Goal Problems in Gambling and Game Theory

Bill Sudderth

School of Statistics
University of Minnesota
Three problems

• Maximizing the probability of reaching a goal.

• Maximizing the probability of reaching a goal by a fixed time t_0.

• Minimizing the expected time to reach a goal.

We first consider a famous example.
Red-and-Black (Dubins and Savage, 1965)

You begin with fortune x and wish to reach a fortune of g where $g > x$. You may stake any amount s, $0 \leq s \leq x$ on an even money bet which you win with a fixed probability p. Your fortune at the next stage is then x_1 where

$$x_1 = \begin{cases} x + s, & \text{with probability } p \\ x - s, & \text{with probability } 1 - p \end{cases}$$

You may then stake any amount s_1, $0 \leq s_1 \leq x_1$, and so forth.

How should you choose your bets so as to maximize your chance of reaching the goal g?

Let $V(x)$ be your best chance of reaching the goal from x. What is the value of $V(x)$?
Bold Play

Bold play is the strategy that at every fortune x, $0 \leq x \leq g$ stakes the entire fortune x or just enough to reach the goal, whichever is smaller. That is, the stake at x is

$$s(x) = \min \{x, g - x\}.$$

Theorem (Dubins and Savage). If $p \leq 1/2$, then bold play is optimal.

There is no simple formula for $V(x)$ at all x. However, we do have

$$V(g/2) = p, \quad V(g/4) = pV(g/2) = p^2,$$

and

$$V(3g/4) = p + (1 - p)V(g/2) = p + (1 - p)p.$$
A generalization?

“Theorem” (Coolidge, 1924). “The player’s best chance of winning a stated sum at an unfavorable game is to stake the sum that will bring that return in one turn. If that be not allowed, he should stake at each turn the largest amount the banker will accept.”

This “Theorem” applies to subfair red-and-black when there is a house limit on the size of bets. Unfortunately, it is false.
Red-and-Black with a House Limit

Suppose there is a limit L on the size of the bets allowed. If $p \leq 1/2$, it is natural to guess that it will be optimal to play as boldly as possible. The new version of bold play is then to stake at each fortune x the amount

$$s(x) = \min \{x, g-x, L\}.$$

Whether bold play is optimal now depends on whether the ratio g/L is or is not an integer.

Theorem (Wilkins, 1972). If $p \leq 1/2$ and $L/g = 1/n$ for some positive integer $n \geq 3$, then bold play is optimal.

Theorem (Heath, Pruitt, & S, 1972). If $\frac{1}{n+1} < \frac{L}{g} < \frac{1}{n}$ for some integer $n \geq 3$ and p is sufficiently small, then bold play is not optimal.

Theorem (Schweinsberg, 2005). If $p < 1/2$ and L/g is irrational, then bold play is not optimal.
A word about proofs

Suppose that you have a guess as to the best strategy, say σ, and let $Q(x)$ be your chance of reaching the goal when you use the strategy starting from x.

Suppose further that you decide to first stake the amount s at x and then follow σ. Then your chance of reaching the goal will be

$$EQ(x_1) = p \cdot Q(x + s) + (1 - p) \cdot Q(x - s).$$

If σ is optimal, then

$$p \cdot Q(x + s) + (1 - p) \cdot Q(x - s) \leq Q(x).$$

Surprisingly, the converse is true; if this inequality holds for all x and s, then σ is optimal.

So we can prove optimality by checking this inequality.
Superfair Red-and-Black

Suppose that your probability p of winning each bet is now greater than $1/2$. Intuition suggests that small bets will be good. If there is no minimum bet size, then you can reach the goal with probability one by staking a sufficiently small fixed proportion of your fortune at each stage.

Theorem If $p > 1/2$, then the strategy that stakes

$$s(x) = \alpha x$$

at each fortune x reaches the goal with probability 1 if α is sufficiently small and positive.
Sketch of the proof

Starting from x and staking αx, your next fortune is

$$X_1 = \begin{cases} x + \alpha x \text{ with probability } p \\ x - \alpha x \text{ with probability } 1 - p \end{cases} = x(1 + \alpha Y_1)$$

where Y_1 equals 1 or -1 with probability p or $1 - p$ respectively.

After n steps your fortune is

$$X_n = x \prod_{i=1}^{n} (1 + \alpha Y_i)$$

where Y_1, Y_2, \ldots are IID.

So

$$\log X_n = \log x + \sum_{i=1}^{n} \log(1 + \alpha Y_i) \to \infty \text{ a.s.}$$

if $f(\alpha) = E[\log(1 + \alpha Y)] > 0$.

Easy calculus shows $f(\alpha) > 0$ for α small and positive.
Fair Red-and-Black

If \(p = 1/2 \) then any strategy that is not “obviously bad” will be optimal. By “obviously bad” is meant a strategy that either bets so little that you stay forever in \((0, g)\) with positive probability or bet so much that you overshoot the goal with positive probability.

