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For an n-person stochastic game with Borel state space S and compact metric action sets A1�A2� � � � �An, sufficient conditions
are given for the existence of subgame-perfect equilibria. One result is that such equilibria exist if the law of motion q�· � s� a

is, for fixed s, continuous in a = �a1� a2� � � � � an
 for the total variation norm and the payoff functions f 1� f 2� � � � � f n are
bounded, Borel measurable functions of the sequence of states �s1� s2� � � � 
 ∈ S� and, in addition, are continuous when S� is
given the product of discrete topologies on S.
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1. Introduction. The stochastic games we study have n players 1�2� � � � � n. The state space S is a Borel
subset of a Polish space. Each player i has a compact metric action set Ai. The set �Ai
 of probability measures
defined on the Borel subsets of Ai is equipped with its usual weak topology and, hence, �Ai
 is also compact
metrizable. Let A=A1×A2× · · · ×An have its product topology and it too is compact metrizable. The law of
motion q is a conditional probability distribution on S given S ×A with the interpretation that, if the players
choose actions a= �a1� a2� � � � � an
 ∈A at state s ∈ S, then q�· � s� a
 is the conditional distribution of the next
state. We always assume that q�B � s� a
 is Borel measurable jointly in �s� a
 for B a Borel subset of S and we
will make further assumptions below.
The game begins at some initial state s1. The players choose actions a1 = �a11� a

2
1� � � � � a

n
1
 and the next state s2

has distribution q�· � s1� a1
. This process is iterated to generate a random history or play

h= �s1� �a1� s2
� �a2� s3
� � � � 
 ∈H = S× �A× S
��

Here, ak = �a1k� a
2
k� � � � � a

n
k
 is, for each k, the n-tuple of actions chosen by the players at stage k. Each player i

has a bounded, Borel measurable payoff function f i� H �→ � and receives f i�h
 as payoff at history h. Let
f = �f 1� f 2� � � � � f n
 be the n-tuple of payoff functions.
Denote by H∗ the disjoint union of the sets S�S× �A× S
�S× �A× S
2� � � � ; that is,

H∗ = S ∪
(⋃

k≥1
�S× �A× S
k�

)
�

The elements of H∗ are called partial histories.
A strategy �i for player i assigns to each partial history p= �s1� �a1� s2
� � � � � �ak−1� sk

 in H∗ the conditional

distribution �i�p
 ∈ �Ai
 for aik given p. Formally, a strategy for player i is a Borel function from H∗ into
�Ai
. It is assumed that the players choose their actions independently. So the conditional distribution of ak
given p is the product measure

��p
= �1�p
×�2�p
× · · ·×�n�p
 (1)

on A.
An n-tuple � = ��1��2� � � � ��n
 consisting of a strategy for each player is called a profile. A profile �

together with an initial state s1 determines the distribution P� = Ps1�� of the history h. Note that, by an abuse of
notation, we write ��p
 for the n-tuple ��1�p
��2�p
� � � � ��n�p

 as well as for the product measure in (1).
The meaning will always be clear from the context.
The stochastic game ��f � s1
 begins at state s1. The players select strategies to form a profile � and each

player i receives the expected payoff

E�f
i =

∫
f i�h
P� �dh
�

We write E�f for the vector of expected payoffs �E�f
1�E�f

2� � � � �E�f
n
.
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To define a subgame of ��f � s1
, let p = �s1� �a1� s2
� � � � � �ak−1� sk

 be a partial history. The length of p,
written lh�p
, is defined to be k − 1. (Thus lh�s
 = 0 for s ∈ S.) Denote by l�p
 the last state sk of p. The
subgame ��f �p
 is the stochastic game with initial state sk = l�p
, and payoff functions f ip defined for histories

h′ = �sk� �b1� t2
� �b2� t3
� � � � 


to be
�f ip
�h′
= f i�s1� �a1� s2
� � � � � �ak−1� sk
� �b1� t2
� �b2� t3
� � � � 
� (2)

Thus f ip is the section of f i at p. We use ��f � ·
 to denote the collection of all the games ��f �p
� p ∈ H∗.
(Notice that the game ��f � s
 is itself the subgame ��f �p
 for which p= s.)
For a strategy �i and a partial history p, the conditional strategy given p is written �i�p�. If � =

��1��2� � � � ��n
 is a profile of strategies, the conditional profile ��p� is just the profile of conditional strategies
(�1�p���2�p�� � � � ��n�p�
.
Now, we can define a subgame-perfect equilibrium (SPE) for ��f � ·
 as being a profile � such that, for all

p ∈H∗, the conditional profile ��p� is a Nash equilibrium for the subgame ��f �p
.
To prove the existence of an SPE, further conditions on the game are necessary. (Without additional assump-

tions, there need not exist an SPE even for one-person games.) To state one of the conditions, let �S
 be the
set of probability measures defined on the Borel subsets of the state space S.

Condition 1 (Variation Norm Continuity). For every fixed s ∈ S, the law of motion q�· � s� a
 is a
continuous function of a when �S
 is given the topology induced by the total variation norm.

