Stat 8311, Fall 2006: Overparameterized two-sample

Here are computations in R for the two sample problem, with \(m \) observations per group. We take the parameterized model to be

\[
Y = X\beta = \begin{pmatrix} J & J \\ J & 0 & J \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix}
\]

where \(J \) is a vector of \(m \) ones and 0 is a vector of \(m \) zeroes. We do the computations with \(m = 1 \) to find \((X'X)^+\), the Moore Penrose G-inverse of \(X'X \):

```r
> (xtx <- matrix(c(2, 1, 1, 1, 0, 1, 0, 1), ncol = 3))
[,1] [,2] [,3]
[1,] 2 1 1
[2,] 1 1 0
[3,] 1 0 1

> (s <- svd(xtx))

$d$

[1] 3.000000e+00 1.000000e+00 1.453489e-16

$u$

[,1] [,2] [,3]
[1,] -0.8164966 5.724873e-17 0.5773503
[2,] -0.4082483 7.071068e-01 -0.5773503
[3,] -0.4082483 -7.071068e-01 -0.5773503

$v$

[,1] [,2] [,3]
[1,] -0.8164966 3.567025e-17 0.5773503
[2,] -0.4082483 7.071068e-01 -0.5773503
[3,] -0.4082483 -7.071068e-01 -0.5773503

> round(s$u %*% diag(s$d) %*% t(s$v))

[,1] [,2] [,3]
[1,] 0 0 0
[2,] 0 1 0
[3,] 0 0 1
```

\(s1 \) <- \(\mathbf{c}(1/3, 1, 0) \)

\(> \text{round}(s$u \ %\ %\ diag(s1) \ %\ %\ t(s$v)) \)

[,1] [,2] [,3]
[1,] 0 0 0
[2,] 0 1 0
[3,] 0 0 1
For the general case of $m > 1$, the eigenvalues of $X'X$ are multiplied by m, so the last expression for $(X'X)^+$ has non-zero diagonals divided by m. Since $X'y = (y_+, y_1+, y_2+)'$, a least squares estimate is given by

$$
\hat{\beta}_0 = (X'X)^+X'y = \begin{pmatrix} 0 \\ \bar{y}_{1+} \\ \bar{y}_{2+} \end{pmatrix}
$$

The set of all least squares estimates are of the form

$$
\beta_0 + \gamma \begin{pmatrix} 1 & -1 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} \gamma \\ \bar{y}_{1+} - \gamma \\ \bar{y}_{2+} - \gamma \end{pmatrix}
$$

where the vector $(1, -1, -1)' \in N(X)$ is a basis for $N(X)$. For example:

1. $\gamma = 0$ corresponds to the cell means parameterization.
2. $\gamma = \bar{y}_{++}$ corresponds to the “effects” parameterization with $\beta_1 + \beta_2 = 0$.
3. $\gamma = \bar{y}_{1+}$ corresponds to the “drop first level” parameterization used by R.
4. $\gamma = \bar{y}_{2+}$ corresponds to the “drop last level” parameterization used by SAS.
5. $\gamma = -\bar{y}_{2+}$ gives

$$
\hat{\beta} = \begin{pmatrix} -\bar{y}_{2+} \\ \bar{y}_{1+} - \bar{y}_{2+} \\ 0 \end{pmatrix}
$$

Estimability

A function of $c'\beta$ is estimable if and only if $c = X'\lambda$, for some vector λ, or if c is a linear combination of the rows of X. For the two sample problem, a basis for the row space is clearly given by $((1, 1, 0)', (1, 0, 1)')$ and so the estimable functions are $(\lambda_1 + \lambda_2, \lambda_1, \lambda_2)$ for any real numbers λ_1 and λ_2. In particular:

1. $\beta_0 + \beta_1$ is estimable, for $\lambda_1 = 1, \lambda_2 = 0$.
2. $\beta_2 - \beta_1$ is estimable for $\lambda_1 = -\lambda_2 = 1$.
3. None of the elements of β are themselves estimable.