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Abstract

We argue that even when macroeconomic variables are constant,
underlying microeconomic uncertainty and borrowing constraints gen-
erate inflation.

We study stochastic economies with fiat money, a central bank,
one nondurable commodity, countably many time periods, and a con-
tinuum of agents. The aggregate amount of the commodity remains
constant, but the endowments of individual agents fluctuate “indepen-
dently” in a random fashion from period to period. Agents hold money
and, prior to bidding in the commodity market each period, can either
borrow from or deposit in a central bank at a fixed rate of interest. If
the interest rate is strictly positive, then typically there will not exist
an equilibrium with a stationary wealth distribution and a fixed price
for the commodity. Consequently, we investigate stationary equilibria
with inflation, in which aggregate wealth and prices rise determinis-
tically and at the same rate. Such an equilibrium does exist under
appropriate bounds on the interest rate set by the central bank and on
the amount of borrowing by the agents.

If there is no uncertainty, or if the stationary strategies of the agents
select actions in the interior of their action sets in equilibrium, then
the classical Fisher equation for the rate of inflation continues to hold
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and the real rate of interest is equal to the common discount rate of
the agents. However, with genuine uncertainty in the endowments and
with convex marginal utilities, no interior equilibrium can exist. The
equilibrium inflation must then be higher than that predicted by the
Fisher equation, and the equilibrium real rate of interest underesti-
mates the discount rate of the agents.

Keywords: Inflation, Economic equilibrium and dynamics, Dynamic
programming, Consumption

JEL Classification: D5, D8, E31, E58

1 Introduction

We seek to understand the behavior of prices and money in a simple infinite-
horizon economy with a central bank and one nondurable commodity. Fol-
lowing Bewley (1986) we consider an economy in which a continuum of
agents are subject to idiosyncratic, independent and identically distributed
random shocks to their endowments. At the micro level the economy is in
perpetual flux but, at the macro level, aggregate endowments remain con-
stant across time and states. We prove the existence of a stationary equilib-
rium that also remains rock-steady at the macro level despite micro turmoil
in individual consumption and saving. Stationary equilibrium means that
markets clear, and prices and money grow at a deterministic rate τ , all the
while maintaining the same distribution of real (inflation-corrected) wealth
across agents. In each period some formerly rich agents may become poor,
and vice versa, but the fraction of the population at every level of real wealth
remains the same.

Bewley proved the existence of a stationary equilibrium in a more general
economy than ours, allowing for example for multiple commodities1. But
his model did not have a central bank that could change the stock of money
over time, and therefore had no inflation in equilibrium. Inflation seems to
complicate the existence problem. We are not aware of any other existence
proof for stationary equilibrium with inflation in a Bewley-style model.

In this paper we study a model with a continuum of agents with a com-
mon discount rate β and common instantaneous utility function u(·) , but
with idiosyncratic shocks to their endowments that leave the aggregate en-
dowment constant. For such a model, and without borrowing or lending, it
is already known that there exists in great generality an equilibrium with a

1Bewley also allowed for Markovian random endowments and for heterogeneous utility
functions. All of these extensions could probably be accommodated in our setting as well.
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stationary distribution of nominal wealth and a constant commodity price;
cf. Karatzas et al. (1994). Bewley (1986) showed that such a noninflationary
stationary equilibrium also exists when there is borrowing and lending but
at a zero rate of interest. We confirm this result in subsection 7.6.

We add to the model a central bank committed to borrowing or lending
with every agent at a fixed nominal interest rate ρ > 0. With a central bank
fixing a positive rate of interest, a noninflationary equilibrium rarely exists.
(A necessary condition for existence is that the bank select an interest rate
that “balances the books” so that all the lending comes from one agent to
another and the aggregate money supply remains constant; see Karatzas et
al. (1997) and Geanakoplos et al. (2000).)

We prove here the existence of stationary inflation-corrected equilibrium,
under certain technical conditions and under a critical borrowing constraint
(Theorem 7.1). More specifically, we assume that all agents have a strictly
concave utility function u(·) whose derivative is bounded away from zero.
Another important assumption is that agents can only borrow up to a frac-
tion θ ∈ (0, θ∗(ρ)) of the discounted value of their current endowment,
where the upper bound θ∗(ρ) ∈ (0, 1) decreases as ρ increases. As long as
θ ≤ 1, we have a model of secured lending, without any chance of default
around equilibrium. We were not able to establish existence in general with
θ = 1 , though we show that such an equilibrium does exist in the absence
of microeconomic uncertainty (Example 6.1).

The existence of inflation-corrected equilibrium allows us to study the
effect of micro uncertainty and the borrowing constraint on the rate of in-
flation and the real rate of interest. In a world of micro certainty, which we
could obtain in our model by replacing each individual agent’s random en-
dowment with his mean endowment, the rate of inflation τ would necessarily
satisfy the famous Fisher equation

τ = β(1 + ρ) ,

provided θ = 1. The Fisher equation also holds in our model, even with un-
certainty, if the equilibrium is interior; that is, if agents are never consuming
zero, and if they are never forced by the collateral constraint to borrow less
than they would like (Theorem 5.1).

We prove, however, that if there is genuine micro uncertainty, and if
the marginal utility function u′(·) is strictly convex, then all stationary
equilibria have τ > β(1 + ρ), irrespective of the bound θ on borrowing.
Thus, with genuine randomness in the endowments and with u′(·) strictly
convex, stationary equilibrium can only exist if a non-negligible fraction of
the agents are up against their borrowing constraints (Theorem 5.2).
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We prove that if θ ≤ θ∗(ρ), then indeed there is always an equilibrium
in which τ > β(1 + ρ) , and the borrowing constraint is often binding,
whether or not there is micro uncertainty and no matter what the sign of
u′′′(·) (Theorem 7.1). Micro uncertainty and borrowing constraints generate
inflation.

We can also interpret our result in terms of the implied real rate of
interest rather than in terms of the rate of inflation. Fisher defined the real
rate of interest ρ̄ by

1 + ρ̄ ≡ 1 + ρ

τ
.

In our model with certainty and θ = 1, the Fisher equation must hold; that
is, the real rate of interest necessarily equals the reciprocal of the discount:
1/β = 1 + ρ̄. Though historical consumption has been far from certain,
historical real rates of interest are often mistakenly taken as indicators of
the discounting in the population. Historically interest rates have exceeded
inflation by about 3%, which has suggested to many economists that people
regard next year as 3% less important than this year. But our theorem
shows that when there are borrowing constraints, an historical real rate of
interest of ρ̄ = 3% corresponds to discounting that might be much higher,
say β = 1/1.05.

In an earlier paper on this subject (Karatzas et al. (2006)) we had a
representative agent and random i.i.d. aggregate endowments. There, prices
jumped around from period to period; but we showed that, in stationary
equilibrium, the long-run rate of inflation was always uniquely defined. We
also showed there that the long-run real rate of interest was typically smaller
than the reciprocal of the representative agent’s discount β.

