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Abstract Stationary equilibria are constructed for a series of nonstochastic pro-
duction economies in which the decisions of producers, wage earners, shareholders,
and savers modulate, via a “production function”, the endowment variables in an
additive manner. The efficiency of each model is compared to that of a single agent
who produces for personal consumption.

1 Introduction

The problem of determining optimal consumption and production/investment deci-
sions, for a single economic agent and under uncertainty, has a long and venerable
history. Its quantitative analysis goes back at least to Ramsey (1928); somewhat
more recent works are those of Phelps (1962), Levhari and Srinivasan (1969),
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Samuelson (1969, 1971), Hakansson (1970), Scheinkman and Schechtman (1983),
Ljungquist and Sargent (2000) and Bobenrieth et al. (2002). In most of these models
the agent’s production decision modulates (via the so-called “production function”)
a random endowment variable in a multiplicative fashion. For utility functions of
the logarithmic- or power-type, one is then able to determine optimal consump-
tion and production/investment rules in fairly explicit form, with infinitely many
time-periods and discounting.

In this paper we broach the study of a model in which the agents’ production
decisions modulate (again via a “production function”) the endowment variable in
an additive fashion. We concentrate here on the case where the endowment variable
is a known (deterministic) positive constant, the same from period to period. The
advantage of this simplification is that it leads to exact solutions for very general
production and utility functions, in several quite different models:

• A “Robinson Crusoe” economy, with a single agent who produces for his own
personal consumption.

• A market economy with a continuum of identical agents, who hold cash and
produce and/or purchase goods in a “cash-in-advance” fashion.

• A “cash-in-advance” market economy as above, but in which agents can also
receive partial credit from a clearing house.

• A “cash-in-advance” market economy as above, but in which agents are now
allowed to borrow from, or deposit cash into, a central bank that charges and
pays interest at a fixed rate.

• A “cash-in-advance” market economy with a continuum of firms that produce
goods, a continuum of agents who own the firms and purchase these goods for
consumption, and a continuum of agents who subsist entirely on their savings
and purchase goods for consumption.

With the assumption of certainty it is possible to provide exact solutions to all these
models, for very general utility and production functions. These solutions can then
be used to compare the efficiency of the various models.

In all the models except the last one, we assume the agents are independent
producers with a production function f (·), and with a utility function u(·) for con-
sumption. Both these functions are assumed to be concave, continuously differen-
tiable, and increasing on [0,∞) with u(0) = f (0) = 0. We also assume that

lim
i→∞ f ′(i) = 0.

In addition to the goods produced by the agents, we assume that every agent receives
an endowment y ≥ 0 of goods, which is constant and the same from period to
period.

In a companion paper Geanakoplos et al. (2006) we extend these results to the
case of real uncertainty for the endowment variable y, in the context of the models
1 and 4 of the present work.

2 Model 1: Robinson Crusoe

The simplest model is that of a single agent who produces for his personal consump-
tion. The agent begins with q ≥ 0 units of the good, puts i units into production
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with 0 ≤ i ≤ q , and consumes the remaining x = q − i units. The agent begins
the next period with f (i)+ y units of the good, and the game continues. Let V (q)
be the supremum over all strategies of the expression

∞∑

n=1

βn−1u(xn),

where xn is the amount of the good consumed in the nth period and β ∈ (0, 1) is
a given discount factor. Then the function V (·) satisfies the Bellman equation

V (q) = sup
0≤i≤q

[u(q − i)+ β V ( f (i)+ y)].

Theorem 1 There are two cases.

1. If f ′(0+) < 1/β, an equilibrium for the agent, at the initial state q1 = y, is
to hold y units of the good in each period and consume all of it. (There is no
production in this case.)

2. If f ′ (0+) ≥ 1/β, then there exists a number i1 ∈ [0,∞) such that f ′(i1) =
1/β. An equilibrium for the agent, at the initial state q1 = f (i1) + y, is to
hold q1 units of the good in each period, to put i1 units into production, and to
consume f (i1)+ y − i1 units.

The proof of the theorem is in the Appendix.
Let q1 = f (i1)+ y. Then in case 2 of the theorem, the agent’s total return is

u(q1 − i1)+ β u(q1 − i1)+ β2 u(q1 − i1)+ · · · = u(q1 − i1)

1 − β
.

3 Model 2: a market for goods with cash-in-advance

In all the remaining models we assume that there is a continuum I = [0, 1] of
agents and denote a typical agent by α ∈ I.

Each agent α holds cash mα
n ≥ 0 and goods qαn ≥ 0 in every period n =

1, 2, . . . . The goods are offered for sale in a market, and each agent α bids an
amount of cash bαn ∈ [0,mα

n ] for consumption.1

The price pn for that period is formed as the ratio of the total bid, divided by
the total amount of goods offered for sale. That is,

pn = Bn

Qn
,

where

Bn =
1∫

0

bαn dα, Qn =
1∫

0

qαn dα.

1 Imagine that the good produced is milk; the agent has an agreement to sell all of his daily
production to a secondary market or to a coöperative, but still has to go to the supermarket and
buy a carton of pasteurized milk for his family’s daily needs.
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The agent’s bid now buys him a quantity bαn /pn of goods; after receiving these
goods the agent puts a quantity iαn ∈ [0, bαn /pn] into production, and consumes the
remaining amount

xαn = bαn
pn

− iαn

of goods. Thus, the agent begins the next period with cash

mα
n+1 = mα

n − bαn + pnqαn (1)

and goods

qαn+1 = f (iαn )+ y. (2)

The game continues in the same way, with the total payoff to agent α being

∞∑

n=1

βn−1 u
(
xαn

)
.

Let Mn be the total amount of money held by all agents in period n; that is,

Mn =
1∫

0

mα
n dα.