Under a strategy that is not obviously bad the process \(x, X_1, X_2, \ldots \) is a bounded martingale that eventually reaches either 0 or \(g \). Let \(T \) be the time it first reaches one of these points. Then

\[
x = E(X_T) = g \cdot P[X_T = g] + 0 \cdot P[X_T = 0]
\]

\[
= g \cdot P[X_T = g].
\]

So the goal is reached with probability \(x/g \) starting from \(x \).
Superfair Red-and-Black on the Integers

Suppose that all fortunes and stakes are in integral numbers of dollars. So the possible stakes at fortune \(x \), a positive integer, are \(0, 1, \ldots, x \). The proportional strategy is no longer available. However, intuition still says small bets should be good.

Timid Play: Stake \(s(x) = 1 \) for all \(x = 1, 2, \ldots, g \).

Theorem (Ross, 1974, Maitra and S., 1996). If \(p \geq 1/2 \), then timid play is optimal for red-and-black on the integers. Moreover, the player’s chance of reaching the goal \(g \) from \(x \) is

\[
V(x) = \frac{1 - \left(\frac{1-p}{p} \right)^x}{1 - \left(\frac{1-p}{p} \right)^g}
\]

for \(x = 1, 2, \ldots, g - 1 \).

Under timid play the process of fortunes forms a simple random walk. The formula for \(V(x) \) is the classical “gambler’s ruin” formula.
A Continuous-Time Problem

Let Y_t be the price of a certain stock at time t for each $t \geq 0$. Assume \(\{Y_t, t \geq 0\} \) is a continuous-time process with infinitesimal increments

$$dY_t = \mu_0 \cdot dt + \sigma_0 \cdot dW_t.$$

Here \(\{W_t, t \geq 0\} \) is a Brownian motion.

You begin with fortune $x \in (0, g)$ and, with fortune X_t at time t, are allowed to invest s_t, $0 \leq s_t \leq X_t$ in the stock. The process \(\{X_t, t \geq 0\} \) of your fortunes solves a stochastic differential equation

$$X_0 = x, \quad dX_t = s_t \cdot (\mu_0 \cdot dt + \sigma_0 \cdot dW_t).$$

How should you choose s_t to maximize your probability of reaching the goal g?

Let $V(x)$ be your best chance of reaching g. What is $V(x)$?
Theorem (Pestien and S, 1985). In the sub-fair case where $\mu_0 \leq 0$, the optimal strategy is “bold play”; that is, to take

$$s_t = X_t, \quad \text{for all } t \geq 0.$$

The probability of reaching g is then

$$V(x) = \left(\frac{x}{g}\right)^{-2\mu_0} + 1$$

In the superfair case where $\mu_0 > 0$, you can reach the goal with probability one by taking

$$s_t = \alpha \cdot X_t, \quad \text{for all } t \geq 0,$$

for α sufficiently small and positive.

The proof of the subfair case is, with the aid of stochastic calculus, much easier in continuous-time than is the Dubins and Savage result for discrete-time.
Limited Playing Time. Suppose you are playing red-and-black, but are limited to a fixed number, say n, of bets. How should you play to maximize your chances of reaching the goal?

Subfair problems. Bold play is fast as well as effective.

Theorem (Dvoretzky in Dubins and Savage). Bold play remains optimal in subfair \((p \leq 1/2)\) red-and-black with limited playing time.

Superfair problems. An optimal strategy must be time-dependent. Small bets are good when there is lots of time remaining, but big bets are necessary when time is running short. An exact solution for superfair \((p \geq 1/2)\) red-and-black is given by Kulldorf (1993).
Minimizing the expected time to a goal

For superfair \(p > 1/2 \) red-and-black, you can reach the goal with probability one. What strategy gets there quickest?

Kelly Criterion (1956). Play at each stage to maximize \(E[\log X_n] \).

Breiman (1961) showed this is “asymptotically optimal.” It cannot be optimal because of overshoot near the goal.

Breiman’s Conjecture. There is a number \(x^* \in (0, g) \) such that it is optimal to play Kelly for \(x < x^* \) and stake \(g - x \) for \(x \geq x^* \).

There is a counterexample in Runyan (1998), who also shows that there is an optimal strategy.

Open Question. What is optimal?

