrium σh′ . As in Case 1, define

σi(h)(h) = σ
i(h)
h′ (al+1, . . . , an).

If the history h is the empty history e, then, for each p, define t(p) to be
the least q such that some section Cj,kj(b1, . . . , bq) is empty. Again t is a stop
rule and the argument proceeds as above.

The profile σ is now completely defined. It follows from the construction
that the conditional profile σ[h] is an equilibrium for the game G(Ch, ih) for
all h ∈ H.
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