Stat 8311, Fall 2006, Power calculations

One-way design, t groups, m observations per group. The null hypothesis is $\mu i n \mathrm{R}\left(J_{t} \otimes J_{m}\right)$, and the alternative is $\mu i n \mathrm{R}\left(I_{t} \otimes J_{m}\right)$. Then the F test is $f=\left\|P_{E-E_{o}} y\right\|^{2} /(t-1) /\left\|Q_{E} y\right\|^{2} /(m(t-1)$, anf $f \sim F\left(t-1, m(t-1), \delta^{2}\right)$, with $\delta^{2}=\left\|P_{E-E_{0}} \mu\right\|^{2} / \sigma^{2}=m \sum\left(\gamma_{i}-\bar{\gamma}\right)^{2} / \sigma^{2}$, where γ_{i} is the mean for group i.

In the first case, suppose that all the group means are equal, except in one group the mean is increased by $k \sigma$. Then $\delta^{2}=(t-1) m k^{2} / t$. The calculations below are for $t=5, m=10$.

```
> qf(0.95, 4, 45)
```

[1] 2.578739

```
> pf(qf(0.95, 4, 45), 4, 45, 4*10*c(1, 2, 3)^2/5,
+ lower.tail = FALSE)
[1] 0.55403840 .99598260 .9999999
```

To get a graph of power as a function of k, for fixed $m=5,10$:

```
> kvals <- seq(0, 3, length = 101)
> pow10 <- pf(qf(0.95, 4, 45), 4, 45, 4 * 10 * kvals^2/5,
+ lower.tail = FALSE)
> pow5 <- pf(qf(0.95, 4, 20), 4, 20, 4 * 5 * kvals^2/5,
+ lower.tail = FALSE)
> plot(kvals, pow10, type = "l", xlab = "k", ylab = "Power")
> lines(kvals, pow5, lty = 2)
> legend("topleft", legend = c("m=10", "m=5"), lty = 1:2)
```


In a second, case, we assume that in the alternative the γ_{i} can be ordered so that $\left|\gamma_{(i+1)}-\gamma_{(i)}\right|=k \sigma$. For this alternative, if $t=5$, $\delta^{2}=10 m k^{2}$. For $m=5$, compare the power to the $m=5$ case with the first alternative

```
> pow3 <- pf(qf(0.95, 4, 20), 4, 20, 10 * 5 * kvals^2,
+ lower.tail = FALSE)
```

> plot(kvals, pow3, type = "l", xlab = "k", ylab = "Power")
> lines(kvals, pow5, lty = 2)
> legend("bottomright", legend = c("Equal spacing", "One different"), $+\quad$ lty = 1:2)