Integrating with respect to α in equality (1) we get

Mn+1 = Mn − Bn + Bn

Qn
. Qn = Mn,

so the quantity of money is conserved. Let M1 = m be this common value.
Suppose that in equilibrium the prices pn remain equal to a constant p. Then

each agent faces a dynamic programming problem, whose optimal reward function
V (m, q) satisfies the Bellman equation

V (m, q) = sup
0≤b≤m

0≤i≤b/p

[
u

(
b

p
− i

)
+ β V

(
m − b + pq, f (i)+ y

) ]
.

Theorem 2 There are two cases.

1. Suppose f ′(0+) < 1/β2. There is then an equilibrium with no production, in
which every agent holds cash M = m and goods q = y in every period. Agents
bid the maximum amount allowed b = m and put i = 0 into production.

2. Suppose f ′(0+) ≥ 1/β2. There exists then a number i2 ∈ [0, ∞) such that
f ′(i2) = 1/β2. There is an equilibrium in which each agent holds cash M = m
and goods q = f (i2) + y in every period. Agents bid the maximum amount
b = m allowed and put i = i2 into production.
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In case 2 of the theorem, agents consume the amount

x2 = f (i2)+ y − i2

of goods in every period, whereas the corresponding quantity for Robinson Crusoe
in model 1 is

x1 = f (i1)+ y − i1.

Now

i1 = ( f ′)−1
(

1

β

)
> ( f ′)−1

(
1

β2

)
= i2,

and easy calculus shows that ξ �→ f (ξ)− ξ is increasing on (i2, i1), so

x1 > x2

as well. In other words, the isolated Robinson Crusoe does a bit better (in terms
of both production and consumption) than the agent in a cash-in-advance market
economy.

The proof of Theorem 2 is omitted, as it is similar to the proofs given in the
Appendix.

4 Model 3: a market with credit from a clearing house

In this model each agent α holds cash mα
n and goods qαn in every period n, just as

in model 2. The difference is that a clearing house is now willing to grant the agent
credit for the goods qαn , so that he can make a larger bid.

Suppose first that the clearing house grants full credit pnqαn to agent α, so that
he is permitted to bid any amount

bαn ∈ [
0,mα

n + pnqαn
]
.

There are two difficulties with this rule. First, the clearing house must predict the
price before it has been formed as the ratio Bn/Qn of total bids to goods. The
second problem arises when all the agents make the maximum bid

bαn = mα
n + pnqαn .

Integrate out α and divide by Qn to see that

pn = Mn

Qn
+ pn .

This can only be true if Mn = 0; that is, there must be no money in the economy.
To avoid this second difficulty, we shall assume that the clearing house grants

only partial credit, by allowing bids

ba
n ∈ [

0,mα
n + θpnqαn

]
,

where θ is a parameter with 0 ≤ θ < 1. Except for this change, the description of
this model is the same as that of model 2. In particular, the formulae (1) and (2)
for the dynamics are the same; and the money supply M1 = m is conserved.
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Theorem 3 There are two cases.

1. Suppose f ′(0+) < 1/(βθ + β2(1 − θ)). Then there is an equilibrium without
production for which, in every period, each agent holds cash M = m and goods
q = y; bids the maximum amount b = m + θpy allowed; and puts i = 0 into
production. The equilibrium price is p = m/(y(1 − θ)).

2. Suppose f ′(0+) ≥ 1/(βθ + β2(1 − θ)), so that there exists a number i3 ≥ 0
with f ′(i3) = 1/(βθ + β2(1 − θ)). Then there is an equilibrium for which, in
every period, each agent holds cash M = m and goods q = f (i3) + y; bids
the maximum amount b = m + θpq allowed; and puts i = i3 into production.
The equilibrium price is p = m/(Q(1 − θ)), where Q = f (i3)+ y.

In case 2 of this theorem, agents consume

x3 = f (i3)+ y − i3.

Now i1 > i3 > i2, where i1 and i2 are from Theorems 1 and 2, respectively. Con-
sequently, the amounts consumed each period in the three models satisfy the same
inequalities:

x1 > x3 > x2.

Here x3 is a function of θ and approaches x1 as θ ↗ 1. In other words, the intro-
duction of credit allows agents to “approach” Robinson Crusoe’s welfare.

The proof of Theorem 3 is similar to those given in the Appendix.

5 Model 4: a market with cash-in-advance and a central bank

In this model the typical agent α holds cash mα
n and goods qαn just as in models 2

and 3.
The goods are offered for sale in a market, just as before. The new feature is

that agents are now allowed to borrow from, or deposit cash into, a central bank
that charges and pays interest at a fixed rate ρ > 0.

To construct an equilibrium, assume that all agents begin with cash M1 = m >
0 and goods q1 = q > 0. Suppose also that, in the market for goods, they each bid
a fixed proportion

b(m) = am

of their holdings in cash, where

0 < b(m) ≤ m + p(m)q

1 + ρ

and

p(m) := b(m)

q
= a · m

q
.
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Assume that each agent puts i units of the good into production where 0 ≤ i ≤ b/p,
and consumes the amount (b(m)/p)− i . The equations (1) and (2) for the amounts
of money and goods in the next period, now take the form

m̃ = (1 + ρ)(m − b(m))+ p(m)q = (1 + ρ − ρa)m = τm (3)

and

q̃ = f (i)+ y, (4)

respectively, where

τ := 1 + ρ − ρa.

Because we are assuming that every agent has the same amount of cash and makes
the same bid, equality (3) also holds for the total money supply; that is,

M2 = τM1.

Thus there need not be conservation of money in this model, and τ can be viewed
as a rate of inflation (or deflation) of the money supply.

Consider now the value

a∗ = (1 + ρ)(1 − β)

ρ
(5)

of a that enforces the Fisher equation τ = β(1 + ρ), and let

τ ∗ := 1 + ρ − ρa∗ = β(1 + ρ).

Theorem 4 There are two cases.

1. Suppose f ′(0+) < (1 + ρ)/β. Then there is an equilibrium in which each
agent bids the proportion a∗ of his cash in every period, and puts no goods into
production.