A precise formulation of our model, and of equilibrium, is given in the
next section. The notion of stationary equilibrium is defined in Section 3.
Section 4 describes the optimization problem of the agent in our infinite-
horizon economy. Section 5 is on interior equilibria and the Fisher equation.
Section 6 presents two simple examples for which stationary interior equi-
libria exist, an example with a non-interior equilibrium with inflation rate
τ > 1, and also an example with no stationary equilibrium. Our existence
proof is in section 7. The final section has a brief comparison of the repre-
sentative agent model to the model of this paper.
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2 The model

The model runs in discrete time units n = 1, 2, · · · and has a continuum of
agents α ∈ I indexed by the unit interval I = [0, 1]. Each agent α seeks to
maximize the expectation of his total discounted utility from consumption,
namely

E

( ∞∑
n=1

βn−1u(cαn)

)
. (2.1)

Here β ∈ (0, 1) is a discount factor, cαn is his (possibly random) consumption
in period n, and u : [0,∞) → [0,∞) is a concave, continuous, nondecreasing
utility function with u(0) = 0. The utility function u(·) is assumed to be
the same for all agents, but agent endowments are heterogeneous.

At time-period n = 1 , each agent begins with a non-random amount
mα

1 ∈ [0,∞) of cash (fiat money, or nominal wealth); there is no dispensa-
tion of cash thereafter. The total amount of cash initially held by the agents
is the constant

M1 =
∫

I
mα

1 dα ,

which we assume to be finite and strictly positive.
At each time-period n ≥ 1, every agent receives an endowment Y α

n ≥ 0
of the (perishable) consumption good. The random variables Y α

n , and all
other random variables in this paper, are defined on a given probability
space (Ω,F ,P). All the variables Y α

n , α ∈ I, n ∈ N are assumed to be
nonnegative and to have a common distribution λ with

0 < Q :=
∫

[0,∞)
y λ(dy) < ∞ .

For each agent α, the random variables Y α
1 , Y

α
2 , · · · are assumed to be inde-

pendent as well as identically distributed.
If we were to assume that, for each n ∈ N , the random commodity

endowments Y α
n were the same for all agents α ∈ I , then we would have

the representative agent model of Karatzas et al. (2006). The model of
the present paper differs from the representative agent model, in that the
random endowments vary from agent to agent and aggregate to a constant.
Thus, we assume that the integrals∫

I
Y α

n (ω) dα = Qn(ω) = Q (2.2)

are constant across time-periods n ∈ N and states ω ∈ Ω . We assume fur-
ther that the random endowments Yn(α, ω) ≡ Y α

n (ω) are jointly measurable
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in (α, ω) , where the variable α ranges over the index set I = [0, 1] and the
variable ω ranges over the probability space Ω . Furthermore, the distribu-
tion of Yn(·, ω) on I is the same for each fixed ω, as that of Yn(α, ·) on
Ω for each fixed α; this common distribution, namely λ, is assumed also to
be constant in n . (A simple construction of random variables with these
properties is in Feldman & Gilles (1985).) We often use Y to denote a
generic random variable that has this distribution. A consequence of our
assumptions about the random endowments is that

E(Y ) =
∫

Ω
Yn(α, ω) P(dω) =

∫
I
Yn(α, ω) dα = Q .

2.1 Money and Commodity Markets

Two markets meet in every period. First, each agent can borrow cash from
(or deposit cash into) a central bank at a fixed interest rate ρ ≥ 0. Next,
agents must sell all their endowment of the good for cash in a commodity
market. At the same time, each agent α bids an amount bαn(ω) of cash,
to purchase goods for consumption from the market. At the end of the
time-period, loans come due.

Suppose every agent and the central bank expect the price pn(ω) for
the commodity. The budget set of each agent α ∈ I is then defined re-
cursively as follows: Let mα

n(ω) be the amount of cash or nominal wealth
with which the agent enters period n, and recall that the initial amount of
cash mα

1 (ω) = mα
1 has been fixed. In period n the agent can lend no more

than the cash mα
n(ω) he has on hand; he is allowed to borrow no more than

θpn(ω)Y α
n (ω)/(1 + ρ). The agent will be able to pay back the loan with in-

terest from the revenue derived from the sale of his endowment Y α
n (ω). The

choice of the parameter θ = 1 means the bank is willing to grant full credit,
while the choice θ = 0 means the bank will lend nothing at all; choices of
θ ∈ (0, 1) correspond to levels of partial credit.

After leaving the loan market the agent can bid at most the cash he has
on hand, plus what he has borrowed, so bαn(ω) is required to satisfy

0 ≤ bαn(ω) ≤ mα
n(ω) +

θpn(ω)Y α
n (ω)

1 + ρ
.

The agent α ∈ I receives from the market his bid’s worth of goods
cαn(ω) = bαn(ω)/pn(ω) and consumes these goods immediately, thereby re-
ceiving u(cαn(ω)) in utility. He then repays the bank in full and with interest,
or is repaid himself with interest on his loan. Thus, at the beginning of the
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next period, the agent has a random endowment Y α
n+1(ω) of goods and

mα
n+1(ω) = (1 + ρ)

(
mα

n(ω)− bαn(ω)
)

+ pn(ω)Y α
n (ω) (2.3)

in cash. When the agent chooses his credit decision and his bid bαn(ω) at
time n , he is assumed to know his cash position mα

n(ω), his endowment
Y α

n (ω), the price pn(ω), as well as the bank interest rate ρ.

2.2 Equilibrium

We shall define formally a special kind of equilibrium in the next section.
Roughly speaking, equilibrium is given by prices pn(ω) and choices bαn(ω)
that maximize each agent’s expected discounted utility over his budget set,
in such a way that bαn(ω) is measurable in α for every n, and such that
every market clears. Denoting the total bid by Bn(ω) :=

∫
bαn(ω) dα and the

total endowment of goods offered for sale by Qn(ω) :=
∫
Y α

n (ω) dα = Q ,
commodity market-clearing means

pn(ω) =
Bn(ω)
Q

.

Let Cn(ω) :=
∫
I c

α
n(ω) dα be the total consumption in period n . When the

commodity market clears, we have

Cn(ω) =
Bn(ω)
pn(ω)

= Qn(ω) = Q .

Note that the credit markets clear automatically, since the central bank
stands ready to absorb any excess lending or borrowing.

Suppose we are in equilibrium, and denote the total amount of cash (or
total nominal wealth) held by the agents in period n by

Mn(ω) :=
∫

I
mα

n(ω) dα .

Integrating out α in the law of motion (2.3), we obtain

Mn+1(ω) = (1+ρ)
(
Mn(ω)−Bn(ω)

)
+
Bn(ω)
Qn

·Qn = (1+ρ)Mn(ω)−ρBn(ω).

(2.4)
If ρ = 0, then Mn+1(ω) = Mn(ω) and the money supply is the same in every
period.

It is possible for the money supply to be conserved in equilibrium even
for some ρ > 0 ; see Karatzas et al. (1997) and Geanakoplos et al. (2000).
However, one expects that generically the money supply will not remain
constant when ρ > 0 : genuine inflation must then be considered.
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3 Stationary Markovian equilibrium with inflation

In this section we define stationary equilibrium. As we saw in the last
section, this will often require a non-zero inflation rate.

A stationary Markovian equilibrium with inflation (stationary equilib-
rium, or SE for short) is an equilibrium, as described briefly in the last
section, that turns out to be completely deterministic in the aggregate level
but possibly very random at the micro level. More precisely, it is an equilib-
rium in which the price level and the money stock grow deterministically at
a constant inflation rate, and the distribution of real wealth stays the same
each period. Formally, we require conditions (a), (b), and (c) below.

