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Chapter 1

Introduction

Linear models have a dominant role in statistical theory @ragtice. Most stan-
dard statistical methods are special cases of the geneeaklmodel, and rely on
the corresponding theory for justification.

The goal of this course is to develop the theoretical basisufialyses based
on a linear model. We shall be concerned with laying the #tgzal foundation
for simple as well as complex data sets.

Linear models is one of the oldest topics in the statistiasiauum. The
main role of linear models in statistical practice, howewas begun to undergo
a fundamental change due in large measure to available dorgpuBalanced
experiments were often required to make analysis possiibis has produced a
fundamental change in the way we can think about linear nsp@esl much less
stress can be placed on the special cases where computtgoeasy and more
can be placed on general ideas. Topics that might have baedest, such as the
recovery of interblock information in an incomplete bloctperiment, is of much
less interest when computers can be used to appropriatedymaa functions.

However, standard results are so elegant, and so integetiat they deserve
study in their own right, and for that reason we will study trelitional body of
material that makes up linear models, including many stahsianple models as
well as a general approach.

The goal of these notes is to develog@ordinate-free approacko linear
models. Coordinates can often sever to make problems usserdg complex,
and understanding the features of a problems that are nehdept on coordinates
is extremely valuable. The problems introduced by pararsetee more easily
understood given the coordinate-free background.

1



2 CHAPTER 1. INTRODUCTION
1.1 Some simple examples

1.1.1 One sample problem

The simplest linear model has datai = 1, . .., n such that eacl; has the same
distribution with mean: and variancer? > 0. Normality, or other distributional
assumptions, are sometimes needed, but will not be used firshfew weeks of
the course. In the one-sample problem, the goals are toddeaun;. and possibly
o

A modelfor this problem can we obtained by writing:

vi = p+(yi —p)
= HTE

wheree; = y; — . Each observation is then taken to be the sum of a fixed part,
in this case the parametgr and a random pat;, a random variable with zero
mean and variance®. In the spirit of this course, we will collect the responses
into a vectory = (y1,...,y,), and thes; intoe = (e4,...,¢,). Writing J, to be

a vector of lengt of all ones, the one-sample model can be written as

y=Jup+e

We will soon be learning the linear algebraic backgroundterpret this equation.

The vector on the left is any arbitrary vectorirdimensional space. On the right
we have two vectorss is also an arbitrary vector in-dimensional space, while

Jn v IS @ vector that izonstrainedo live in a part ofn-dimensional space. This
will be a characteristic form of (fixed-effect) linear moslel

1.1.2 One way layout

Suppose we leg;; be thejth observation in théth population; = 1,...,p;j =
1,...,n; ben = Y n; independent observations. We then specify a mean struc-
ture:

E(y;;|Group=1i) = p; (1.2)
Var(y;;|Group=i) = o°
so each group has its own mean but a common variance. Thid m@siemewhat)

more complex because the mean now depends on the index dailafore con-
ditional. In matrix terms, suppose that= 3, and writey = (y11,¥12, - - - Ypn,)’
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to be the vector of responses. Then we can write

Jnl 0 0 M1
y=1| 0 Jy, O pe | +e (1.2)
0 0 Jng M3

This is a model is just like the one-sample model except treatiescription of the
fixed part is more complicated. The fixed part is now in a moreglex space of
dimensiorp rather than 1.

In such a model we may wish to address several goals:

1. Estimate the cell means, and obtain estimates of uncertainty.

2. Test hypotheses such@as= i = ... = p,, Or pi; = p1; or more generally
> ;= constant, where the; are known numbers.

3. Estimate the index of the largest of the A comparative experimeig one
in which several treatments indexed here from. ., p, are to be compared,
and the goal is to decide which is the best one or the best féng léads
to many interestng questions, in particular many questionserning how
to make inferences when faced with mulitple objectives (garmg many
treatments).