2. Suppose f ′(0+) ≥ (1 + ρ)/β. In this case, there exists a number i4 ∈ [0, ∞)
such that f ′(i4) = (1 + ρ)/β. There is then an equilibrium for which, in each
period, every agent bids a constant proportion a∗ of his cash and puts i4 units
of goods into production.

The proof is in the Appendix.
Consider the equilibrium of case 2 in this theorem. Notice that, under this equi-

librium, total goods available in each period are equal to

q4 = f (i4)+ y;
and consumption is

x4 = f (i4)+ y − i4.

It is easy to see that

x4 < x1,
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where x1 is daily consumption for Robinson Crusoe. Also x4 is an decreasing
function of ρ, since

i4 = ( f ′)−1
(

1 + ρ

β

)
.

Indeed, i4 converges to i1 as ρ approaches zero: again, the introduction of credit
allows agents to approach Robinson Crusoe’s welfare. For ρ sufficiently large, we
have case 1 and there is no production.

As mentioned above, the money supply inflates or deflates geometrically in the
equilibrium of Theorem 4. Indeed,

Mn = (τ ∗)n−1 M1.

The same is true of prices, since

pn = p(Mn) = a∗Mn

q4
= a∗ · (τ ∗)n−1 M1

q4
= (τ ∗)n−1 p1.

The central bank can keep prices constant (thus purging both inflation and deflation)
by setting

1 + ρ = 1/β

so that τ ∗ = 1. However, smaller deflationary values of ρ are more efficient from
the point of view of the agents’ welfare.

6 Model 5: a market economy with producer firms, owner-consumer agents,
saver-consumer agents, and a central bank

We continue to assume that there is a continuum of agents α ∈ I = [0, 1], each
of whom holds cash and bids in every period to buy goods for consumption. How-
ever, we no longer assume that these agents produce the good. Instead, there is a
continuum of firms φ ∈ J = [0, 1], each of which produces goods for sale in the
market. The firms hold no cash, and must borrow from a central bank to purchase
goods as input for production; they are owned by the above agents, who hold equal
shares in all the firms and receive as income the profits earned by the firms in each
period. For this reason we call these agents owner agents.

In addition to the owner agents, there is a continuum of saver agents γ ∈ K =
[0, 1], each of whom holds cash, bids in every period to buy goods for consumption,
and subsists entirely on his savings. These agents can be thought of as “retirees”.

Before constructing an equilibrium we need to explain the workings of the
economy in some more detail.

• Each firm φ begins every period n with goods qφn that are to be sold in the
market. The total amount of goods offered for sale is thus

Qn =
∫

qφn dφ.
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Each firm φ also borrows cash bφn from a central bank, with 0 ≤ bφn ≤
(pnqφn )/(1 + ρ), where pn is the price of the good in period n (as defined
below) and ρ > 0 is the interest rate. The firm spends the cash bφn to purchase
the amount of goods

iφn = bφn
pn

as input for production, and begins the next period with an amount of goods

qφn+1 = f (iφn )+ y.

Here f (·) is a production function which satisfies our usual assumptions, and
y ≥ 0 is the constant, deterministic endowment. During period n each firm φ
earns the (net) profit

πφn = pnqφn − (1 + ρ)bφn ,

since it must pay back its loan with interest. The goal of the firm is to maximize
its total discounted profits

∞∑

n=1

(
1

1 + ρ

)n−1

πφn .

In a given period n the total amount of goods offered for sale by all the firms,
and the total profits generated by all the firms, are

Qn =
∫

qφn dφ and �n =
∫
πφn dφ,

respectively. The profits�n are distributed to the owner agents in equal shares
at the end of the period.

• Consider next a typical owner agent α, who holds money mα
n at the begin-

ning of period n. The agent bids an amount of money aαn with 0 ≤ aαn ≤
mα

n + �n/(1 + ρ), which buys him an amount xαn = aαn /pn of goods. The
agent begins the next period with cash

mα
n+1 = (1 + ρ)

(
mα

n − aαn
) +�n .

As in the other models, each agent α seeks to maximize his total discounted
utility

∞∑

n=1

βn−1u(xαn ),

where 0 < β < 1 is a given discount factor.
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• Finally, consider a typical saver agent γ , who holds mγ
n in cash at the start of

period n. The saver bids an amount cγn of cash with 0 ≤ cγn ≤ mγ
n , which buys

him a quantity yγn = cγn /pn of goods, and starts the next period with

mγ
n+1 = (1 + ρ)

(
mγ

n − cγn
)

in cash. If v(·) is his utility function, with the same properties as u(·), the saver
agent’s objective is to maximize the total discounted utility

∞∑

n=1

βn−1 v(yγn ).

The total amounts of money bid in period n by the owner agents, the firms, and
the saver agents, are

An =
∫

aαn dα , Bn =
∫

bφn dφ and �n =
∫

cγn dγ,

respectively. The price pn is formed as usual, as the total bid over the total produc-
tion

pn = An + Bn + �n

Qn
.

To construct an equilibrium, suppose that all owner agents begin with cash
M A

1 = m A > 0, all saver agents begin with cash M�
1 = m� ≥ 0, and all firms

begin with goods Q1 = q > 0. Thus, the total amount of cash M1 = M A
1 + M�

1
across agents, is equal to

m = m A + m�,

and the proportion of money held by the saver agents is

ν = m�

m
= m�

m A + m�
, with 0 ≤ ν < 1.

Suppose that the bids of the agents and firms are

a1 = am, b1 = bm, c1 = cm,

that is, proportional to the total amount of cash, so that the price is also proportional
to this amount:

p1 = p(m) = (a + b + c)m

q
.

Then the profit of each firm is

�1 = p1q − (1 + ρ)b1 = (a + c − ρb)m,

the cash of each owner agent at the beginning of the next period is

M A
2 = (1 + ρ)

(
m A − am

)
+�1,
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and the cash held by each saver agent is

M�
2 = (1 + ρ)

(
m� − cm

)
.

Thus, the total amount of cash held by all agents at the beginning of the next period
is

M2 = M A
2 + M�

2 = (
1 + ρ − ρ(a + b + c)

)
m = τm,

where we have set

τ = 1 + ρ − ρ(a + b + c).