3.1 Definition of inflation-corrected SE

In period n = 1 the price level is p1 , and in every subsequent period it rises
(or falls) at some constant rate τ > 0 :

(a) pn(ω) = τn−1p1 for all n ≥ 1 , ω ∈ Ω .

Similarly, the aggregate money stock starts out atM1 =
∫
I m

α
1 dα and should

rise (or fall) deterministically at the same inflation rate τ thereafter:

(b) Mn(ω) = τn−1M1 for all n ≥ 1 , ω ∈ Ω .

The purchasing power of one dollar of money, or a real dollar, is defined in
any period or state by the reciprocal of the price level 1/pn(ω). The real
money, or real wealth, with which an agent starts a period, is then given by
rα
n(ω) = mα

n(ω)/pn(ω) and his initial real wealth is

rα
1 = mα

1 /p1.

The aggregate purchasing power, or aggregate real wealth, must then be a
constant in SE, namely

Rn(ω) :=
∫

I
rα
n(ω) dα = Mn(ω)/pn(ω) = M1/p1 = R .

Let µn(ω) be the distribution of real wealth in period n, defined by

µn(ω)(E) := L
{
α ∈ [0, 1] : rα

n(ω) ∈ E
}
,

where L is Lebesgue measure and E is a Borel subset of [0,∞) (we include ω
in this definition to emphasize that, in general, the measures µn are random).
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The mean of µn(ω) is just the aggregate real wealth in period n ; that is,∫
[0,∞)

r µn(ω)(dr) =
∫

I
rα
n(ω) dα = Rn(ω) = R .

In stationary equilibrium we should have that µn remains the same in
every period and in every state:

(c) µn(ω) = µ for all n ≥ 1 , ω ∈ Ω .

3.2 Macro equations in inflation-corrected SE

It is worthwhile noting five macro equations, namely (3.3)-(3.7) below, that
must hold in stationary equilibrium. Dividing by pn(ω) in the law of motion
(2.3) and recalling that in stationary equilibrium τ = pn+1(ω)/pn(ω), we get

mα
n+1(ω)/pn(ω) = (1 + ρ)

(
mα

n(ω)− bαn(ω)
)
/pn(ω) + Y α

n (ω) (3.1)

or equivalently

rα
n+1(ω) · τ = (1 + ρ)

(
rα
n(ω)− cαn(ω)

)
+ Y α

n (ω). (3.2)

Integrating the last equation over agents α ∈ I , and noting that in station-
ary equilibrium the macro variables do not depend on ω, we get the macro
law of motion

Rn+1 · τ = (1 + ρ)(Rn − Cn) +Q . (3.3)

In stationary equilibrium we must also have

µn+1 = µn = µ , (3.4)

and from this it follows

Rn+1 = Rn = R . (3.5)

We also need to clear the commodity markets; that is, we need

Cn+1 = Cn = Q. (3.6)

The macro law of motion (3.3), together with (3.5) and (3.6), guarantee that

τ = 1 + ρ− ρ · Q
R

, (3.7)
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as can be seen by substitution.
Conversely, (3.3), (3.4), and (3.7) guarantee (3.5) and (3.6).

Remark: The conditions (a), (b), and (c) also follow from (3.3)-(3.7). In-
deed, condition (c) is the same as (3.4). To obtain condition (a), we integrate
with respect to α in (3.1) and use (3.3), to obtain

Mn+1

pn
= (1 + ρ)

(
Mn

pn
− Bn

pn

)
+Q

= (1 + ρ)(Rn − Cn) +Q

= τ ·Rn+1 = τ · Mn+1

pn+1
.

Hence, pn+1 = τ · pn and (a) holds. We then have from (3.5) that

R = Rn =
Mn

pn
=

Mn

τn−1 · p1
, thus Mn = τn−1 p1 ·R = τn−1M1

and (b) also holds.

3.3 Finding stationary equilibrium

As long as the inflation and interest rates remain constant and the ran-
dom endowments are independent and identically distributed from period
to period, the optimal strategy for any agent is clearly to make a bid which
determines a consumption that depends only on his current real wealth r
and commodity endowment y.

Let c(·, ·) be a measurable function specifying the consumption c(r, y)
for an agent with real wealth r and goods y. The consumption function
c(·, ·) is said to be budget-feasible for the credit parameter θ if, for all r ≥ 0
and y ≥ 0 , we have

0 ≤ c(r, y) ≤ r +
θy

1 + ρ
. (3.8)

Such a function determines budget-feasible bids for all agents α ∈ I accord-
ing to

bαn(ω) = pn(ω) c
(
rn(ω), Y α

n (ω)
)
, ∀ n ∈ N , ω ∈ Ω . (3.9)

To find an SE, we can first guess a consumption function c(·, ·) and
an initial distribution µ of real wealth. Let R = R(µ) be the mean of
µ, and set τ = τ(µ) according to the equality (3.7). To see whether the
pair (µ, c) determines an SE we must check that, if every agent follows
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the consumption strategy c(· , ·) , that is, bids according to the recipe in
(3.9), and if the random variables R (real wealth) and Y (endowment) are
independent with distributions µ and λ , respectively, then

R̃ :=
[
(1 + ρ)

(
R− c(R, Y )

)
+ Y

]
/ τ , (3.10)

the new real wealth induced by the law of motion, has again distribution µ.
Indeed, the equalities (3.3) and (3.4) are immediate and (3.7) holds by

construction. Conditions (a), (b), and (c) follow as was explained in the
remark of the preceding section. Lastly, we must verify that the consumption
function strategy c(·, ·) is optimal for the individual agents’ problem. The
next section discusses how.

4 Dynamic programming for a single agent

Suppose the economy is in stationary equilibrium with inflation rate τ . Then
a single agent with real wealth r and goods y faces an infinite-horizon dy-
namic programming problem. In this section we collect several properties
of this one-person problem for use in subsequent sections.

Recall that the utility function u(·) is assumed to be a concave, continu-
ous, nondecreasing mapping from [0,∞) into itself. Let V (r, y) ≡ V(ρ,τ)(r, y)
be the agent’s value function; that is, V (r, y) is the supremum over all strate-
gies of the agent’s expected discounted total utility in (2.1).

If β(1 + ρ) > τ , then it can happen that V (r, y) = ∞. For example, if
u(x) = x and r1 = r > 0, an agent can save all his money for the first n
periods so that rn ≥ [(1 + ρ)/τ ]n−1 r , then spend it all on consumption to
obtain a discounted utility of at least [β(1 + ρ)/τ ]n−1 r . This quantity can
then be made arbitrarily large, by choosing n to be large.

If the utility function u(·) is bounded, or if β(1 + ρ) ≤ τ , then it is
not difficult to see that V (r, y) < ∞. (Notice that the concave, real-valued
function u(·) is dominated by some affine function ũ(x) = a + bx and so it
suffices to check that V (·, ·) is finite for linear utilities.) In our search for
stationary equilibria, we confine ourselves to the case β(1 + ρ) ≤ τ . Thus,
to avoid annoying technicalities, we assume that V (·, ·) is everywhere finite.