This is a very strong condition and it would be preferable to assume some sort of weak continuity for the
law of motion such as Condition 3 in §3 below. However, as is explained in the introduction of Mertens and
Parthasarathy [10], it seems difficult to do without Condition 1.
A key assumption on the payoffs needed for our results is inspired by Dubins and Savage [1], who study

(finitely additive) probability measures on an infinite product of spaces, each of which is given the discrete
topology.
Definition 1.1. Suppose that each of the nonempty sets X1�X2� � � � has the discrete topology and the

product Y =X1×X2 × · · · has the product topology. Then, a continuous function g defined on Y is called DS
continuous.
It follows from Definition 1.1 that a function g� Y �→ � is DS continuous if and only if, for each x =

�x1� x2� � � � 
 ∈ Y and # > 0, there exists n such that �g�x
− g�x′
� < # for every x′ = �x′1� x
′
2� � � � 
 such that

xi = x′i for 1 ≤ i ≤ n. If Y = X1 × X2 × · · · is a product of Borel sets, some of which are uncountable, then
continuity in the product of the Borel topologies is a more stringent requirement than DS continuity. The function
g is called finitary if it depends only on the coordinates x1� x2� � � � � xt , for some stop rule t such that t�x
 <�
for all x= �x1� x2� � � � 
. Finitary functions are clearly DS continuous and, in fact, the DS-continuous functions
are precisely those functions that can be uniformly approximated by finitary functions. (A Borel measurable
version of this fact is Lemma 3.1 below. See Dubins and Savage [1] for a discussion of the properties of finitary
functions.) Functions that depend on the tail of the sequence x= �x1� x2� � � � 
, such as g�x
= lim supm um�xm

for some functions um� Xm �→�, are typically not DS continuous.
Now, we can state our first theorem.

Theorem 1.1. Assume that the payoff functions f 1� f 2� � � � � f n depend only on the sequence of states and
are DS continuous from H into �. Assume also that Condition 1 holds. Then, ��f � ·
 has an SPE.

Recall that we always assume that the payoff f is bounded and Borel measurable for the product of the
original Polish topologies.
An example in Harris et al. [3] shows this theorem does not hold in general for payoff functions that depend

on actions as well as states. However, the corresponding result is true when the action sets are finite.

Theorem 1.2. Assume that the action sets A1�A2� � � � �An are finite and that the payoff functions f 1�
f 2� � � � � f n are DS continuous from H into �. Then, ��f � ·
 has an SPE.

Fudenberg and Levine [2] established the special case of Theorem 1.2 in which the state space is finite. See
also §6.3 in Harris et al. [3].
Our last result is for games with additive payoffs.
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Condition 2 (Additive Rewards). Assume that, for i= 1�2� � � � � n,

f i�h
=
�∑
k=1

r ik�sk� ak


for all h= �s1� �a1� s2
� �a2� s3
� � � � 
 ∈H , where the functions r ik� S×A �→� are uniformly bounded, Borel in s
for fixed a, and continuous in a for fixed s. Assume also that the convergence of the partial sums

∑m
k=1 r

i
k�sk� ak


is uniform on H as m→�.

Theorem 1.3. Under Conditions 1 and 2, ��f � ·
 has an SPE.

Theorem 1.3 implies the existence of an SPE for discounted games in which the daily reward function of
each player is bounded, Borel in s, and continuous in a.

Antecedents. The papers of Nowak [12], and Rieder [17] contain early results on stochastic games with
continuous payoffs when the state space is countable. Sengupta [18] treats zero-sum games with lower semicon-
tinuous payoffs, finite action sets, and a compact metric state space. The arguments in this paper owe a great
deal to the earlier work of Mertens and Parthasarathy [9, 10] and Solan [19]. Indeed, the method we use in the
next section is abstracted from Solan’s [19] proof that SPEs exist for discounted stochastic games. A crucial
tool for us, as it was for Solan, is the “measurable ‘measurable’ choice theorem” of Mertens [8]. We also rely
on concepts introduced in the gambling theory of Dubins and Savage [1].
Theorem 1.3 is very close in spirit to the results of Mertens and Parthasarathy [10] and Solan [19]. Our

proof of Theorem 1.3 is similar to that of Solan [19], but our result is different from his in that the additive
payoff functions of Theorem 1.3 need not be discounted.
The existence of stationary equilibria for discounted stochastic games has been proved under various assump-

tions. See, for example, Nowak [14], and Parthasarathy and Sinha [16]. Of course, stationary equilibria are, in
particular, subgame perfect.
Since subgame-perfect equilibria do not always exist, it is natural to look for subgame-perfect correlated equi-

libria. Their existence has been established in different contexts by Harris et al. [3], Nowak and Raghavan [15],
Nowak [13], and Solan and Vieille [20] among others.

Outline. In the next section, we prove an abstract existence result to the effect that an SPE exists for ��f � ·

when the payoff f is DS continuous and can be uniformly approximated by a sufficiently nice function g such
that ��g� ·
 has an SPE. Borel finitary functions are introduced in §3 and seen to provide an appropriate class
of nice approximating functions for the proof of Theorem 1.1. Theorem 1.2 follows easily from Theorem 1.1
in §4. The abstract result of §2 is applied again in the last section to prove Theorem 1.3.

2. An adaptation of a proof of E. Solan. Solan [19] gave a nice proof of the existence of SPEs for
discounted stochastic games. In this section, we adapt his methods to prove a technical result, which will be the
key to our proofs of Theorems 1.1–1.3.
We make the following assumptions throughout this section.

Assumption 2.1. The payoff function f = �f 1� f 2� � � � � f n
 is Borel and DS continuous from H into
�−R�R�n, where R is a fixed positive real number.

Assumption 2.2. There exist Borel functions gm� H �→ �−R�R�n, m ∈� with the following properties:
(i) �gm−f �→ 0 as m→�, where, for a function *� H �→ �−R�R�n, �*� = suph �*�h
� and �·� is the usual

norm on Euclidean n-space.
(ii) For each m, there is an SPE �m in the game ��gm� ·
 with corresponding equilibrium payoff Vm� H

∗ �→
�−R�R�n; that is, for each p ∈H∗,

Vm�p
=E�m�p�
�gmp
� (3)

Furthermore, for each p ∈ H∗, �m�p
 is an equilibrium profile in the one-move game with payoff∫
Vm�pat
 q�dt � l�p
�a
 and equilibrium payoff

Vm�p
=
∫∫

Vm�pat
 q�dt � l�p
�a
�m�p
 �da
� (4)

and the family of functions ,
∫
Vm�pat
 q�dt � l�p
�a
� m ∈�- is equicontinuous in a.
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Remark 2.1 (Notation).
(i) For p ∈H∗� a ∈A� and t ∈ S, the notation pat used above denotes the partial history that consists of the

coordinates of p followed by a and t.
(ii) Recall that we use �m�p
 to denote the product measure �

1
m�p
×�2

m�p
× · · ·×�n
m�p
 in �A
 and also

for the n-tuple ��1
m�p
��

2
m�p
� � � � ��

n
m�p

.