Define

r = (1 + ρ)(1 − β)

ρ
(6)

and notice that r is what was denoted by a∗ in the context of the previous model.

Theorem 5 There are two cases.

1. Suppose that f ′(0+) < (1 + ρ)/β. Then there is an equilibrium for which,
in every period: each firm bids b∗ = 0, inputs 0, and produces y; each owner
agent bids the proportion a∗ = r − (1 − β)ν of the total money supply and
consumes [1 − (ρν/(1 + ρ))]y; whereas each saver agent bids the proportion
c∗ = (1 − β)ν of the total money supply and consumes [ρν/(1 + ρ)]y.

2. Suppose that f ′(0+) ≥ (1+ρ)/β so that there exists i4 with f ′(i4) = (1+ρ)/β.
Then there is an equilibrium for which, in every period: each firm inputs i4,
produces q4 = f (i4)+ y, and bids the amount bn = b∗Mn; each owner agent
bids an = a∗Mn; and each saver agent bids cn = c∗Mn. Here

a∗ + b∗ + c∗ = r, b∗ = r

q4
· i4, c∗ = (1 − β)ν (7)

and Mn = M A
n + M�

n is the amount of cash held across agents in period n.

Furthermore, in each period n: every owner agent consumes the amount x∗ =
[1− (ρν/(1+ρ))]q4 − i4; every saver agent consumes the amount y∗ = [ρν/(1+
ρ)]q4; whereas every firm makes π∗Mn in profits, with π∗ = r − (1 + ρ)b∗.

The proof is sketched in the Appendix.
Observe that formally setting ν = 0 in Theorem 5, we obtain an economy with

only producer firms and owner/consumer agents.2 For the equilibrium of Theo-
rem 5 in such an economy, production and consumption are precisely the same as
in the equilibrium of Theorem 4, where the agents both produced and consumed
the good.

In the Appendix we show that the consumption and total discounted utility of
the owner agents are decreasing functions of ρ in case 2 of the theorem, as they
were for model 4: such agents prefer as low an interest rate as possible. Similarly,

2 Of course, the proportion ν has to be strictly less than one; for otherwise there is no one to
engage in productive activity, own the firms or receive their profits, and the model unravels.
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the firms also prefer an interest rate as close to zero as possible, in order to max-
imize their profits. But the situation of the saver agents is subtler: under certain
configurations of the various parameters of the model (endowment variable, dis-
count factor, production function) they prefer as high an interest rate as possible;
whereas under other configurations they settle on an interest rate ρ∗ ∈ (0,∞) that
uniquely maximizes their welfare.

Let

τ ∗ = 1 + ρ − ρ(a∗ + b∗ + c∗).

Then money and prices inflate (or deflate) at rate τ ∗ in the equilibrium of Theorem 5
just as they did in model 4. Also, in both cases of the theorem we have a∗ +b∗ = r ,
so that the Fisher equation τ ∗ = β(1 + ρ) prevails again.

For a deterministic model with overlapping generations of savers, shareholders,
and wage earners, it is conjectured that the savers would be eliminated and that
there would be an efficient level of production in the stationary state with rate of
interest equal to zero.

7 Stochastic models

Suppose that the constant y is replaced by a random variable Y in the models we
have considered. It is then no longer possible to obtain closed-form solutions in
general – not even for the simple Robinson Crusoe model. However, it should be
possible to obtain existence results and qualitative information about equilibria. A
step in this direction is the study of a stochastic version of models 1 and 4.

Appendix: some proofs

Similar techniques are used to prove all the theorems. We shall illustrate the meth-
ods by proving the simplest result, Theorem 1, and the most difficult, Theorem 4.
We will also sketch the proof of Theorem 5, which is the only theorem with different
types of agents.

The conventional approach would be to use Euler equations and transversality
conditions, as in Stokey and Lucas (1989). This approach, as usually formulated,
requires interior solutions. We will use a different technique which was introduced
in Karatzas et al. (2006) and does not rely on interiority. Although quite simple,
our method is unusual and we will first give a brief general description of it.

Remarks on a method of proving optimality

1. Suppose g is a real-valued function with domain D and we want to show g
achieves its maximum at the point x∗ ∈ D. Suppose further that h is another
real-valued function with domain D̃ ⊇ D such that h(x) ≥ g(x) for all x ∈
D, h(x∗) = g(x∗), and h achieves its maximum at x∗ ∈ D̃. Then maxD g ≤
maxD̃ h = h(x∗) = g(x∗). So x∗ is the maximizer for g.
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2. Now consider a dynamic programming problem with state space S and initial
state s ∈ S. Suppose we want to show that a certain strategy σ ∗ is optimal at
s. That is, we want to show V (s) = Rσ ∗(s) where V (·) is the optimal reward
function for the dynamic programming problem and Rσ ∗(s) is the return from
strategy σ ∗ at s.

Next assume that there is another dynamic programming problem with the same
state space S and suppose that this new problem has optimal reward function W (·).
Assume also that every strategy σ from the original problem is still available in
the new problem and has a return Wσ (s) at least as large as the return Rσ (s) in the
original problem. Suppose further that σ ∗ is optimal at s in the new problem at s
and that Wσ ∗(s) = Rσ ∗(s). Then σ ∗ is also optimal at s in the original problem.

This is just a special case of the previous remark with g replaced by Rσ (s)
regarded as a function of σ and h replaced by Wσ (s).

Proof of Theorem 1

First, assume case 2 with f ′(i1) = 1/β.
We need to show that i = i1 is the optimal input for Robinson Crusoe when

he begins with goods q1 = f (i1)+ y. This is sufficient, because Robinson Crusoe
after inputting i1 will return to the same state q1 at the beginning of the next period.

It should be noticed that the input i1 is always possible at q1, because

q1 ≥ f (i1) =
i1∫

0

f ′(x) dx ≥ f ′(i1) · i1 = 1

β
· i1 ≥ i1.