A plan π is called optimal if, for every initial position (r, y), the expected
value under π of the total discounted utility is V (r, y). If c(·, ·) is a feasible
bid function as in (3.3), the stationary plan π corresponding to the use of
c(·, ·) at every stage of play is written π = c∞.

Lemma 4.1. (a) The value function V (·, ·) is concave, and satisfies the
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Bellman equation

V (r, y) = sup
0≤c≤r+ θy

1+ρ

[
ψ(r,y)(c ;V )

]
(4.1)

where

ψ(r,y)(c ;V ) := u(c) + β · EV
(

1 + ρ

τ
(r − c) +

y

τ
, Y

)
. (4.2)

(b) If the stationary plan π = c∞ is optimal, then c(r, y) ∈ arg max {ψ(r,y)(· ;V )}
for all (r, y).

(c) If either τ > β(1+ρ) or u(·) is bounded, and c(r, y) ∈ arg max {ψ(r,y)(· ;V )}
for all (r, y), then the plan π = c∞ is optimal.

Sketch of Proof: The proof that V (·, ·) is concave is similar to that given
for Theorem 4.2 in Geanakoplos et al. (2000) (the main ideas go back at
least to Bellman (1957)).

The Bellman equation holds in great generality; see, for example, section
9.4 of Bertsekas & Shreve (1978) – which also contains standard facts from
dynamic programming that lead to assertion (b).

Part (c) follows from the characterization, originally due to Dubins and
Savage (1965), of optimal strategies as being those that are both “thrifty”
and “equalizing”. In our context, “thriftiness” is equivalent to the condition
that π selects actions which attain the supremum in the Bellman equation.
On the other hand, every plan is equalizing if τ > β(1 + ρ) holds, or if
the utility function u(·) is bounded; see Rieder (1976) or Karatzas and
Sudderth (2008) for a development of the Dubins-Savage characterization in
the context of dynamic programming. ¤

For the rest of this section we impose the following additional require-
ments on the utility function.

Assumption 4.1. The utility function u(·) is strictly concave and strictly
increasing on [0,∞), differentiable on (0,∞) with 0 < u′+(0) <∞ .

The function ψ(r,y)(·) ≡ ψ(r,y)(· ;V ) of (4.2) is concave, since both u(·)
and V (·, ·) are concave. Also, ψ(r,y)(·) is strictly concave since u(·) is and
therefore achieves its maximum at a unique point. We define a specific bid
function c(·, ·) = c(ρ,τ)(·, ·) by

c(r, y) = arg max
{
ψ(r,y)(c) : 0 ≤ c ≤ r +

θy

1 + ρ

}
. (4.3)

12



Under Assumption 4.1 it follows from Lemma 4.1(b) that, if there is an
optimal plan, then it must be the plan π = c∞. Furthermore, if either
τ > β(1 + ρ) or u(·) is bounded, then, by Lemma 4.1(b) and (c), π = c∞ is
the unique optimal plan.

The next lemma and its proof are similar to results in Geanakoplos et
al. (2000).

Lemma 4.2. Under Assumption 4.1 we have:

(a) The value function V (r, y) is strictly increasing in each variable r , y.

If, in addition, the plan π = c∞ is optimal, then

(b) The value function V (r, y) is strictly concave in each variable r and y.

(c) The functions c(r, y) and r− c(r, y) are strictly increasing in r, for each
fixed y. Hence c(r, y) is continuous in r, for each fixed y. Also, c(r, y) is
strictly increasing in y, for each fixed r.

(d) c(r, y) →∞ as r →∞ for fixed y.

(e) c(r, y) > 0 if max {r, y} > 0 and τ > β(1 + ρ).

Proof. Part (a) is clear from the fact that an agent with more cash or goods
can spend more at the first stage and be in the same position at the next
stage as an agent with less. For part (b) we will show the strict concavity
of V (r, y) in r. The proof of strict concavity in y is similar.

Let us consider, then, two pairs (r, y) and (r̃, y) with r < r̃, and set
r̄ = (r + r̃)/2. It suffices to show that V (r̄, y) > (V (r, y) + V (r̃, y))/2.
Let (r1, y1) = (r, y) and consider the sequence {(rn, yn)}n∈N of successive
positions of an agent who starts at (r1, y1) and follows the plan π. Also let
(r̃1, ỹ1) = (r̃, ỹ) = (r̃, y) and consider the coupled sequence {(r̃n, ỹn)}n∈N
for an agent who starts at (r̃, ỹ) , follows π, and receives the same income
variables so that ỹn = yn for n ≥ 2. Set cn = c(rn, yn) and c̃n = c(r̃n, ỹn) for
all n. Finally, consider a third agent who starts at (r̄, ȳ) = (r̄, y)), receives
the same income variables ȳn = yn, and, at every stage n, plays the action
c̄n = (cn + c̃n)/2. Let (r̄n, ȳn) = (r̄n, yn) be the successive positions of this
third agent. It is easily verified that r̄n = (rn + r̃n)/2 for all n and that the
actions c̄n are feasible at every stage. Hence,

V (r̄, y) ≥ E

( ∞∑
n=1

βn−1u(c̄n)

)
.

Since u(·) is concave, we have u(c̄n) ≥
(
u(cn) + u(c̃n)

)
/2 for every n ∈ N ,

and this inequality must be strict with positive probability for some n. This
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is because u(·) is strictly concave and V (r̃, y) > V (r, y) by part (a), which
implies that c̃n > cn holds with positive probability for some n. Hence

E
∞∑

n=1

βn−1u(c̄n) > E
∞∑

n=1

βn−1
(
(u(cn) + u(c̃n))/2

)
=
(
V (r, y) + V (r̃, y)

)
/2 ,

and the proof of (b) is now complete.
For the proof of part (c), we first observe that if u(·) and w(·) are strictly

concave functions defined on [0,∞), then it is an elementary exercise to show
that

argmax
0≤c≤r+ θy

1+ρ

[
u(c) + w(r − c)

]
is strictly increasing in r. By part (b), the function

w(x) = β · EV
(

1 + ρ

τ
· x+

y

τ
, Y

)
is strictly concave. Since ψ(r,y)(c) = u(c) + w(r − c), the strict increase
of c(r, y) in r follows from our observation. A symmetric argument shows
r − c(r, y) is strictly increasing in r. We can also write ψ(r,y)(c) = u(c) +
v(y − (1 + ρ)c), where

v(x) = β · EV
(

1
τ
· x+

1 + ρ

τ
· r , Y

)
.

Thus, a very similar argument shows the strict increase of c(r, y) in y.
The proof of (d) is the same as the proof of Theorem 4.3 in Karatzas

et al. (1994). The proof of (e) is given in detail for a similar problem in
Geanakoplos et al. (2000) – see the proof there of Theorem 4.2.

The bid c is an called interior at position (r, y), if

0 < c < r +
θy

1 + ρ
.

The final result of this section establishes the Euler equation for interior
actions.