Here is the technical result we will need.

Theorem 2.1. Under Assumptions 1 and 2, the game ��f � ·
 has an SPE.

The proof will use certain properties of multifunctions, which we present in four lemmas.
Let X be a Borel subset of a Polish space, let Y be a Polish space, and let ,.m- be a sequence of Borel

functions from X into Y . The multifunction Ls�.m
 from X to subsets of Y assigns to each x ∈ X the set
Ls�.m
�x
 of all y ∈ Y such that, for every open subset U of Y containing y, .m�x
 ∈U for infinitely many m.
We write Gr�Ls�.m

 for the graph of Ls�.m
; namely, the set

Gr�Ls�.m

= ,�x� y
� y ∈ Ls�.m
�x
-�

Lemma 2.1. Gr�Ls�.m

 is a Borel subset of X× Y and, for each x, Ls�.m
�x
 is a closed subset of Y .

Proof. Let ,Um- be a countable base for the topology of Y . Then,

�x� y
�Gr�Ls�.m

 iff �∃m
 �y ∈Um & �∃k
 �∀ l≥ k
 �.l�x
�Um
�

iff �∃m

[
y ∈Um & x ∈ lim inf

l
.−1
l �Y −Um


]
�

Hence
�X× Y 
−Gr�Ls�.m

=

⋃
m

[
lim inf

l
.−1
l �Y −Um
×Um

]
�

which is clearly Borel. The proof that Ls�.m
�x
 is closed is completely straightforward. �

A multifunction F from X to Y is defined to be Borel measurable if, for every open subset U of Y , the set
,x ∈X� F �x
∩U �= �- is a Borel subset of X.
Lemma 2.2. Assume that, for each x, the set ,.m�x
� m≥ 1- is precompact in Y . Then, (a) Ls�.m
 is a Borel

measurable multifunction with nonempty compact values and (b) Ls�.m
 admits a Borel measurable selector.

Proof. Part (a) follows from the previous lemma, the precompactness assumption, and the Kunugui-Novikov
theorem. (See 4F.12 in Moschovakis [11] or 4.7.11 in Srivastava [21].) Part (b) is a consequence of (a) and the
selection theorem of Kuratowski and Ryll-Nardzewski [5]. (Or see Corollary 5.2.5 in Srivastava [21].) �

The next lemma records, for ease of reference, a part of Lemma 3, in Hildenbrand [4, p. 69].

Lemma 2.3. Let Y = �−R�R�n and let 3 be a probability measure on the Borel subsets of Y . Suppose
limm

∫
.m d3 exists. Then, there is a Borel selector . of Ls�.m
 such that

∫
. d3= limm

∫
.m d3.

Our last lemma specializes a deep result of Mertens [8] to a Borel setting.

Lemma 2.4. Suppose that Y and Z are Borel subsets of Polish spaces and F is a Borel measurable multi-
function on Y × Z with nonempty compact subsets of �−R�R�n as values. Let q�· � y
 be a Borel measurable
transition function from Y to Z. Define a multifunction G on Y as follows:

G�y
=
{∫

f �y� z
 q�dz � y
� f is a Borel selector of F

}
�

Then,
(i) G is a Borel measurable multifunction with nonempty compact values,
(ii) there is a Borel measurable function g� Gr�G
 × Z �→ �−R�R�n such that, for every �y� x
 ∈ Gr�G
�

g�y� x� ·
 is a selector for the multifunction F �y� ·
 and

x=
∫
g�y� x� z
 q�dz � y
�
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Remark 2.2. The multifunction G in Lemma 2.4 can also be described, for each y∗ ∈ Y , as G�y∗
 =
,
∫
g�z
 q�dz � y∗
� g is a Borel selector of F �y∗� ·
-. To see this, fix a Borel selector * of F and define

f �y� z
=


g�z
 if y = y∗�

*�y� z
 if y �= y∗�

The proof of Theorem 2.1 now proceeds in a number of steps.
Step 1. Define the multifunction D on H∗ by D�p
= Ls�Vm
�p
. By Lemma 2.1, Gr�D
 is a Borel subset of

H∗ × �−R�R�n. In addition, for each p ∈ S∗, ,Vm�p
� m≥ 1- is precompact since �−R�R�n is compact. So, by
Lemma 2.2, D is Borel measurable with nonempty compact values.

Step 2. Define um� H
∗ ×A �→ �−R�R�n by

um�p�a
=
∫
Vm�pat
 q�dt � l�p
�a
�

By Assumption 2.2, um is a Caratheodory function (Borel in p and continuous in a). Also, the set ,um�p�·
� m≥1-
is an equicontinuous subset of the space C = C�A� �−R�R�n
 of continuous functions from A to �−R�R�n.
Hence, by the Arzela-Ascoli theorem, this set is precompact in the topology of uniform convergence on C.

Step 3. Next, define *m� H
∗ �→ �−R�R�n ×C ×�A
 by setting

*m�p
= �Vm�p
�um�p� ·
��m�p

�

Plainly, *m is Borel measurable. Also, note that, for each p ∈ H∗, the set ,�m�p
� m ≥ 1- is precompact in
the topology of weak convergence on �A
. Observe that a limit point of ,�m�p
� m ≥ 1- is again a product
measure on A.