and so on. This model is linear because it is linear in the anknlocation pa-

rametersu;.
ParameterizatonA general form of the one-way model given by {1.2), is
y=XG+e
where
Jy 0 0 H1
X = 0 J,, O o B=1 p2
0 0 Jng 125}

This is in fact gparametricor coordinateversion of a linear model because of the
fixed choice ofX. In fact, {I.2) is just one of many possible ways of writing th
linear model for the one-way classification.Afis anyp x p nonsingular matrix,
meaning that there is a matrix~! such thatAA~! = I, we can write

y = XAA'B+¢
= (XA)(AT'B) +e
= X'y +e



4 CHAPTER 1. INTRODUCTION

which is a completely equivalent form of this linear modeit With parameters
rather than3. There are several different choices that are commonly fesefl
(we setp = 3 for illustration):

1. The three parameters are the overall mean = 1 — i, andas = o — .
This is the “effects” parameterization seen most often.

11 0
Al == 1 0 1
1 -1 -1

2. This sets the parameters to/be o — ;11 anduz — 1. This parameterization
is the default used by R.

100
Ay=| 110
101

3. This is called the Helmert parameterization, and is tHauleused by S-
Plus. It is convenient for computing, but usually not coneatfor inter-

pretation.
1 1 1
A;=11 -1 1
1 0 =2

The approach to linear models we use will try to avoid spepdiameterization,
since it is not relevant to for many important topics.

1.1.3 One-way random effects

The one-way model we have just discussed wasrditional model for fixed
groups. Suppose that the groups were in fact a random saropieaf population

of groups. Since all that changes from group to group is tharmhene way to
view this problem is to assume that theare random draws from a population,
with meany and variance2. The rules for iterated mean and variance can then
be applied to get the unconditional model,

E(y;; = E[E(y;;|Group=1)]
= E [Mz]
"
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and
Var(y;; = E|[Var(y,;;|Group= )]+ Var[E(y;;|Group= i)]
= E [02} + Var ;]

— o242

Thus, the unconditional model is thatlg) = u but vary;;)) = o? + 72. In
addition, although thg;; are conditionally independent given group, they are un-
conditionally correlated, since c@y;, y;x) = 2. The simpler mean structure for
the random effects model is offset by a more complex variatrceture.

1.1.4 Simple linear regression

The simple linear regression model is a special cade df, (£ ¢ take

pi = Bo + Bi; (1.3)

and further assume that the are known, fixed constants. The model can be
written as
yij:60+61$i+€ij,i:1,...,p;j:17.”’ni (1'4)

One usually sees this model written as
Ye = Bo + iy + e, Wherek =1,....n=> n; (1.5)

losing the identification of observations with a populatibor this model we may
wish to:

1. Estimate the¥s ando?.
2. Make tests concerning this, in particular of3; = 0.
3. Obtain interval estimates fgk, + (3;2;. This is theprediction problem

4. Examine the assumption that the cell meanare linear in thers.

and so on. You should have all seen the simple regressionlnmogeeat detail,
especially in Stat 8061 if not elsewhere, and we shall loakgtession only as a
special case of the general linear model.
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Chapter 2

Linear Algebra for Linear Models

Finite dimensional linear algebra is at the foundationsrafdr model theory. We
study this topic only as it provides a basis for this work, astan end in itself.
These notes are very similar to Paul Halmos’ superb unddugta linear algebra
textbook,Finite-Dimensional Vector Space3he book J. Schott (1997Matrix
Analysis for Statistigspresents a super set of the material in these notes, and is
recommended as a useful reference (but it costs more th@).$10

2.1 Basic definitions
Suppose that’ = {z,y, ...} is a set. We writer,y € V.

Definition 2.1 (Vector Space) The setl” is a vector spacef all elements ofl”/
satisfy the following addition and scalar multiplicatioriams:

Axiom 2.1 (Addition) Suppose there is a binary operato#" that acts on ele-
ments oft” such thatz + y € V, and

1. x + y = y +  (commutative)
2. z+ (y + z) = (x + y) + 2z (associative)

3. There exists a unique vecteerg 0 € V such that) + = = x + 0 = « for
allx e V.

4. Forall z € V, there exists a unique vector{) € V. suchthatr + (—x) =
0.
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Axiom 2.2 (Scalar multiplication) Leta, 3,... be real numbers, andlety, ... €
V be vectors. Then:

ax € V (ax exists and is well defined)

a(fx) = (af)z (associative law)

1.
2.
3. a(x + y) = az + ay (distributive law)
4. (a+ B)xr = ax + P (distributive law)
5.