A version of the Kelly strategy is optimal in a continuous-time formulation (Heath, Orey, Pestien, & S., 1987).
The Kelly Criterion in Continuous-Time

Recall that the stock price Y_t has stochastic differential

$$dY_t = \mu_0 \cdot dt + \sigma_0 \cdot dW_t.$$

If you invest αX_t at every time t, then your fortune satisfies

$$X_0 = x, \quad dX_t = \alpha X_t \cdot (\mu_0 \cdot dt + \sigma_0 \cdot dW_t).$$

The process $\{\log X_t\}$ has drift coefficient

$$\alpha \mu_0 - \frac{\sigma_0^2 \alpha^2}{2},$$

which is a maximum when $\alpha = \mu_0/\sigma_0^2$.

Theorem (Pestien & S, 1985). The strategy which invests $\mu_0/\sigma_0^2 \cdot X_t$ at every time t minimizes the expected time to reach g.

16
Two-Person Red-and-Black

Assume now that there are two players, namely Mary and Tom. Mary begins with x and Tom begins with $(g - x)$ where x and g are both integers with $0 < x < g$.

Each player wants to win the other’s money and end the game with g.

Rules of the game. When Mary has x, she can stake any integral amount $a, 1 \leq a \leq x$; Tom with $(g - x)$ can stake any integral amount $b, 1 \leq b \leq g - x$.

There is a fixed probability p and Mary wins Tom’s stake with probability

$$\frac{pa}{pa + (1 - p)b}$$

and Tom wins Mary’s stake with probability

$$1 - \frac{pa}{pa + (1 - p)b} = \frac{(1 - p)b}{pa + (1 - p)b}.$$
At the next stage, Mary has fortune x_1, where

$$x_1 = \begin{cases}
 x + b, & \text{with probability } \frac{pa}{pa + (1-p)b} \\
 x - a, & \text{with probability } \frac{(1-p)b}{pa + (1-p)b}.
\end{cases}$$

Tom has fortune $g - x_1$.

Play continues in this fashion until one of the players reaches the goal g.

How should Mary and Tom play? To make sense of this question, we need a notion from game theory.
Nash Equilibrium

In a game with n players, a Nash Equilibrium (NE) consists of a strategy for each player that is optimal for that player given that the other players play their given strategies.

A Nash Equilibrium need not be unique.

Example: Sharing a cookie

Suppose Mary announces a proportion p_1 and Tom announces a proportion p_2. If $p_1 + p_2 \leq 1$, then Mary receives her proportion p_1 of the cookie and Tom receives his proportion p_2. However, if $p_1 + p_2 > 1$, then both players receive nothing.

For this game, the strategies $p_1 = p$ and $p_2 = 1 - p$ form a Nash equilibrium for every p in the interval $[0, 1]$.
Two-Person Red-and-Black (continued)

Assume that \(p < 1/2 \). If Mary starts at \(x \) and stakes \(a \), and Tom starts at \(g - x \) and stakes \(b \), then

\[
E(X_1) = (x + b) \frac{pa}{pa + (1 - p)b} + (x - a) \frac{(1 - p)b}{pa + (1 - p)b}
\]

\[
= x + \frac{(2p - 1)ab}{pa + (1 - p)b}
\]

\[
< x.
\]

Thus the game is subfair for Mary and is super-fair for Tom. This suggests Mary should make big bets and Tom should make small bets,

Bold play for Mary: When Mary has \(x \), she stakes \(x \).

Timid play for Tom: Tom always stakes 1.

Theorem (Pontiggia, 2005). These strategies form the unique Nash equilibrium.
Three-Person Red-and-Black

Assume there are three players, Mary, Tom, and Jane. They begin with x, y, and z dollars, respectively, where

$$x + y + z = g.$$

Each player wants to win the total amount of money g.

Rules of the game. Mary stakes $a \in \{1, 2, \ldots, x\}$, Tom stakes $b \in \{1, 2, \ldots, y\}$, and Jane stakes $c \in \{1, 2, \ldots, z\}$.

There is a fixed probability vector (p_1, p_2, p_3). Mary wins the other players’ stakes with probability

$$\frac{ap_1}{ap_1 + bp_2 + cp_3}.$$

Her next fortune is

$$x_1 = \begin{cases}
 x + b + c, & \text{with probability } \frac{ap_1}{ap_1 + bp_2 + cp_3} \\
 x - a, & \text{with probability } 1 - \frac{ap_1}{ap_1 + bp_2 + cp_3}.
\end{cases}$$
Tom wins the other players’ stakes with probability

\[
\frac{bp_2}{ap_1 + bp_2 + cp_3},
\]

and Jane wins with probability

\[
\frac{cp_3}{ap_1 + bp_2 + cp_3}.
\]

Their next fortunes \(y_1\) and \(z_1\) are defined by analogy with Mary’s next fortune \(x_1\).

Play continues until one of the players reaches \(g\).

If one player, say Jane, reaches 0, the game becomes two-person red-and-black with the win probability for Mary equal to

\[
\frac{ap_1}{ap_1 + bp_2}.
\]

Open question. What is a Nash equilibrium?
Some references