Lemma 4.3. Assume that π = c∞ is optimal. If c(r, y) > 0, then

u′(c(r, y)) ≥ β(1 + ρ)
τ

· E[u′(c(r̃, Ỹ ))], (4.4)

where
r̃ =

1 + ρ

τ

(
r − c(r, y)

)
+
y

τ
(4.5)
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and the random variable Ỹ has distribution λ. If c(r, y) < r + θy/(1 + ρ) ,
then the inequality opposite to (4.4) holds. Thus, if the action c(r, y) is
interior at (r, y), we have

u′(c(r, y)) =
β(1 + ρ)

τ
· E[u′(c(r̃, Ỹ ))], (4.6)

Proof. To prove the first assertion, let c1 = c(r, y) and 0 < ε < c1. Consider
a plan π̃ at (r, y) that bids c̃1 = c1−ε in the first period and c̃2 = c2 + 1+ρ

τ ε

in the second, where c2 = c(r̃, Ỹ ) is the bid of plan π in the second period.
Thus, an agent using π̃ is in the same position after two periods, as is an
agent using π. Suppose that from the second period onward, π̃ agrees with
π. The return from π̃ cannot exceed the return from the optimal plan π.
Since the two plans agree after stage two, we have

u(c1 − ε) + β · E
[
u

(
c2 +

1 + ρ

τ
ε

)]
≤ u(c1) + β · E[u(c2)] ,

and inequality (4.4) follows easily from this. The proof of the reverse in-
equality when c(r, y) < r + θy/(1 + ρ) is similar.

5 The Fisher equation

The most famous equation in monetary economic theory was proposed by
Irving Fisher in 1931. It defines the “real” rate of interest as the nominal
rate of interest, minus the rate of inflation (after taking logarithms). When
the price level for the next period is certain, as it is in stationary equilibrium,
the real rate of interest describes precisely the trade-off beteen consumption
today and consumption tomorrow.

In a world of consumption without uncertainty, one can infer the discount
rate of the agents from the real rate of interest. If there is no uncertainty in
the endowments, then in stationary equilibrium our model must have

1/β = (1 + ρ)/τ .

We shall see, however, that when there is uncertainty in consumption,
Fisher’s real rate of interest typically underestimates how much agents dis-
count the future.

We shall assume in this section that the economy is in stationary equi-
librium with relative wealth distribution µ and optimal bid function c(·, ·).
We continue to impose Assumption 4.1.
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Definition 5.1. We say that the SE
(
µ, c

)
is interior, if for all (r, y) in a

set of full µ⊗ λ measure, we have

0 < c(r, y) < r +
θy

1 + ρ
.

If an SE is interior, then the Fisher equation must hold.

Theorem 5.1. In an interior SE, we have τ = β(1 + ρ).

Proof. By interiority, the Euler equation (4.6) holds for almost every (r, y)
with respect to the product measure ν = µ ⊗ λ. By stationarity, if the
random vector (R, Y ) has distribution ν, and if Ỹ is an independent ran-
dom variable with distribution λ , then in the notation of (3.10) the vector
(R̃, Ỹ ) has also distribution ν. But then the Euler equation (4.6) gives a.s.

u′(R, Y ) =
β(1 + ρ)

τ
· E
[
u′
(
c(R̃, Ỹ )

)
|R, Y

]
;

taking expectations on both sides, recalling that the random vectors (R, Y )
and (R̃, Ỹ ) have common distribution ν , and canceling the common inte-
gral on both sides of the resulting equality, we obtain 1 = β(1 + ρ)/τ .

We develop in the next section two simple examples of interior SE’s, for
which the Fisher equation holds. However, these two examples do not involve
uncertainty coupled with risk-aversion; they give a completely misleading
picture.

When the marginal utility function u′(·) is strictly convex, and there is
uncertainty in the endowments, there is no interior SE and τ > β(1 + ρ).
Then the Fisher equation fails in many situations of interest that include
the exponential utility function u(x) = 1− e−x , x ≥ 0 .

Theorem 5.2. Suppose that u′(·) is strictly convex and the endowment
random variable Y is not constant. Then, in any SE, we have τ > β(1+ ρ).
In particular, there cannot exist an interior SE.

Proof. The final assertion is immediate from the first, in conjunction with
Theorem 5.1. To prove the first assertion, assume by way of contradiction
that (µ, c) is an SE with τ ≤ β(1 + ρ). At any position (r, y) such that
c(r, y) > 0, Lemma 4.3 gives

u′ (c(r, y)) ≥ β(1 + ρ)
τ

· E
[
u′
(
c
(
r̃, Ỹ

))]
≥ E

[
u′
(
c
(
r̃, Ỹ

))]
. (5.1)
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Even if c(r, y) = 0, it is clear from the concavity of u(·) that the first term
in (5.1) is at least as large as the last term, if we set u′(0) equal to the
derivative from the right at zero. By assumption, the distribution λ of Ỹ
is not a point-mass and u′(·) is strictly convex. Furthermore, by Lemma
4.2(c), the mapping y 7→ c(r, y) is strictly increasing, so the distribution of
c(r̃, Ỹ ) is nontrivial and Jensen’s inequality gives

E
[
u′
(
c
(
r̃, Ỹ

))]
> u′

(
E
[
c
(
r̃, Ỹ

)])
. (5.2)

Since u′(·) is strictly decreasing, we deduce from (5.1) and (5.2) that c(r, y) <
E[c(r̃, Ỹ )] holds for all (r, y) ; in particular, we obtain the a.s. inequality

c(R, Y ) < E
[
c
(
R̃, Ỹ

) ]
in the notation developed for the proof of Theorem 5.1. But this is impossi-
ble, since the random vectors c(R, Y ) and c

(
R̃, Ỹ

)
have the same distribution

in stationary equilibrium.

6 Three simple examples, and a counterexample

The first example is the case where there is no randomness in the economy.

Example 6.1. Assume that the random variable Y is identically equal to
a constant y > 0, that the interest rate ρ is strictly positive, and that θ =1.
Suppose that the utility function u(·) satisfies Assumption 4.1. We shall
find a class of stationary equilibria.

From the last section we guess that, without uncertainty, there will be
an interior equilibrium, and that the Fisher equation will hold (Theorem
5.1), so we conjecture

τ = β(1 + ρ).

We know from (3.7) that in stationary equilibrium the aggregate real money
supply must be

R =
ρ

1 + ρ− τ
·Q =

ρ

(1− β)(1 + ρ)
·Q . (6.1)

Let µ be an arbitrary real wealth distribution with mean
∫
[0,∞] r µ(dr) = R.

Since β(1+ρ)/τ = 1 and Y is the constant y, the Euler equation (4.6) takes
the form

u′ (c(r, y)) = u′ (c(r̃, y)) ,
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which holds when consumption c = c(r, y) = c(r̃, y) remains constant. Now
an agent’s consumption will be constant if his real wealth remains constant,
hence we need

r = r̃ =
1 + ρ

τ
(r − c) +

y

τ
,

or equivalently

c(r, y) ≡ c = [(1 + ρ− τ)r + y]/(1 + ρ) = (1− β)r +
y

1 + ρ
. (6.2)

This stationary bidding strategy is clearly interior, and satisfies the Eu-
ler equation by construction. Likewise, the usual transversality condition
clearly holds, since rn = r for all n and so βnrnu

′(c(rn, yn)) = βnru′(c(r, y)) →
0 as n→∞ . Hence, the bid function c(·, ·) of (6.2) determines an optimal
strategy (see Stokey & Lucas (1989)).

Since every individual maintains the same real wealth r, the distribution
µ of wealth is stationary. It follows that the pair

(
µ, c( ·, · )

)
is an SE.