There exists a scaldrsuch thatlx = x for all z € V. 1is unique.

Remark 2.1 A vector space islosedunder both addition and under scalar mul-
tiplication.

Thus, a set/ is a vector space if and and only if for ally € V and scalars, 3,
we havenz + Sy € V.

Several of the usual properties of vectors can be deduced thhe axioms,
including:

1. 0x = 0, where0 is a scalar.
2. (—a)r = —(ax)

3. a(0)=0,0eV

4. ar=0=a=0orx =0

The symbol ©” describes an element both In and a scalar. This should cause
only the minimum of confusion since in context exactly whialeaning for the
symbol is intended should be clear.

Example Suppose that’ = (o, ... «,) is ann-tuple of real numbersy; €
. By convention, all vectors are column vectors, so the pass is required to
displayx in a row. This space is calle”, and is the basic space of interest in
linear models. Ley/ = (f1,...,0,) € R". Then scalar multiplication for any
scalary is defined by

g o
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and addition is defined by
o B ay + G
Tty = : + : :

With these definitionsR™ is a vector space because it satisfies all the axioms.
Consider the following five sets:

So = {(a,a,a),a € R}

S1 = {(a,0,a),a € R}

Sy = {(a,b,a+0b),(a,b) € R}

Ss = {(a,a,a),a € Rt}

Sy = {(1,1,1) + (a,b,a +b), (a,b) € R}

The setsS, S; and S, are vector spaces, bdt andS, are not. The sef, was
encountered in the discussion of the one sample problemapt€h1l.

Example A real polynomial of degree is defined byx = 37, «;t’, for
real numbergay, . .., «,). The space of all such polynomials is cal®g, ;. If
y=>",0:t, thenz+y = I ,(«; + 3;)t". One can easily show that the axioms
are satisfied, an®, ., ; is a vector space.

We next turn to the question of relationships between elésneha vector
spacel/, in particular examining linear relationships.

o~ o~ o~~~

Definition 2.2 (Linear dependence)A set of vector§' = {zy,...,z,} is called
linearly dependerif there exists scalar§a, . . ., «,, } not all equal to 0 such that

n
Z o;; = 0.
i=1

If > a;x; = 0= a; = 0 forall 4, thenC is linearly independent

The concept of linear dependence is fundamental to the stlohear models.
Here are some consequences of this definition.

1. If 0 € C, thenC is linearly dependent by setting all the scalars to zero
except for the scalar associated with the vector 0, whichoeaarbitrary.

2. If C'is linearly independent, then for atyy C C, C is linearly indepen-
dent.
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3. If ¢y is linearly dependent, then ¢s linearly dependent?

In the vector spac&”, suppose that; is the vector with a “1” for itsi-th
element, and all other elements equal to zero. Then thigset . | e, } mustbe a
linearly independent set. if € R"(ay, ..., a,)’, then

r=ao1r1+ -+ a,x,

and every vector ifR" is a unique linear combination of the with uniqueness
following from linear independence. The det, ..., e,} is called thecanonical
basisor standard basigrom R".

Here is a modestly more complicated example. Suppose that

Se ={(a,b,a+b),a,b € R}

let x; = (3,0,3) andxy = (0,4, 4)’, which are two vectors i¥,. Consider any
other vector inSy, sayzs = (a,b,a+b) = (a/3)x1+(b/4)x2, SO then(zy, x5, x3)
is alinearly dependent set. All the vectorsSinare of length three, but the linearly
independent set has only two vectors.