Step 4. Define another multifunction G on Gr�D
 by

G�p�x
= ,�v� :
 ∈C ×�A
� �x� v� :
 ∈ Ls�*m
�p
-�

It is easy to see that Gr�G
 is a Borel subset of H∗ × �−R�R�n × C × �A
. Also, for each �p�x
 ∈Gr�D
,
G�p�x
 is the x-section of the nonempty compact set Ls�*m
�p
, and so is itself compact. Hence, by Lemma 2.2,
G is a Borel measurable multifunction on the Borel set Gr�D
 with nonempty compact values, and there are Borel
functions v∗ and :∗ on Gr�D
 into C =C�A� �−R�R�n
 and �A
, respectively, such that �v∗�p�x
� :∗�p�x

 ∈
G�p�x
 for every �p�x
 ∈Gr�D
. (We remind the reader that, as mentioned at the end of Step 3, :∗�p�x
 is a
product measure on A.)

Step 5. We define a third multifunction ; on H∗ ×A by

;�p�a
=
{∫

g�t
 q�dt � l�p
�a
� g is a Borel selector of D�pa·

}
�

By Lemma 2.4 and Remark 2.2, ; is a Borel measurable multifunction with nonempty compact values (so that
Gr�;
 is a Borel subset of H∗ ×A× �−R�R�n) and there exists a Borel function .� Gr�;
× S �→ �−R�R�n
such that
(i) .�p�a�x� t
 ∈D�pat
 for all t ∈ S and
(ii)

∫
.�p�a�x� t
 q�dt � l�p
�a
= x, for every �p�a�x
 ∈Gr�;
.

Step 6. Claim: If �p�x
 ∈Gr�D
, then �∀a
 �v∗�p�x
�a
 ∈;�p�a
�.
To verify this claim, let �p�x
 ∈ Gr�D
 and fix a ∈ A. Choose a subsequence ,umi

�p� ·
- of ,um�p� ·
- such
that umi

�p� ·
 converges uniformly to v∗�p�x
. So, in particular, umi
�p�a
 converges to v∗�p�x
�a
. The last

statement can be written as
lim
i

∫
Vmi

�pat
 q�dt � l�p
�a
= v∗�p�x
�a
� (5)

So, by Lemma 2.3, there is a Borel function g� S �→ �−R�R�n such that g is a selector of D�pa·
 and

lim
i

∫
Vmi

�pat
 q�dt � l�p
�a
=
∫
g�t
 q�dt � l�p
�a
� (6)

It follows from (5) and (6) that v∗�p�x
�a
 ∈;�p�a
.
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Step 7. Let �D= ,�p�a�x� t
 ∈H∗ ×A× �−R�R�n × S� x ∈D�p
- and define .∗� �D �→ �−R�R�n by setting
.∗�p�a�x� t
= .�p�a� v∗�p�x
�a
� t
�

where . is the function introduced in Step 5. Then, .∗ is well defined by Step 6. Plainly, .∗ is a Borel function.
Note that it follows from (ii) of Step 5 that

v∗�p�x
�a
=
∫
.∗�p�a�x� t
 q�dt � l�p
�a
� (7)

for every �p�a�x� t
 ∈ �D.
Step 8. Claim: For �p�x
 ∈ Gr�D
, :∗�p�x
 is an equilibrium profile in the one-move game with payoff

v∗�p�x
�a
 and the corresponding equilibrium payoff is x.
To see this, choose a subsequence ,�Vmi

�p
�umi
�p� ·
��mi

�p

- of ,�Vm�p
�um�p� ·
��m�p

- such that

lim
i

(
Vmi

�p
�umi
�p� ·
��mi

�p

)= �x� v∗�p�x
� :∗�p�x

� (8)

Since �mi
�p
 is an equilibrium profile in the one-move game with payoff umi

�p� ·
 by Assumption 2.2(ii) and
Vmi

�p
 is the corresponding equilibrium payoff by virtue of (4), the claim follows from (8).
Step 9. We are now in a position to define a profile < for the game ��f � ·
. (It will turn out that < is an

SPE.) First, define a function =� H∗ �→ �−R�R�n by recursion as follows: for s ∈ S, set =�s
= >�s
, where > is
a fixed, but arbitrary, Borel selector for D�s
; and, for p ∈H∗� a ∈A, and t ∈ S, let

=�pat
= .∗�p�a�=�p
� t
�

Using Step 5 and induction on the length of p, one proves easily that =�p
 ∈D�p
 and that = is well defined.
Clearly, = is a Borel function. The profile < can now be defined on H∗ by

<�p
= :∗�p�=�p

�

So, < is also clearly Borel.
Step 10. Let V �p
=E<�p��fp
, p ∈H∗. (Recall that <�p� is the conditional profile given p.)
Claim: V �p
==�p
.
We prove the claim for p= s ∈ S. (The proof for other p’s is similar and is omitted.) Let # > 0 and fix

h= �s1� �a1� s2
� �a2� s3
� � � � 
 ∈H�

By the DS continuity of f (Assumption 2.1), we can choose k so large that with

p= pk�h
= �s1� �a1� s2
� � � � � �ak−1� sk

�

we have �f �ph′
− f �h
�< #/2 for all h′ ∈ �A× S
�. (Here, ph′ is the history that consists of the coordinates
of p followed by those of h′.) Next, choose M so large that �gm−f �< #/2 for all m≥M . So, if q ⊇ p, m≥M ,
and x ∈D�q
, then �x− f �h
� ≤ #. To see this, observe that

