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Statistics 169, Dynamic Programming

Blackwell taught a course on dynamic programming at U.C.

Berkeley in the 1960’s. It was taken by engineers, operations

researchers, statisticians, and mathematicians among others. I

took the course in 1965. It was a great course!
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The course met once a week for about two hours.
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An example: Spend-or-Save

You begin with s1 dollars, choose a1 ∈ [0, s1] to spend on con-

sumption, and save s1 − a1.

You receive u(a1) in utility, and begin the next stage with cash

s2 = s1 − a1 + Y1.

Here Y1 is your random income and has a given distribution. You

then choose a2 ∈ [0, s2], and so on.

Future stages are discounted at rate β ∈ (0,1), and you want to

maximize the expectation of

∞∑
n=1

βn−1u(an).
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Dynamic Programming (Markov Decision Theory)

Five ingredients: S,A, r, q, β.

Begin at state s1 ∈ S, select an action a1 ∈ A, receive a reward

r(s1, a1).

Move to a new state s2 with distribution q(·|s1, a1). Select a2 ∈ A,

receive β · r(s2, a2).

Move to s3 with distribution q(·|s2, a2), select a3 ∈ A, receive

β2 · r(s3, a3). And so on.

Your total reward is the expected value of

∞∑
n=1

βn−1r(sn, an).
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Three Conditions to make
∑∞
n=1 β

n−1r(sn, an) well-defined

Discounted Problems: r bounded, 0 ≤ β < 1. Blackwell

(1962,1965)

Positive Problems: r ≥ 0, β = 1. Blackwell (1967)

Negative Problems: r ≤ 0, β = 1. Strauch (1966)
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Plans and Rewards

A plan π selects each action an as a function of the history

(s1, a1, . . . , an−1, sn). The reward from π at the initial state

s1 = s is

V (π)(s) = Eπ,s[
∞∑
n=1

βn−1r(sn, an)].

The optimal reward at s is

V ∗(s) = sup
π
V (π)(s).

Basic problems: Calculate the optimal reward function V ∗(·)
and find optimal or nearly optimal plans.
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Stationary Plans

A stationary plan is one that ignores the past when selecting an

action.

Formally, a plan π is stationary if there is a function f : S 7→ A

such that π(s1, a1, . . . , an−1, sn) = f(sn) for all (s1, a1, . . . , an−1, sn).

Notation: π = f∞.

Fundamental Question: Do optimal or nearly optimal

stationary plans exist?
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Discrete Discounted Dynamic Programming

Theorem 1 (Blackwell, 1962) If S and A are finite and 0 ≤ β <
1, then there is an optimal stationary plan. Indeed, there is a

stationary plan that is optimal for all β sufficiently close to 1.

A plan satisfying the final phrase is now called Blackwell opti-

mal. (Hordijk and Yushkevich (2002))
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Blackwell Operators for Discounted Problems

Assume: S,A countable, r bounded, 0 ≤ β < 1.

Let B be the Banach space of bounded functions x : S 7→ R
equipped with the supremum norm.

Let f : S 7→ A and π = f∞. Define operators Tf and U for x ∈ B:

(Tfx)(s) = r(s, f(s)) + β
∫
x(s′) q(ds′|s, f(s)),

(Ux)(s) = sup
a

[r(s, a) + β
∫
x(s′) q(ds′|s, a)].

Theorem 2 The operators Tf and U are β-contractions on B.

The fixed point of Tf is the reward function V (π)(·) for π = f∞,

the fixed point of U is the optimal reward function V ∗(·).
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The Bellman Equation

For s ∈ S, V ∗(s) = UV ∗(s), or

V ∗(s) = sup
a

[r(s, a) + β
∫
V ∗(s′) q(ds′|s, a)].

This equality is known as the Bellman equation or the optimality

equation.

Let ε > 0. For each s ∈ S, we can select f(s) ∈ A so that

(TfV
∗)(s) ≥ V ∗(s)− ε(1− β).

Blackwell showed that the reward function V (π)(·) for the sta-

tionary plan π = f∞ satisfies:

V (π)(s) ≥ V ∗(s)− ε, s ∈ S.