We now introduce a second dynamic programming problem as in remark 2
above. First, we replace the utility function u(·) by the function ũ(·) whose graph
is the tangent line to u(·) at x1 = q1 − i1. More explicitly,

ũ(x) = λx + ζ,

where λ = u′(x1) and ζ = u(x1)− x1u′(x1). By the concavity of u(·), we have

ũ(x) ≥ u(x)

for all x . Thus the return from any strategy will be at least as large for ũ(·) as for
u(·).Notice, however, that the strategy σ ∗ of inputting i1 starting from q1will have
the same return for both utility functions because ũ(x1) = u(x1); here x1 is the
amount consumed every day.

The second modification is to allow inputs i ∈ [0,max{q, i1}] at every value
of q . Thus there are more possible inputs and consequently more possible strate-
gies available in the new problem. Hence, the optimal reward must be at least as
large as in the original problem with its smaller utility function and fewer possible
strategies. Consequently, it suffices to prove that the strategy σ ∗ is optimal in the
modified problem at q1, since it must then certainly be optimal for the original
problem.
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For proving optimality we can further simplify the problem by taking the utility
function to be the identity w(x) = x . It is clear that optimal strategies for w(·) are
the same as for ũ(·).

Let W (q) be the optimal reward in our new problem at state q ≥ 0. It satisfies
the modified Bellman equation:

W (q) = sup
0≤i≤max{q,i1}

[
q − i + β W ( f (i)+ y)

]
.

We need to show that i = i1 is optimal at q1. The following lemma states that
always taking i = i1, is optimal at every state q .

Lemma 1 The strategy of inputting i1 at every state q in every period, is optimal
for the modified problem for every initial state, when f ′(0+) ≥ 1/β.

Proof Let R(q) be the return from the strategy. Then

R(q) = q − i1 + β R(q1) = q + k,

where q1 = f (i1) + y and k is the constant determined by k = β R(q1) − i1,
namely k = (βq1 − i1)/(1 −β). It suffices to show that R(·) satisfies the modified
Bellman equation stated above, in the form

R(q) = sup
0≤i≤max{q,i1}

[ψ(i)],

where

ψ(i) = q − i + βR( f (i)+ y) = q − i + β [ f (i)+ y + k].
Now ψ(·) is concave because f (·) is, and we have

ψ ′(i) = −1 + β f ′(i) = 0

when i = i1. Thus ψ(·) attains its maximum at i = i1. �
The proof for case 2 is now complete.
Now assume that we are in case 1 of Theorem 1, where f ′(i) ≤ f ′(0+) < 1/β

for all i ≥ 0. We need to show that an input of i = 0 is optimal at q = y.
Just as in case 2, there is again no harm in replacing the utility function by the

identity w(x) = x . For this case we leave the set of possible inputs unchanged.

Lemma 2 The strategy of inputting i = 0, in every period and at every state q, is
optimal for the modified problem of case1 when f ′(0+) < 1/β.

Proof Let R(q) be the return from the strategy at q. Then

R(q) = q + βR(y) = q + k

where k is a constant. It suffices to show R(q) = sup
0≤i≤q

[ψ(i)], where

ψ(i) = q − i + βR( f (i)+ y) = q − i + β [ f (i)+ y + k].
Therefore,

ψ ′(i) = −1 + β f ′(i) ≤ 0

and ψ(i) has its maximum at i = 0.

The proof of Theorem 1 is now complete. �
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Proof of Theorem 4

Consider case 2 with f ′(i4) = (1 + ρ)/β. Let σ ∗ be the strategy of bidding the
amount b = a∗m and putting i = i4 into production in each period. This is a
feasible strategy since, as in the proof of Theorem 1,

f (i4) =
i4∫

0

f ′(x) dx ≥ 1 + ρ

β
· i4 ≥ i4.

Thus in equilibrium an agent who inputs i4 in any period will produce enough goods
to be able to input i4 again in the next period. Also, the bid b = a∗m satisfies

0 ≤ a∗m < m + p(m)q

1 + ρ
.

This is easy to verify when we use the expression

p(m) = a∗m

q

and substitute for a∗ from (5).
We must show that the strategy σ ∗ is optimal for a given agent, when all others

use σ ∗. To do this, suppose that the given agent has cash s and goods q; while
every other agent has cash m, goods q∗ ≡ q4 = f (i4) + y, and uses the strategy
σ ∗. The given agent faces a dynamic programming problem with optimal reward
function V (s, q,m) satisfying the Bellman equation

V (s, q,m) = sup
0≤b≤s+ p(m)q

1+ρ
0≤i≤ b

p(m)

[
u

(
b

p(m)
− i

)
+ β V

(
(1 + ρ)(s − b)

+p(m)q, y + f (i), τ ∗m
)]
.

We need to show that the strategy σ ∗ is optimal for the given agent at states of the
form (m, q∗,m), that is, when he has the same wealth and goods as all the other
agents.

In period n the given agent will consume

b(mn)

p(mn)
− i4 = a∗ mn

(a∗ mn)/q∗ − i4 = q∗ − i4,

so that his total return is

1

1 − β
· u(q∗ − i4). (8)
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• For the proof of optimality we shall modify the dynamic programming problem
as we did in the proof of Theorem 1. First, we replace the utility function u(·)
by the affine function ũ(·)whose graph is tangent to u(·) at x∗ = q∗ − i4. Thus

ũ(x) = λx + ζ,

where λ = u′(x∗) and ζ = u(x∗)− u′(x∗)x∗. In the new problem the agent is
allowed to choose at each stage any nonnegative input i such that

i ≤ max{i4, b/p(m)}.
The Bellman equation for the optimal return function W (s, q,m) in the new
problem is

W (s, q,m) = sup
0≤b≤s+ p(m)q

1+ρ
0≤i≤max{i4, b

p(m) }

[
ũ

(
b

p(m)
−q

)
+β W

(
(1+ρ)(s − b)

+p(m)q, y + f (i), τ ∗m
)]
. (9)

Clearly W (s, q,m) ≥ V (s, q,m), because the new problem has a larger utility
function and more actions. Thus, if σ ∗ is optimal at states (m, q∗,m) in the
new problem, it must also be optimal in the original problem.