�gm�qh′
− f �h
� ≤ �gm�qh′
− f �qh′
�+�f �qh′
− f �h
�< #�

It follows from (3) that �Vm�q
− f �h
� ≤ # for all m≥M , so that �x− f �h
� ≤ #. Consequently, if l≥ k and
x ∈D�pl�h

, then �x− f �h
� ≤ #. Hence, by Step 9, �=�pl�h

− f �h
� ≤ #, and therefore

lim
m→�=�pm�h

= f �h
� (9)

Denote the history generated by the probability measure P< with initial state s by

�s� Y1� Y2� � � � � Ym� � � � 
�

(Thus Ym = �am� sm+1
� m≥ 1.) Then, the process =�s
, =�sY1
� � � � �=�sY1 · · ·Ym
� � � � is a martingale. Indeed,
E<�=�sY1 · · ·YmYm+1
 � sY1 · · ·Ym = p� =

∫∫
.∗�p�a�=�p
� t
 q�dt � l�p
�a
:∗�p�=�p

 �da


=
∫
v∗�p�=�p

�a
:∗�p�=�p

 �da


= =�p
�

where the last two equalities are by (7) and Step 8, respectively.
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By (9), =�sY1 · · ·Ym
→ f �sY1 · · ·YmYm+1 · · · 
, so that by the dominated convergence theorem,
lim
m

E<�=�sY1 · · ·Ym
�=E<�f 
= V �s
�

But, by the martingale property,
E<�=�sY1 · · ·Ym
�==�s


for all m≥ 1. Hence =�s
= V �s
 and the proof of the claim is complete for p= s.
Step 11. The last step in the proof of Theorem 2.1 is to show that < is an SPE for ��f � ·
. Let < =

�<1� <2� � � � � <n
 and fix a strategy � for player i. Let �< = �<−i� �
. Note that E<�p��f
ip
 is just the ith coordinate

V �p
i of V �p
 as defined in Step 10.
Again, we denote the history generated by P�< with initial state s by �s� Y1� Y2� � � � � Ym� � � � 
.
Claim: The process V �s
i� V �sY1


i� � � � � V �sY1Y2 · · ·Ym
i� � � � is a supermartingale under P�< .
To verify this, let A�p
 be the product measure

A�p
= <1�p
× · · ·×��p
× · · ·× <n�p
�

for p ∈H∗. Then, calculate

E�< �V �sY1Y2 · · ·YmYm+1

i � sY1Y2 · · ·Ym = p� = E�< �=�sY1Y2 · · ·YmYm+1


i � sY1Y2 · · ·Ym = p�

=
∫∫

.∗�p�a�=�p
� t
i q�dt � l�p
�a
A�da


≤
∫∫

.∗�p�a�=�p
� t
i q�dt � l�p
�a
:∗�p�=�p

 �da


= =�p
i

= V �p
i�

Here, the inequality is by virtue of the fact that <�p
= :∗�p�=�p

 is an equilibrium profile in the one-move
game with payoff

∫
.∗�p�a�=�p
� t
 q�dt � l�p
�a
= v∗�p�=�p

�a
 by Step 8. Since V �sY1Y2 · · ·Ym
→ f , it

follows from the supermartingale property that

E�< �f
i
= lim

m
E�< �V �sY1Y2 · · ·Ym
i�≤ V �s
i =E<�f

i
�

This proves that < is an equilibrium profile in the game ��f � s
. The proof that, for p ∈H∗, <�p� is an equilibrium
profile in the game ��f �p
 is similar and is omitted.
The proof of Theorem 2.1 is now complete.

3. Finitary games and the proof of Theorem 1.1. To deduce Theorem 1.1 from Theorem 2.1, we first
identify the class of functions that will be used to approximate the payoff f as in Assumption 2.2.
Let t be a Borel function from S� to ,0�1� � � � - ∪ ,�-. We say that t is a Borel stopping time if, given

elements x = �s1� s2� � � � 
 and y = �r1� r2� � � � 
 in S� such that t�x
 <� and y agrees with x in the first t�x

coordinates, then t�x
 = t�y
. If, in addition, t�x
 <� for all x ∈ S�, then t is called a stop rule. A Borel
function g� S� �→� is a Borel finitary function if there exists a Borel stop rule t such that g�x
= g�y
 whenever
y agrees with x in the first t�x
 coordinates. In this case, the function g is said to be determined by time t.
Borel finitary functions will play the role of the functions gm in Assumption 2.2. First, we establish that

they can be used to uniformly approximate the payoff functions of Theorem 1.1. As in the previous section, R
denotes a fixed positive real number.

Lemma 3.1. Suppose that *� S� �→ �−R�R� is a Borel DS-continuous function. Then, for every # > 0, there
is a Borel finitary function .� S� �→ �−R�R� such that sup,�*�x
−.�x
� � x ∈ S�-≤ #.

Proof. Let ,c1� c2� � � � � cm- be an #-net in �−R�R� and set Ui = *−1��ci − #� ci + #

, 1 ≤ i ≤ m. The
sets Ui are Borel because * is Borel; they are open in the product of discrete topologies on S� because *
is DS continuous. It follows from Corollary 2.4 in Maitra et al. [7] that there is, for each i, a Borel stopping
time ti such that �ti <��=Ui. Set t =min,ti � 1≤ i≤m-. Clearly, t is a Borel stopping time. Moreover, since⋃
1≤i≤m Ui = S�, t is a stop rule. For 1≤ i≤m, define

Wi = ,x ∈ S� � t�x
= ti�x
 & tj �x
 > t�x
� 1≤ j < i-�

It is now easy to check that Wi ⊆Ui� Wi ∩Wj =�� for i �= j ,
⋃

i Wi = S�, and each Wi is Borel. Set . = ci on
Wi, 1≤ i≤m. Then, . is obviously Borel. It is determined by time t and is therefore finitary. By construction,
�*�x
−.�x
� ≤ # for all x. �
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We need a bit of notation. Define E� H �→ S� by