¤

For the next example we take the agents to be risk-neutral.

Example 6.2. Assume that ρ > 0, θ ∈ [0, 1], and take u(x) = x for all x.
For this utility function the Bellman equation of (4.1) is relatively straight-
forward to solve, and a stationary equilibrium easy to compute. This time
we allow for random Y . We showed in Theorem 5.2 that there cannot exist
an interior stationary equilibrium for u(·) strictly concave. Here, however,
u(·) is linear, so we look for an interior SE anyway.

If there is an interior SE, then by Theorem 5.1 the Fisher equation will
hold and we can set

τ = β(1 + ρ).

As before, the aggregate wealth will have to be given by (6.1).
Let µ be an arbitrary real wealth distribution with

∫
[0,∞) r µ(dr) = R .

Agents could very well pursue exactly the same strategy as in the last ex-
ample, bidding for consumption

c(r, y) = (1− β)r +
y

1 + ρ
,

just as in (6.2), when their real wealth is r ≥ 0 and their commodity
endowment is y ≥ 0 . With such a bidding strategy, the relative wealth of
the agent does not change from one period to the next, no matter what his
endowment; thus, aggregate wealth R remains constant. It follows that the
the commodity market also clears.
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All that remains is to check that this bidding strategy is optimal. But the
Euler equation is trivially satisfied (provided that consumption is feasible),
since the marginal utility of consumption is constant and β(1 + ρ)/τ = 1.
As before, transversality is obviously satisfied, so this strategy will indeed
be optimal if it is always budget-feasible.

Feasibility requires

c(r, y) = (1− β)r +
y

1 + ρ
≤ r +

θy

1 + ρ
,

or equivalently
(1− θ)y ≤ β(1 + ρ)r ,

to hold on a set of full µ ⊗ λ−measure. This is the case rather obviously
when θ = 1, as well as when

(1− θ)Q ≤ β(1 + ρ)R

and the distributions λ and µ are sufficiently concentrated around their
respective means Q and R. With the aid of (6.1), this last condition can be
written in the form (1− β)(1− θ) < ρβ . ¤

Suppose that no borrowing is permitted in the economy. In other words,
the credit parameter is set at θ = 0. Typically, some agents will save and
receive interest from the bank. Thus the money supply and prices will
increase, so that the inflation parameter τ will be greater than 1. The next
example illustrates this phenomenon.

Example 6.3. Let θ = 0 and assume that the endowment variable Y takes
on the values 0 and 1 with probability 1/2 each. Assume that the utility
u(·) is stictly concave, so that in particular u(1) < u(1/2) + βu(1/2) when
the discount factor β is sufficiently close to 1.

Suppose, by way of contradiction, that there is an equilibrium in which
agents do not save. Thus, since agents cannot borrow, the optimal con-
sumption must be c(r, y) = r. Now with probability 1/2, agents reach the
position (1, 0) starting from any position (r, 1). But an agent at (1, 0) can
consume 1/2 and save 1/2 the first period and then consume (1+ρ)/2 at the
next position ((1 + ρ)/2, Y ). The agent thus obtains u(1/2) + βu((1 + ρ)/2)
in the first two periods while the agent who follows c gets only u(1). Since
both agents are in the same position at the beginning of period three, it is
better to spend 1/2 the first period. We have reached a contradiction. ¤

Our final example shows that an SE need not exist when the utility
function saturates.
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Example 6.4. Assume that

u(x) =

{
x, 0 ≤ x ≤ 1,
1, x > 1.

Let the random variable Y equal 0 with probability γ ∈ (0, 1), and equal 4
with probability 1 − γ. Set the interest rate ρ and the credit parameter θ
equal to 1, and let the discount factor β ∈ (0, 1) be arbitrary. We shall show
by contradiction, that an SE cannot exist.

To get a contradiction, assume that there is an SE with bid function
c(·, ·), and relative wealth distribution µ. We shall reach a contradiction
after a few steps.

Step 1: τ < 2. This is because τ = 1 + ρ− ρ ·Q/R = 2−Q/R . Let

1 + ρ′ :=
1 + ρ

τ
=

2
τ
> 1.

Step 2: For all (r, y), c(r, y) ≤ 1. It is never optimal for an agent to bid
more than 1 because, if he does so, he gains nothing in immediate utility
and has less money at the next stage.

Step 3: Let k be any positive number. Then from any initial real wealth
r1, an agent using the bid function c(·, ·), will reach real wealth positions
in [k,∞) with positive probability. Indeed, on the event {Y1 = Y2 = · · · =
Yn = 4} (which has probability (1− γ)n > 0 ), we have almost surely

rn ≥ (1 + ρ′)n−1 ≥ k , ∀ n ≥ 1 +
log k

log (1 + ρ′)
. (6.3)

We shall prove (6.3) by induction. By Step 2, c1 = c(r1, 4) ≤ 1. So

r2 = (1 + ρ′)(r1 − c1) +
4
τ
≥ (1 + ρ′)(−1) + 2(1 + ρ′) = (1 + ρ′) .

Now assume (6.3) holds for n and yn = 4. Then cn = c(rn, 4) ≤ 1 and

rn+1 = (1 + ρ′)(rn − cn) +
4
τ
≥ (1 + ρ′)

(
(1 + ρ′)n−1 − 1

)
+ 2(1 + ρ′) .

Hence rn+1 ≥ (1 + ρ′)n .

Step 4: Let k∗ = 2(1 + ρ′)/ρ′ . If rn ≥ k∗, then it follows from Step 2 that

rn+1 ≥ (1 + ρ′)(rn − 1) ≥ rn + ρ′ · k∗ − (1 + ρ′) = rn + (1 + ρ′)

holds almost surely on {rn ≥ k∗} .
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Steps 3 and 4 imply that the Markov chain {rn} of an agent’s relative wealth
positions diverges to infinity, with positive probability; thus, the chain is
transient and cannot have a stationary distribution. This contradicts the
invariance of µ.

7 Existence of Stationary Equilibrium

Most of this section is devoted to the proof of a general existence theorem.
In the final subsection we present a simpler result for the special case when
the interest rate ρ is zero.

For the proof of the first theorem we shall impose the following additional
assumptions:

Assumption 7.1. (a) The distribution of the random endowments is bounded
from above by some y∗ ∈ (0,∞); equivalently, λ([0, y∗]) = 1.

(b) infx∈[0,∞) u
′(x) > 0.

(c) The interest rate ρ satisfies

ρ < (1− β)(1− θ) .

Condition (c) is equivalent to the inequality θ < θ∗(ρ) := 1−
(
ρ/(1− β)

)
.

Theorem 7.1. Under Assumptions 4.1 and 7.1, there exists a stationary
Markov equilibrium (SE) with inflation rate τ > β(1 + ρ) .

Assumptions 4.1 and 7.1 will be in force until the end of subsection 7.4.
Theorem 7.1 asserts, in particular, that a small enough interest rate will

induce, in equilibrium, a rate of inflation τ higher than that predicted by the
Fisher equation. By Theorem 5.1, such an equilibrium cannot be interior.

It seems likely that some of the conditions in Assumption 7.1 could be
relaxed. However, our proof of Theorem 7.1 will use them all.