• Consider now another strategy σ̃ which, in every state (s, q,m), makes the
maximum allowed bid b = s + p(m)q/(1 + ρ) and always puts i = i4 into
production. In the first period starting from (s1, q1,m1) = (s, q,m), this strat-
egy σ̃ earns utility

ũ

(
b

p(m)
− i4

)
= ũ

(
s

p(m)
+ q

1 + ρ
− i4

)

= λ ·
(

s

p(m)
+ q

1 + ρ
− i4

)
+ ζ.

At the next stage the agent is at the state

(s2, q2,m2) = (0, q∗, τ ∗m).

The return from σ̃ in each period n ≥ 2 is

ũ

(
q∗

1 + ρ
− i4

)
= λ ·

(
q∗

1 + ρ
− i4

)
+ ζ.

The total discounted return is

R(s, q,m) = λ
[

s
p(m) + q

1+ρ − i4 + β
1−β

(
q∗

1+ρ − i4

)]
+ ζ

1−β
= λ

[
s

p(m) + q
1+ρ

]
+ k,

(10)

where k is a constant.
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For an initial state (m, q∗,m), trivial algebra gives, after the substitution
p(m) = a∗m/q∗, the computation

R(m, q∗,m) = 1

1 − β
· [λ(q∗ − i4)+ ζ

]

= 1

1 − β
· ũ(x∗)

= 1

1 − β
· u(x∗)

= 1

1 − β
· u(q∗ − i4).

This is the same return at (m, q∗,m) as that in (8) for the strategy σ ∗ of the
theorem. Thus σ ∗ is optimal at (m, q∗,m) in the original problem if σ̃ is in the
modified problem.

To see that σ̃ is optimal in the new problem, we shall verify that its return
function R(·, ·, ·) of (10) satisfies the Bellman equation (9). (This is sufficient
by a result of Blackwell (1966) on positive dynamic programming. His result
applies because the daily reward is bounded from below by c = ũ(−i4), and we
can add −c to the daily reward without affecting the optimality of any strategy.)

Let

ψ(b, i) = ũ

(
b

p(m)
− i

)
+ β R

(
(1 + ρ)(s − b)+ p(m)q, y + f (i), τ ∗m

)
.

We must verify that ψ(·, ·) attains its maximum over the set

0 ≤ b ≤ s + p(m)q

1 + ρ
, 0 ≤ i ≤ max

{
i4,

b

p(m)

}

at the point

b = s + p(m)q

1 + ρ
, i = i4.

By the formula (10) for R(·, ·, ·) and the definition of ũ(·), we have

ψ(b, i) = λ

[(
b

p(m)
− i

)
+ β

(−(1 + ρ)b

p (τ ∗m)
+ f (i)

1 + ρ

)]
+ k̃

= λ ·
[

b ·
{

1

p(m)
− β(1 + ρ)

τ ∗ p(m)

}
+

{
−i + β

1 + ρ
· f (i)

}]
+ k̃

= λ ·
[

b · 0 +
{
−i + β

1 + ρ
· f (i)

}]
+ k̃,

where k̃ is a constant. Thus

∂ψ

∂b
= 0,

∂ψ

∂i
= −1 + β

1 + ρ
· f ′(i) = 0 if and only if i = i4.

This completes the proof for case 2 of Theorem 4.

The proof for case 1 is similar but slightly easier, and is omitted.
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Proof of Theorem 5

Assume that we are in case 2 of the theorem. Let σ be the strategy for an owner
agent who bids the amount a∗m; let σ ′ be the strategy for a saver agent who bids
the amount c∗m; and let σ̃ be the strategy for a firm that bids the amount b∗m,
whenever the amount of cash held across agents is m = m A + m� . First we must
check that σ, σ ′ and σ̃ are feasible.

When every firm follows σ̃ , they each put i∗ ≡ i4 into production, and produce
an amount q∗ ≡ q4 = f (i4)+ y of goods. Thus, if every owner agent uses the same
strategy σ and holds m A in cash, and if every saver agent uses the same strategy
σ ′ and holds m� in cash, the price is

p(m) = (a∗ + b∗ + c∗)m/q∗ = rm/q∗. (11)

For σ, σ ′ and σ̃ to be feasible, the bids a∗m, b∗m and c∗m must satisfy the require-
ments

0 ≤ a∗m ≤ m + π(m)

1 + ρ
, 0 ≤ b∗m ≤ p(m)q∗

1 + ρ
, 0 ≤ c∗m ≤ m,

where each firm has profit

π(m) = p(m)q∗ − (1 + ρ)b∗m = (
r − (1 + ρ)b∗)m = π∗m

proportional to the money supply, where

π∗ = r − (1 + ρ)b∗ = r

(
1 − (1 + ρ)i∗

f (i∗)+ y

)
.

The third of these requirements is obviously satisfied. Clearly, both a∗m and b∗m
are nonnegative. The second inequality for a∗m follows from (11), from the for-
mula above for π(m), and from (6), (7). The second inequality for b∗m can, by
virtue of (7), be written as

r

q∗ · i∗ ≤ r

1 + ρ
.

But

q∗ = f (i∗)+ y ≥ f (i∗) ≥
i∗∫

0

f ′(u) du ≥ f ′(i∗) · i∗ = 1 + ρ

β
· i∗ ≥ (1 + ρ) · i∗

so all three strategies are feasible.
It remains to be shown that σ, σ ′ and σ̃ are optimal for a given owner agent,

saver agent and firm, respectively.

• Consider first a given firm that begins with goods q > 0, when all other firms
begin with goods q∗ and play σ̃ , all owner agents begin with cash m A > 0 and
play σ , and all saver agents begin with cash m� ≥ 0 and play σ ′. The given
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firm then faces a dynamic programming problem, with optimal reward function
V (q,m) that satisfies the Bellman equation

V (q,m)= sup
0≤b≤ p(m)q

1+ρ

[
p(m)q−b(1+ρ)+ 1

1+ρ · V

(
f

(
b

p(m)

)
+y, τ ∗m

)]
.