E��s1� �a1� s2
� �a2� s3
� � � � 

= �s1� s2� s3� � � � 
�

Recall that H∗ = S ∪⋃
k≥1�S× �A× S
k� and let S∗ =⋃

k≥1 Sk. Next, define F� H∗ �→ S∗ by

F��s1� �a1� s2
� � � � � �ak−1� sk

= �s1� s2� � � � � sk
�

Suppose that f = �f 1� f 2� � � � � f n
 is the Borel, DS-continuous payoff function of Theorem 1.1. Since the f i

are bounded, we can assume that f � H �→ �−R�R�n. Also, since f depends only on the sequence of states, we
can find f̄ � S� �→ �−R�R�n such that f = f̄ �E and f̄ is Borel DS continuous on S�.
By Lemma 3.1, there is, for each # > 0, a Borel finitary function ḡ� S� �→ �−R�R�n such that �ḡ − f̄ �< #.

Define g on H by g�h
= �ḡ �E
�h
. Then, g approximates f on H uniformly within #. Most of the remainder
of this section is devoted to the study of the game ��g� ·
, which we call a finitary game. At the end of the
section, we will deduce Theorem 1.1 from Theorem 2.2 and the properties of finitary games.
For our treatment of finitary games, we will not need the full strength of Condition 1 and we will replace it

by the weaker condition below.

Condition 3 (Feller Continuity). For fixed s ∈ S, the law of motion q�· � s� a
 is Feller continuous in a;
that is, for every bounded, Borel measurable, real-valued function * on S,

∫
*�t
 q�dt � s� a
 is continuous in a.

Theorem 3.1. Assume Condition 3. Let ḡ� S� �→ �−R�R�n be a Borel finitary function and let g� H �→
�−R�R�n be the function �ḡ �E
. Then, there exist Borel functions ��� S∗ �→�A
 and �V � S∗ �→ �−R�R�n such
that
(i) � = �� �F is an SPE in the finitary game ��g� ·
 and the corresponding equilibrium payoff is V = �V �F ;
(ii) for each p ∈ H∗, the one-move game with payoff

∫
V �pat
 q�dt � l�p
�a
 has equilibrium profile ��p


with corresponding equilibrium payoff V �p
.

Proof. Let t be a Borel stop rule on S� such that ḡ is determined by time t. The stop rule t defines a tree
on S as follows:

�s1� s2� � � � � sm
 ∈ T iff �∃h ∈ S�
 �t�s1� s2� � � � � smh
≥m


iff �∀h ∈ S�
 �t�s1� s2� � � � � smh
≥m
�

Thus T is both analytic and coanalytic. Hence, by Suslin’s theorem (Moschovakis [11], 2E.2), T is Borel.
Furthermore, T is a Borel tree on S, which means
(i) T is a Borel subset of S∗ and
(ii) T is closed under initial segments; that is, �s1� s2� � � � � sm
 ∈ T implies �s1� s2� � � � � sk
 ∈ T , for 1≤ k≤m.
Observe that, since t is everywhere finite, T is a Borel well-founded relation (i.e., T has no infinite branches).

It now follows, courtesy of a result of Moschovakis [11, §4C.14], that there is a coanalytic, non-Borel subset C
of a Polish space Z, a function H on C onto I1, the first uncountable ordinal, and a Borel function > on T into
C such that
(a) H is a coanalytic norm on C and
(b) �s1� s2� � � � � sl
 ∈ T & m< l implies H�>��s1� s2� � � � � sl


 < H�>��s1� s2� � � � � sm


.

For the definition of a coanalytic norm, see Moschovakis [11, pp. 200–201]. We will use only the following two
properties of coanalytic norms:
(c) For every ordinal J<I1, the set ,z ∈C� H�z
= J- is a Borel subset of Z (Moschovakis [11], 4C.7).
(d) If K is an analytic subset of C, then there is J∗ <I1 such that H�z
≤ J∗, for every z ∈K.
Define a function i� T �→I1 by i��s1� s2� � � � � sm

= H�>��s1� s2� � � � � sm


. For every J<I1, let

TJ = ,�s1� s2� � � � � sm
 ∈ T � i��s1� s2� � � � � sm

= J-�

Then, each TJ is a Borel subset of S
∗ by virtue of (c). Also, since >�T 
 is an analytic subset of C, it follows

from (d) that there is �J<I1 such that T =⋃
J≤�J TJ.

The following lemma will be needed. In the lemma and the sequel, we use the notation ��X
 to denote the
Borel �-field of a topological space X.
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Lemma 3.2. Assume Condition 3. Suppose Y is a Borel subset of a Polish space and let � be a countably
generated sub-�-field of ��Y 
. Let L� Y ×S �→ �−R�R�n be a �×��S
-measurable function. Let G�y� s
 be the
one-move game with payoff

∫
L�y� t
 q�dt � s� a
. Then, there exist �×��S
-measurable functions M� Y × S �→

�A
 and W� Y × S �→ �−R�R�n such that M�y� s
 is an equilibrium profile in the game G�y� s
 and W�y� s
 is
the corresponding equilibrium payoff, i.e.,

W�y� s
=
∫∫

L�y� t
 q�dt � s� a
M�y� s
 �da
�
Proof. Let F �y� s
 be the set of all equilibrium profiles �31�32� � � � �3n
 for the game G�y� s
. It is easy

to verify that F �y� s
 is a nonempty, compact subset of the set of all profiles � =�A1
×�A2
×· · ·×�An
.
Also, the graph of F belongs to �×��S
×���
. To see this, imitate the proof of Lemma 2.1 in Maitra and
Sudderth [6] and use the fact that the function