The proof will be given in a number of steps. The idea is familiar. We
shall define an appropriate mapping from the set of real wealth distributions
into itself, and argue that the mapping has a fixed point that corresponds
to an SE.

7.1 The mapping Ψ

Let ∆+ be the set of probability measures µ defined on the Borel subsets of
[0,∞) that have a finite, positive mean:

0 < R ≡ R(µ) =
∫

[0,∞)
rµ(dr) <∞ .
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We regard ∆+ as the set of possible real wealth distributions. For µ ∈ ∆+,
let

τ ≡ τ(µ) = 1 + ρ− ρ · Q

R(µ)
.

In SE, this quantity τ will be the rate of inflation. Note that τ can never
exceed 1 + ρ.

Now let ∆∗ := {µ ∈ ∆+ : τ(µ) > β(1 + ρ) }. Select a probability
measure µ ∈ ∆∗ , and let c(r, y) = c(ρ,τ)(r, y) = cτ (r, y) be the optimal bid
of an agent at (r, y) as defined in (4.3); in particular, c(r, y) satisfies (3.8).
Next, let the random vector (R, Y ) have distribution µ⊗ λ , and define

R̃ ≡ R̃
(
R, Y

)
:=

1 + ρ

τ

(
R− cτ (R, Y )

)
+
Y

τ
(7.1)

by analogy with (3.10) (equivalently, R̃ is the quantity of (4.5) correspond-
ing to the next real wealth position of an agent who begins at (R, Y ) and
bids according to the rule cτ (· , ·)

)
). We now define the mapping

Ψ(µ) = µ̃

by taking the probability measure µ̃ to be the distribution of the random
variable R̃ in (7.1). Let

τ̃ ≡ τ(µ̃) = 1 + ρ− ρQ

R(µ̃)
,

where R̃ ≡ R(µ̃) =
∫
[0,∞) r µ̃(dr) is the mean of the probability measure µ̃ .

Suppose that µ is a fixed point of this mapping Ψ. Then µ̃ = µ, and
consequently R̃ = R as well as τ̃ = τ . Thus the distribution of real wealth
in the economy remains constant when the initial real wealth distribution is
µ and the agents use the optimal bid function cτ (·, ·). It then follows from
the discussion in section 3.3 that

(
µ, cτ (·, ·)

)
is an SE.

To establish that Ψ has a fixed point, it suffices to find a nonempty
compact convex set K ⊂ ∆∗ such that Ψ(K) ⊆ K and ψ is continuous
on K. (This is the Brouwer-Schauder-Tychonoff fixed point theorem; see
Aliprantis & Border (1999).) We now set out to find such a set K.

7.2 Bounding R and τ

Define

R∗ :=
1− θ

1 + ρ
·Q and τ∗ :=

(1 + ρ)(1− ρ− θ)
1− θ

.

We continue to use the notation of the previous section.

22



Lemma 7.1. Let µ ∈ ∆∗, and suppose that the random vector (R, Y ) has
distribution µ⊗ λ . Then the quantities R̃ = R(µ̃) and τ̃ = τ(µ̃) satisfy

∞ > R̃ ≥ R∗,

and
1 + ρ ≥ τ̃ ≥ τ∗ > β(1 + ρ) > 0.

Proof. Integration with respect to µ⊗ λ in (7.1) gives

R̃ ≤ 1 + ρ

τ

∫
r µ(dr) +

1
τ

∫
y λ(dy) =

1 + ρ

τ
·R+

1
τ
·Q <∞.

To prove the second inequality of the first line of the lemma, first consider
the quantity

C̃ :=
∫

[0,∞)

∫
[0,∞)

cτ (r, y)µ(dr)λ(dy),

which is the total consumption when all agents use cτ (·, ·). By (3.8), we
have

C̃ ≤
∫

[0,∞)

∫
[0,∞)

(
r +

θy

1 + ρ

)
µ(dr)λ(dy) = R+

θQ

1 + ρ
.

Thus

R̃ =
∫

[0,∞)

∫
[0,∞)

1 + ρ

τ

((
r − cτ (r, y)

)
+ y
)
µ(dr)λ(dy)

=
1 + ρ

τ

(
R− C̃

)
+
Q

τ
≥ 1 + ρ

τ
· (−θQ)

1 + ρ
+
Q

τ
=

1− θ

τ
·Q

≥ 1− θ

1 + ρ
·Q = R∗ ,

which establishes the second inequality.
In the second row of the lemma, the first inequality is obvious; The

second inequality follows from R̃ ≥ R∗ and

τ̃ = 1 + ρ− ρ · Q
R̃

≥ 1 + ρ− ρ · Q
R∗

= τ∗ .

The third inequality in the second row of the lemma amounts to (1−β)(1−
θ) > ρ , which holds by Assumption 7.1(c). The final inequality is obvious.
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7.3 Bounding the wealth distribution

Define the random variable R̃ as in (7.1), and let τ ≥ τ∗. Then by Lemma
4.2(c) and Assumption 7.1(a), we have

R̃ ≤ 1
τ∗

[
(1 + ρ)

(
R− cτ (R, Y )

)
+ Y

]
≤ 1

τ∗

[
(1 + ρ)

(
R− cτ (R, 0)

)
+ y∗

]
.

Define

η∗ := sup{ r−cτ (r, 0) : r ≥ 0, τ∗ ≤ τ ≤ 1+ρ } , J :=
[

0 ,
(1 + ρ)η∗ + y∗

τ∗

]
.

Lemma 7.2. The constant η∗ is finite and, for every µ ∈ ∆∗ such that
τ = τ(µ) ≥ τ∗, the measure µ̃ is supported by the compact interval J .

Proof. To bound r − cτ (r, 0) we can assume without loss of generality that
r > 0 and, by Lemma 4.2(e), that the inequalities in (3.8) are strict. In the
following calculation we set ξ = infx≥0 u

′(x) and y = 0. Thus the quantity
of (4.5) becomes r̃ = 1+ρ

τ

(
r − cτ (r, 0)

)
, and by Lemma 4.3 and Lemma

4.2(c) we have

ξ ≤ u′(cτ (r, 0)) =
β(1 + ρ)

τ
· E
[
u′
(
cτ

(
r̃, Ỹ

))]
≤ β(1 + ρ)

τ∗
u′
(
cτ (r̃, 0)

)
, (7.2)

where the random variable Ỹ has distribution λ . Now u′(c) ↓ ξ as c→∞
and, by Lemma 7.1, τ∗ > β(1 + ρ) , so for all c sufficiently large we have

u′(c) <
τ∗ ξ

β(1 + ρ)
.

From Lemma 4.2(d), we obtain cτ (r, 0) →∞ as r →∞. Hence

η(τ) := sup
{
r ≥ 0 : u′

(
cτ (r, 0)

)
≥ τ∗ ξ

β(1 + ρ)

}
<∞

for all τ ∈ [τ∗ , 1 + ρ] , and (7.2) gives

η(τ) ≥ r̃ =
1 + ρ

τ
·
(
r − cτ (r, 0)

)
≥ r − cτ (r, 0

)
for τ in this range. Thus

η∗ ≤ sup
τ∗≤τ≤1+ρ

η(τ).
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Finally, as in Proposition 3.4 of Karatzas et al. (1997), the function τ 7→
cτ (r, 0) is continuous for fixed r. This fact, together with the continu-
ity and monotonicity of cτ (·, 0), can be used to check that η(·) is upper-
semicontinuous. Hence,

sup
τ∗≤τ≤1+ρ

η(τ) <∞ ,

and the interval J is compact. The assertion that µ̃ is supported by J
follows from the calculation preceding the lemma.