We must show that σ̃ is optimal for the given firm, when it begins at the same
position (q∗,m) as the other firms. To show this, we extend the definition of
σ̃ for all possible positions, to be the strategy that bids at position (q,m) the
amount

b̃(q,m) =
{

b∗m, if b∗m ≤ p(m)q
1+ρ ,

p(m)q
1+ρ , if not.

That is, σ̃ bids b∗m if possible and otherwise makes the maximum possible bid.
In particular, σ̃ thus defined agrees with the original definition when q = q∗.
We shall show that σ̃ is optimal for every initial state (q,m) and, in particular,
at states (q∗,m).

Let R(q,m) be the total return to the single firm that starts at (q,m) and
follows the plan σ̃ . Then

R(q,m) =

⎧
⎪⎨

⎪⎩

p(m)q − b∗m(1 + ρ)+ 1

1 + ρ
· R(q∗, τ ∗m), if b∗m ≤ p(m)q

1 + ρ
1

1 + ρ
· R

(
f (

q

1 + ρ
)+ y, τ ∗m

)
, if not.

(12)

The dynamic programming problem faced by the firm has nonnegative rewards
(i.e. its profits) at each stage. Thus, by a theorem of Blackwell (1966), it suffices
to show that R(·, ·) satisfies the appropriate Bellman equation, namely,

R(q,m) = sup
0≤b≤ p(m)q

1+ρ

[
ψ(b)

]
, (13)

where

ψ(b) = p(m)q − b(1 + ρ)+ 1

1 + ρ
· R

(
f

(
b

p(m)

)
+ y, τ ∗m

)
.

The following lemma is helpful in the verification of (13). Its statement involves
the partial derivative of the function R(q,m)with respect to q . This function is
piecewise smooth in q and the statement is valid wherever the derivative exists.

Lemma 6

∂R

∂q
(q,m) = p(m) if b∗m ≤ p(m)q

1 + ρ
,

and

∂R

∂q
(q,m) > p(m) if b∗m >

p(m)q

1 + ρ
.
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Proof The first assertion is clear from (12). For the proof of the second, define

g(q) = g1(q) = f

(
q

1 + ρ

)
+ y,

and set

gn+1(q) = g(gn(q)), n ≥ 1.

The condition b∗m >
p(m)q
1+ρ is equivalent to q/(1 + ρ) < i∗ by (7) and (11). Now

for 0 < q/(1 + ρ) < i∗, there is a unique n ≥ 1 such that

g1(q) < i∗, . . . , gn−1(q) < i∗, gn(q) ≥ i∗.

Also

R(q,m) =
(

1

1 + ρ

)n

· R
(
gn(q), (τ

∗)nm
)

=
(

1

1 + ρ

)n [
(τ ∗)n p(m)gn(q)− b∗(τ ∗)nm(1 + ρ)

+ 1

1 + ρ
· R

(
q∗, (τ ∗)n+1m

)]

= (β)n p(m)gn(q)+ k,

where k = k(m) does not depend on q and we have used the equality τ ∗ = β(1+ρ).
Now

g′(q) = 1

1 + ρ
· f ′

(
q

1 + ρ

)
>

1

1 + ρ

1 + ρ

β
= 1

β

and an easy induction on n shows that

g′
n(q) >

1

βn
.

The second assertion follows. �
In order to verify (13), we need to show that the function ψ(b) attains its

maximum at b = b̃(q,m). If b > b∗m, then b/p(m) > b∗m/p(m) = i∗ and
f (b/p(m))+ y ≥ f (i∗)+ y ≥ (1 + ρ)i∗. By the lemma,

ψ ′(b) = −(1 + ρ)+ 1

(1 + ρ)p(m)
f ′

(
b

p(m)

)
p(τ ∗m)

= −(1 + ρ)+ 1

1 + ρ
f ′

(
b

p(m)

)
τ ∗

< −(1 + ρ)+ 1

1 + ρ
· β(1 + ρ)

1 + ρ

β
= 0

so the maximizing bid never exceeds b∗m.
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Now suppose that b < b∗m so that b/p(m) < b∗m/p(m) = i∗ and
f ′(b/p(m)) > f ′(i∗) = (1 + ρ)/β. The inequality in the calculation above
now reverses, to give ψ ′(b) > 0. Thus the maximum occurs at either b∗m or the
maximum allowed value of b, whichever is smaller. The proof that σ̃ is optimal for
the given firm is now complete.

• Consider next the situation of a given owner agent with cash s, when all other
owner agents have cash m A each and play σ ; all firms have goods q∗ each and
play σ̃ ; and all saver agents have cash m� each and play σ ′. We need to show
that σ is optimal for the given agent when s = m A. The proof is similar to that
of Theorem 4.

The given agent with cash s faces a dynamic programming problem with
optimal reward function W (s,m) satisfying the Bellman equation

W (s,m)= sup
0≤a≤ s+π(m)

(1+ρ)

[
u

(
a

p(m)

)
+β W

(
(1+ρ)(s−a)+π(m), τ ∗m

)]
.

As in the proof of Theorem 4, we introduce another dynamic programming
problem with a larger utility function ũ(·) and a larger action set. Let

x∗ = a∗m

p(m)
= a∗

a∗ + b∗ + c∗ · q∗ = a∗q∗

r
=

(
1 − ρν

1 + ρ

)
q∗ − i∗

and define the utility function ũ(·) as

ũ(x) = λx + ζ,

where λ = u′(x∗) and ζ = u(x∗)− x∗u′(x∗). In the new problem the agent at
position (s,m) is allowed to select any action a such that

s − β(1 − ν)m + π(m)

1 + ρ
≤ a ≤ s + π(m)

1 + ρ
.