So good stationary plans exist.
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Measurable Dynamic Programming

The first formulation of dynamic programming in a general mea-

sure theoretic setting was given by Blackwell (1965). He as-

sumed:

1. S and A are Borel subsets of some nice measurable space

(say, a Euclidean space).

2. The reward function r(s, a) is Borel measurable.

3. The law of motion q(·|s, a) is a regular conditional distribution.

Plans are required to select actions in a Borel measurable way.
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Measurability Problems

In his 1965 paper, Blackwell showed by example that for a Borel

measurable dynamic programming problem:

The optimal reward function V ∗(·) need not be Borel mea-

surable and good Borel measurable plans need not exist.

This led to work by a number of mathematicians including R.

Strauch, D. Freedman, M. Orkin, D. Bertsekas, S. Shreve, and

Blackwell himself. It follows from their work that for a Borel

problem:

The optimal reward function V ∗(·) is universally measurable

and that there do exist good universally measurable plans.
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Blackwell’s (1965) Example

Let S = A = [0,1]. The state of the system remains fixed:

q(s|s, a) = 1 for all s, a. The reward function is

r(s, a) = 1B(s, a)

where B is a Borel subset of S ×A such that the projection

E = {s : (∃a)(s, a) ∈ B}

is not Borel. The optimal reward at s is

V ∗(s) =

 1 + β + β2 + · · · = 1/(1− β), s ∈ E
0, s /∈ E

The optimal reward is not Borel measurable and there are no

good Borel measurable plans.
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Positive Dynamic Programming

Assume: β = 1, r(s, a) ≥ 0 for all (s, a), and the optimal reward

function V ∗(s) <∞ for all s.

Theorem 3 (Blackwell 1967). For 0 < ε < 1 and P a probability

measure on S such that
∫
V ∗ dP <∞, there exists a a stationary

plan π such that

P{s : V (π)(s) ≥ V ∗(s)− ε} > 1− ε.

Blackwell showed by example that there need not exist a sta-

tionary π such that V (π)(s) ≥ V ∗(s)− ε for all s.
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Theorem 4 (Ornstein 1969, Frid 1972) Given 0 < ε < 1 and a

probability measure P on S, there exists a stationary plan π with

payoff V (π)(s) at s such that

P{s |V (π)(s) ≥ (1− ε)V ∗(s)} = 1.

Question: Is there a stationary plan π such that

V (π)(s) ≥ (1− ε)V ∗(s) for all s?

Answer: Not in general. (Blackwell and Ramakrishnan (1988))
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Negative Dynamic Programming

Assume: β = 1, r(s, a) ≤ 0 for all (s, a).

A simple example of Dubins and Savage (1965) shows there

need not exist good stationary plans even when S has only three

elements and A is countable.

The fundamental paper is by Strauch (1966), based on his PhD

thesis under Blackwell. There do exist optimal stationary plans

if A is finite.
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Question: Optimal Plan ⇒ Stationary Optimal Plan?

Yes for discounted or negative problems. If π is optimal, then

so is f∞ where f(s) is the first action for π when the initial state

is s.

Theorem 5 (Ornstein 1969, Blackwell 1970, Orkin 1974) If

there is an optimal plan for a positive problem, then, for each

probability P on S, there exists a stationary plan π which is op-

timal with P - probability one.

Open question: Can the set of probability zero be eliminated?
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Convergent Dynamic Programming

Assume: β = 1 and that

sup
π
Eπ,s[

∞∑
n=1

r+(sn, an)] <∞

for all s ∈ S.

Many results, such as the Bellman equation, still hold in this

general setting (Feinberg, 2002). For A compact, Schal (1983)

proved that good stationary strategies exist.
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Applications

Blackwell’s fundamental work on dynamic programming led to

applications in many areas including statistics,finance, economics,

communication networks, water resources management, and even

mathematics itself.

For information about applications and recent developments, see

the Handbook of Markov Decision Processes (2002) edited

by E. Feinberg and A. Shwartz.
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