�y� s� a
 �→
∫
L�y� t
 q�dt � s� a
�

being �×��S
-measurable for fixed a and continuous in a for fixed �y� s
 is, in fact, �×��S
×��A
-
measurable. (See Theorem 3.1.30 in Srivastava [21].) An application of Theorem 5.7.1 of Srivastava [21]
will now yield a �×��S
-measurable selector M� Y × S �→ � for F . Finally, it is easily checked that W is
�×��S
-measurable. �

Now, let � be the smallest �-field on H∗, which makes F measurable, i.e., � = F−1���S̃

. Fix :i ∈
�Ai
� i = 1�2� � � � � n, s∗ ∈ S, and let x∗ = �s∗� s∗� � � � 
 be that point in S∗ all of whose coordinates are s∗.
Now, for p ∈F−1�S∗ − T 
, the function x �→ ḡ�F�p
x
 is constant for x ∈ S∗. So, we define

V �p
= ḡ�F�p
x∗
� ��p
= :1× :2× · · ·× :n�

Then,
(e) V and � are defined on the set F−1�S∗ − T 
 ∈� and are measurable with respect to the restriction of �

to F−1�S∗ − T 
.
Also, for p ∈F−1�S∗ − T 
,
(f) ��p
 is an equilibrium profile in the one-move game with payoff

∫
V �pat
 q�dt � l�p
�a
 and

(g) V �p
= ∫∫
V �pat
 q�dt � l�p
�a
��p
 �da
.

We will now extend the definitions of the functions V and � to all of H∗, so that they are �-measurable and
properties (f) and (g) continue to hold. Since F−1�T 
=⋃

J≤�J F−1�TJ
, the definitions of V and � will proceed
by transfinite induction.
So, suppose that J≤ �J and V � � have been defined for all p ∈⋃

N<J F
−1�TN
, so that (f) and (g) still hold

and also that
(h) V and � are measurable with respect to the restriction of � to �

⋃
N<J F

−1�TN

∪F−1�S∗ − T 
.
We will now define V and � on the �-set F−1�TJ
. For each p ∈F−1�TJ
, note that, by property (b) above,
pat ∈ �

⋃
N<J F

−1�TN

 ∪F−1�S∗ − T 
, so that V �pat
 and ��pat
 are defined for all a ∈ A� t ∈ S. We next
apply Lemma 3.2 with Y = F−1�TJ
, L�p� t
 = V �pa∗t
, where a∗ is a fixed element of A, and the �-field
� is equal to the restriction of � to F−1�TJ
. Let M and W be the functions whose existence is asserted in
Lemma 3.2. We now define, for p ∈F−1�TJ
,

��p
= M�p� l�p

� V �p
=W�p� l�p

�

It is straightforward to check that � and V satisfy (f)–(h). Since �J is countable, this completes the extension of
� and V to H∗, so that (f)–(h) are satisfied.
It remains to be verified that, for all p ∈H∗, the conditional profile ��p� is an equilibrium in the game ��g�p


and that V �p
= E��p��gp
 is the corresponding equilibrium payoff. This is trivially true for p ∈F−1�S∗ − T 

since the function gp is constant for such p. For p ∈F−1�T 
, we will prove the assertion by another transfinite
induction. So, suppose the assertion is true for all p ∈⋃

N<J F
−1�TN
 and let p ∈F−1�TJ
. Then, by property (b),

pat ∈ �
⋃

N<J F
−1�TN

 ∪ F−1�S̃ − T 
. Let player i deviate by using <�p� at p and let �� = ��−i� <
 be the

resulting profile. Recall that gi, the ith coordinate of g, is the payoff function for player i. Recall also that gip
is the section of gi by the partial history p as in (2). Now, calculate as follows:

E��p��g
ip
 =

∫∫
E��pat��g

ipat
 q�dt � l�p
�a
��p
 �da


=
∫∫

V �pat
i q�dt � l�p
�a
��p
 �da
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≥
∫∫

V �pat
i q�dt � l�p
�a
 ���p
 �da


=
∫∫

E��pat��g
ipat
 q�dt � l�p
�a
 ���p
 �da


≥
∫∫

E ���pat��g
ipat
 q�dt � l�p
�a
 ���p
 �da


= E ���p��g
ip
�

Here, the second and fourth equalities and the second inequality are by virtue of the inductive hypothesis, while
the first inequality holds because of (f). Finally,

E��p��gp
 =
∫∫

E��pat��gpat
 q�dt � l�p
�a
��p
 �da


=
∫∫

V �pat
 q�dt � l�p
�a
��p
 �da

= V �p
�

where the second equality is by virtue of the inductive hypothesis and the third is by (g). �

We are now ready to complete the proof of Theorem 1.1. So, assume Condition 1 of the introduction and
note that it implies the weaker Condition 3 of this section. The payoff function f � H �→ �−R�R�n is assumed to
be Borel DS continuous, and to depend only on the sequence of states. Hence there is a Borel DS-continuous
function f̄ � S� �→ �−R�R�n such that f = f̄ �E. Use Lemma 3.1 to choose Borel, finitary functions ḡm� S� �→
�−R�R�n such that �ḡm − f̄ �→ 0 as m→�. Let gm = ḡm �E. Then, also �gm − f �→ 0 as m→�.
For each m, one can choose, by virtue of Theorem 3.1, Borel functions ��m� S

∗ �→�A
 and �Vm� S
∗ �→ �−R�R�n

such that, if �m = ��m �F and Vm = �Vm �F , then
(i) �m is an SPE in the game ��gm� ·
 and the corresponding equilibrium payoff is Vm;
(ii) for each p ∈H∗, the one-move game with payoff

∫
Vm�pat
 q �dt � l�p
�a
 has equilibrium profile �m�p


with corresponding equilibrium payoff Vm�p
.
Finally, it follows from Condition 1 and Lemma 3.6 in Solan [19] that, for each p ∈H∗, the family{∫

Vm�pat
 q�dt � l�p
�a
� m ∈�

}
=
{∫

�Vm�F�p
t
 q�dt � l�p
�a
� m ∈�

}

is equicontinuous in a. (The fact that Vm�pat
 does not depend on a is crucial for the application of Solan’s [19]
lemma.) So Assumption 2.2 of §2 is verified; Assumption 2.1 is true by hypothesis. Theorem 1.1 now follows
from Theorem 2.1.