The plan that bids

a = a(s,m) = s − β(1 − ν)m + π(m)

1 + ρ

in each position (s,m) can be shown to be optimal in the new problem by
the same methods used to prove Theorem 4. Also this plan coincides with σ if
s = m A; indeed, it is readily checked from (7), (6) that a(m A,m) = a∗m.
It follows that the strategy σ is optimal in the original problem for the given
owner agent, when he begins in the same position as the other owner agents.

• Finally, let us consider the situation of a given saver agent with cash s, when
all other saver agents have cash m� each and play σ ′; all firms have goods q∗
each and play σ̃ ; and all owner agents have cash m A each and play σ . We need
to show that σ ′ is optimal for the given agent when s = m� .

The given agent with cash s faces a dynamic programming problem with
optimal reward function U (s,m) satisfying the Bellman equation

U (s,m) = sup
0≤c≤s

[
v

(
c

p(m)

)
+ β U

(
(1 + ρ)(s − c)

)]
.
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As in the proof of Theorem 4, we introduce another dynamic programming
problem with a larger utility function v̂(·) and a larger action set. Let

y∗ = c∗m

p(m)
= a∗q∗

a∗ + b∗ + c∗ = ρν

1 + ρ
q∗

and define the utility function

v̂(x) = μx + η,

where μ = v′(y∗) and η = v(y∗)− y∗v′(y∗). In the new problem the agent at
position (s,m) is allowed to select any action c with

s − βν m ≤ c ≤ s.

The plan that bids

c = c(s,m) = s − βν m

in each position (s,m) can be shown to be optimal in the new problem by the
same methods used to prove Theorem 4. This plan coincides with σ if s = m�;
and it is easily checked that c(m�,m) = c∗m.

It follows that the strategy σ ′ is optimal in the original problem for the given
saver agent, when he begins in the same position as the other saver agents.
The proof of case 2 is now complete. The proof of case 1 is similar and is
omitted.

Sensitivity analysis

Let us make the blanket assumptions y > 0 and f ′(0+) = ∞, which ensconce
us firmly within case 2 of Theorem 5, and try to analyze the welfare of the agents
as a function of the prevailing interest rate ρ.

• The optimal total discounted reward of the owner agents is

W ∗(ρ) ≡ W
(

m A,m
)

=
∞∑

n=1

βn−1 u
(
x∗(ρ)

) = u (x∗(ρ))
1 − β

;

here

x∗(ρ) =
(

1 − ρν

1 + ρ

) [
f

(
I

(
1 + ρ

β

))
+ y

]
− I

(
1 + ρ

β

)

is the owner agents’ daily optimal consumption, explicitly displayed as a func-
tion of the interest rate ρ > 0, and I = (

f ′)−1 is the inverse of the marginal
production function. We claim that ρ �→ x∗(ρ), thus also ρ �→ W ∗(ρ), are
decreasing: the owner agents prefer as low an interest rate as possible.
Indeed, a straightforward computation yields

∂

∂ρ
x∗(ρ) = 1 − β + ρ(1 − ν)

β2 I ′
(

1 + ρ

β

)

− ν

(1 + ρ)2

[
f

(
I

(
1 + ρ

β

))
+ y

]
< 0,

since I ′(·) < 0.
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• The optimal total discounted profits for a typical firm are

V ∗(ρ) ≡ V
(
q∗,m

) =
∞∑

n=1

(
1

1 + ρ

)n−1

· π∗Mn,

where Mn = m1τ
n−1 = m1

(
β(1 + ρ))n−1 is the total money supply on day n.

Therefore,

V ∗(ρ)
m1

= π∗

1 − β
= r

1 − β

[
1 − (1 + ρ) i∗

f (i∗)+ y

]

= 1 + ρ

ρ

[
1 − β �

(
1 + ρ

β

)]

where

�(ξ) = ξ I (ξ)

f (I (ξ))+ y
= i f ′(i)

f (i)+ y

∣∣∣∣
i=I (ξ)

.

Let us observe that limξ→∞ �(ξ) = 0. This is because we have f (i) > i f ′(i)
from concavity, thus

0 <
i f ′(i)

f (i)+ y
<

f (i)

f (i)+ y
−→ 0 as i ↓ 0.

It is then fairly clear that

lim
ρ→∞ V ∗(ρ) = m1 · lim

ρ→∞

(
1 + 1

ρ

)
· [

1 − β �(∞)
] = m1.

On the other hand, notice that we have 1−β < 1−β �(ξ), so limξ↓(1/β)
(
1−

β �(ξ)
) ≥ 1 − β > 0. This implies

lim
ρ↓0

V ∗(ρ) = m1 · lim
ρ↓0

{ (
1 + 1

ρ

) [
1 − β �

(
1 + ρ

β

)]}
= ∞,

and makes clear that the firms should prefer an interest rate as close to 0 as
they can get.

• The situation is subtler for the saver agents. Their optimal total discounted
reward is

U∗(ρ) ≡ U
(
m�,m

) =
∞∑

n=1

βn−1 v
(
y∗(ρ)

) = v (y∗(ρ))
1 − β

,

where

y∗(ρ) = ρν

1 + ρ
q∗ = ρν

1 + ρ

[
f

(
I

(
1 + ρ

β

))
+ y

]

is their daily optimal consumption.
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We shall study an example that illustrates the behavior of this function. With
f (i) = 2

√
i we have f ′(i) = 1/

√
i, I (ξ) = ξ−2 and f

(
I (ξ)

) = 2/ξ , thus

y∗(ρ)
ν

= ρ

1 + ρ

(
y + 2β

1 + ρ

)
,

1

ν
· ∂
∂ρ

y∗(ρ) = (y + 2β)+ ρ(y − 2β)

(1 + ρ)3
.

If y ≥ 2β, the function y∗(·) is increasing and the saver agents prefer as
high an interest rate as possible.

If 0 < y < 2β on the other hand, the function y∗(·) attains its maximum
over (0,∞) at the point

ρ∗ = 2β + y

2β − y
,

which is then best from the saver agents’ point of view.
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