7.4 Completion of the proof of Theorem 7.1

Let K := {µ ∈ ∆∗ : τ(µ) ≥ τ∗, µ(J) = 1, R(µ) ≥ R∗ }. This set is clearly
compact and convex, since τ(µ) = 1+ρ−ρQ/R(µ) is a concave function of
µ. Also, by Lemmas 7.1 and 7.2, we have Ψ(K) ⊆ K. The continuity of Ψ on
K follows from Theorem 3.5 in Langen (1981). By the Brouwer-Schauder-
Tychonoff Theorem, ψ has a fixed point µ. It follows that

(
µ, cτ (·, ·)

)
is an

SE.

7.5 An Open Question

With exponential utility function u(x) = 1 − e−x , x ≥ 0 and endowment
random variable Y that is not a.s. equal to a constant, does an SE exist, at
least for small enough values of ρ > 0 ? This case is not covered by Theorem
7.1; but if an SE exists, it cannot be interior and we must have τ > β(1+ρ)
(Theorem 5.2).

7.6 The special case ρ = 0

If the interest rate ρ is zero, then Assumption 7.1 is not needed to prove the
existence of a stationary equilibrium. We can take the credit parameter θ
to be 1, thus allowing full credit to the agents.

Theorem 7.2. Suppose that ρ = 0, θ = 1, and that the utility function u(·)
is strictly concave and satisfies Assumption 4.1. Suppose also that the en-
dowment variable Y has a finite second moment. Then there is a stationary
equilibrium in which the price and wealth distribution remain constant.

The proof of Theorem 7.2 uses a similar result for a different model that
was studied in Karatzas et al. (1994). We begin with a description of this
model, which we call “Model 2”.
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As in the present paper, there is in Model 2 a continuum of agents α ∈ I,
one nondurable commodity, fiat money, and countably-many time periods
n = 1, 2, . . .. At the beginning of each period n, every agent α holds cash
Sα

n (ω) ≥ 0, but does not hold goods. There is no bank or loan market,
so each agent α bids an amount bαn(ω) ∈ [0, Sα

n (ω)] of cash in order to
purchase goods for consumption. After bidding, agent α receives a random
endowment Y α

n (ω) of the commodity, which is then sold in a market. The
price for goods is formed as

pn(ω) =
Bn(ω)
Qn(ω)

,

where

Bn(ω) =
∫

I
bαn(ω) dα , Qn(ω) =

∫
I
Y α

n (ω) dα = Q

are the aggregates of the bids and endowments, respectively. The agent α
then receives the quantity xα

n(ω) = bαn(ω)/pn(ω) of the commodity, gets
u(xα

n) in utility, and begins the next period with cash

Sα
n+1(ω) = Sα

n (ω)− bαn(ω) + pn(ω)Y α
n (ω) .

The agent seeks to maximize the expected total discounted utility

E

( ∞∑
n=1

βn−1u
(
xα

n

))
.

We shall assume that the utility function u(·) satisfies the hypotheses of
Theorem 7.2, and that the random variables Y α

n satisfy the assumptions
made in Section 2 above.

The result that follows corresponds to Theorem 7.3 in Karatzas et al.
(1994).

Lemma 7.3. There is an equilibrium for Model 2 with a constant price
p ∈ (0,∞) and a constant wealth distribution ν defined on the Borel subsets
of [0,∞), and in which every agent α ∈ I bids according to a stationary
plan c∞, namely, bαn(ω) = c

(
Sα

n (ω)
)

for all n, ω and α .

Suppose now S ∼ ν and Y ∼ λ, where “∼ ” means “is distributed as”.
(If both X and Ξ are random variables, then X ∼ Ξ means that they have
the same distribution.) Assume also that S and Y are independent. Then,
by Theorem 7.3 (loc. cit.) we have

S − c(S) + pY ∼ ν .
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Denote by µ be the distribution of S − c(S) and define

a(m, y) := c(m+ py) for m ≥ 0, y ≥ 0 .

We now claim that the price p, wealth distribution µ, and stationary
plan a∞, form a stationary equilibrium for the original model. To verify the
claim, first observe that, if M ∼ µ, Y ∼ λ, and M and Y are independent,
then

M + pY − a(m, y) = M + pY − c(M + pY ) ∼ S − c(S) ∼ µ .

Thus the distribution of wealth is preserved. Consequently, the price

p =

∫
I

∫
I a(m, y)µ(dm)λ(dy)

Q
=

∫
I c(s) ν(ds)

Q

also remains constant. It remains to be shown that the plan a∞ is optimal
for a given agent, when all other agents follow it.

Let W (·) be the optimal reward function for an agent playing in the
equilibrium of Lemma 7.3. Then W (·) satisfies the Bellman equation

W (s) = sup
0≤b≤s

[
u
( b

p

)
+ β · EW

(
s− b+ pY

) ]
.

The Bellman equation for an agent in the original model is

V (m, y) = sup
0≤b≤m+py

[
u
( b

p

)
+ β · EV

(
m+ py − b, Y

) ]
.

It is easy to see that

V (m, y) = V (m′, y′) whenever m+ py = m′ + py′ .

Indeed, it is not difficult to show that V (m, y) = W (m+ py). (One method
is to verify the corresponding equality for n−day optimal returns using back-
ward induction, and then pass to the limit as n → ∞.) It is also straight-
forward to check that the expected total reward to an agent in Model 2 who
plays c∞ from the initial position s = m + py, is the same as that of an
agent in the original model who plays a∞ starting from (m, y). Since c∞ is
optimal for Model 2, it follows that a∞ is optimal for the original model.

This completes the proof of the claim and also of Theorem 7.2.
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8 Comments on representative and independent
agents

The repesentative agent model of Karatzas et al (2006) and the independent
agents model of this paper are at two extremes. The representative agent
model is far easier to analyze than the independent agents model. Both call
for a modification of the Fisher equation. In the representative agent model
the rate of inflation is a random variable T (Y ) , where the function T (·) is
given by the closed form expression

T (y) = β(1 + ρ) · E[Y u′(Y ) ]
(1− β) · y u′(y) + β · E[Y u′(Y ) ]

.

The following harmonic Fisher equation follows readily:

E
(

1
T (Y )

)
=

1
β(1 + ρ)

.

Consequently, the expectation E(T (Y )) exceeds β(1 + ρ), as does the long
run rate of inflation.

It is not clear how the random variable T (Y ) (inflation rate in the rep-
resentative agent model) compares with τ (inflation rate in the model with
independent agents) – a quantity for which we have no analytic expression.
We do note, however, that under the conditions of Theorem 7.1, or with
u′(·) strictly convex and λ a non-degenerate distribution as in Theorem
5.2, the latter dominates the harmonic mean of the former, to wit:

E
(

1
T (Y )

)
>

1
τ
.

In this sense, the inflationary pressure is even greater for the independent-
agent model than for the repesentative-agent model.
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