4. Finite action sets and the proof of Theorem 1.2. Assume the hypotheses of Theorem 1.2; that is,
the actions sets A1�A2� � � � �An are finite and the payoff functions f 1� f 2� � � � � f n are bounded, Borel, and DS
continuous from H to �. Note that the payoffs may now depend on actions as well as states.
We use the partial history trick to deduce Theorem 1.2 from Theorem 1.1. We take H∗ to be our state space

and q̄ to be our law of motion, where

q̄�pat � p�a
= q�t � l�p
�a
�
We will define f̄ on the new history space �H =H∗ × �A×H∗
� as follows: Let h̄= �p1� �b1� p2
� �b2� p3
� � � � 

∈ �H . If there exists an h= �s1� �a1� s2
� �a2� s3
� � � � 
 ∈H such that

pk = �s1� �a1� s2
� � � � � �ak−1� sk

� (10)

for all k= 1�2� � � � , we set f̄ �h̄
= f �h
. If there is no such h ∈H , let m=m�h̄
 be the largest integer, possibly
zero, such that (10) holds for all k= 1�2� � � � �m for some h= �s1� �a1� s2
� �a2� s3
� � � � 
 and let

f̄ �h̄
=


f �s∗� �a∗� s∗
� �a∗� s∗
� � � � 
 if m= 0�

f �s1� �a1� s2
� � � � � �am−1� sm
� �a∗� s∗
� �a∗� s∗
� � � � 
 if m≥ 1�
where a∗ and s∗ are fixed elements of A and S, respectively. (Note that m�h̄
 could also be described as the
largest m such that, for all k = 1�2� � � � �m, lh�pk
= k− 1 and pk extends pk−1.) Then, f̄ is bounded, Borel,
DS continuous, and depends only on states.
Since A is finite, q̄ satisfies Condition 1. Hence, by Theorem 1.1, ��f̄ � ·
 has an SPE. It is now immediate

that ��f � ·
 has an SPE.
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5. Additive payoffs and the proof of Theorem 1.3. In this section, we assume both Conditions 1 and 2
of the introduction. We write rk for the profile �r1k � r

2
k � � � � � r

n
k 
 of the player’s reward functions at stage k,

k≥ 1. Let
gm�h
=

m∑
k=1

rk�sk� ak


for all h= �s1� �a1� s2
� �a2� s3
� � � � 
 ∈H and m≥ 1. For each m, the function gm is a bounded, Borel, finitary
function on H . By Condition 2, �gm − f � → 0 as m → �. Thus f is bounded, Borel, and DS continuous.
Assume, without loss of generality, that the range of f and the range of gm, m≥ 1, is contained in �−R�R�n.
First, we fix m and analyze the game ��gm� ·
. Let Wm

0 �t
= 0 for t ∈ S, and, for 1≤ k≤m, define Wm
k on S

by induction as follows:

Wm
k �s
=

∫∫
�rm−k+1�s� a
+Wm

k−1�t
� q�dt � s� a
Mmk �s
 �da
�

where Mmk �s
 is an equilibrium profile in the one-move game with payoff

rm−k+1�s� a
+
∫
Wm

k−1�t
 q�dt � s� a
�

Condition 3, which follows from Condition 1, ensures that the functions Mmk can be chosen to be Borel, so that
the functions Wm

k are also Borel. (See the proof of Lemma 2.1 in Maitra and Sudderth [6].)
We now define Vm and �m on H∗. Let p = �s1� �a1� s2
� � � � � �al−1� sl

 ∈ H∗ and fix :i ∈ �Ai
, i =

1�2� � � � � n.
Case 1. If l >m, set

Vm�p
=
m∑
k=1

rk�sk� ak
� �m�p
= :1× :2× · · ·× :n�

Case 2. If 1≤ l≤m, set

Vm�p
=
l−1∑
k=1

rk�sk� ak
+Wm
m−l+1�sl
� �m�p
= Mmm−l+1�sl
�

Then, Vm and �m are Borel functions on H∗. It is easy to check that, for each p ∈ H∗, �m�p
 is an equilib-
rium profile in the one-move game with payoff

∫
Vm�pat
 q�dt � l�p
�a
 and that Vm�p
 is the corresponding

equilibrium payoff. This is obvious if l >m. For 1≤ l≤m, the assertion follows by induction from the equality

∫
Vm�pat
 q�dt � l�p
�a
=

l−1∑
k=1

rk�sk� ak
+
[
r�sl� a
+

∫
Wm

m−l�t
 q�dt � sl� a

]
� (11)

Finally, by repeating the argument in the last paragraph of the proof of Theorem 3.1, it is not hard to see that
�m is an SPE in the game ��gm� ·
 with corresponding equilibrium payoff Vm. (The argument is essentially a
standard backward induction as in Rieder [17] or Lemma 2.1 of Maitra and Sudderth [6].)
Next, Condition 1 and (11) imply, by another application of Lemma 3.6 in Solan [19], that, for fixed p ∈H∗,

the family {∫
Vm�pat
 q�dt � l�p
�a
� m ∈�

}

is equicontinuous in a. Thus Assumptions 1 and 2 of §2 hold. So, Theorem 1.3 now follows from Theorem 2.1.
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