Now consider the set' = {x1, x5, x3} given by

1 16 0
T, = —1 , Ly = 12 , L3 = 28 (21)
0 3 3

Each of ther; € %% = {z = (ay, ag, a3)'|a; € R}. The selC = {z, 25, 23} is a
linearly dependent set becausi:; — x5 + 23 = 0.

Suppose” = fix1 + fexs + [sxs + €, §; # 0,i = 1,2, 3, where thers are
given by [Z1). What is the meaning of linear dependenceHigrlinear model?
Since, for the example given above, — z3 = 16z, Orz; = (z3 — x3)/16, by
substituting forz; we write:

Y = [z + Boxy + B3z + €
Ty — T
- ﬁl{ 2 3]+52$2+53$3+5

16
= [&‘i‘ﬁgl To + l—&—i-ﬁ:g] $3+€

16 16
= MT2 + VT3 + €
This result suggests that the, the parameters in the “reduced” mean function,

are uninterpretable, because the value of the parametendgns;, a quantity
that cannot be estimated.
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Here is another example:

) () )

This is thecanonical basigor 13. It is a linearly independent set.

Suppose we have an arbitrary collecti6h= {z1, ..., z,}. Then the set

n
{z1,20,. ., 20, Y oy}
i=1

is always linearly dependent.

Theorem 2.1 A collectionC' = {x1, s, ... x,} is linearly dependent if and only
if there existsyy, . .. «,, and an index < n such that

n
T = Z ;5

ik

Proof. Assumer;, = Dizk QT Then:

0=uap+ (—zx) =D oz + (—1)zy
i7k

n
=2
i=1

with o, = —1, and hence the; are linearly dependent.

Next, assume that' is linearly dependent. Thet = > , 8;z; for some
{B1,-..,Bn} Sinces, # 0 for some index:, then

0= Z Bixi + Bk

ik
1 "5
—0= Z &l’z + T
6/6 ik 6k
Ty = Z oz, Whereq; = — =2
i#k k

and the theorem is proved.
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Definition 2.3 (Basis of a vector spaceA collectionB of vectors inV is abasis
for V if:

1. Bislinearly independent

2. Forally € V,{B,y}islinearly dependent; thatis, there exigts,, . . ., «,, }
such thaty = >, oz, whereB = {z4, ..., z,}. Equivalently, then, any
y € V can be written as a linear combination of the elements of

A basis is a fundamental set that generafe$f IV = R3, here are three of the
infinite number of possible bases:

Suppose we select a fixed basis, one of the infinite numbers&EsbhaThe rep-
resentation of any € V with respect to that basis is unique. Suppose that
C = {x,...,x,}isabasis, and = > ayz; = > Biz;. Then:0 =y —y =
Yoy — Bz = X viw; = v = 0 for all ¢ (assuming thay # 0), which is the
definition of linear independence. This suggests the foligw

Definition 2.4 (Coordinates) If B is a basis for andy = > a;x;, x; € B, then
{a1,...,a,} are the coordinates aof with respect to the basiB.

Definition 2.5 (Finite dimensional) A vector space ifinite dimensionaif there
exists a basis with a finite number of vectors.

Example P; is finite dimensional, since it has bagis= {1,¢+1,t>+t+1}.
If 2 € Py =4t>+4t+1=—5(1)+0(t+ 1) + 4(t* + ¢t + 1), z has coordinates
(5, 0, 4) relative to this basis. If the basisds= {1,t,t?}, the coordinates of
are(1,4,4).
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Many useful results in linear algebra do not involve cooat®s, and these
carry over to linear models, so picking a basis may be unsacgsnd in fact
may be confusing, as it almost surely is in the last example.will attempt to
use the coordinate free approach whenever possible.

Theorem 2.2 (Span o) LetC be a set of vectors. Then the set of all possible
linear combinations of elements ©fis a vector space.

We call the vector space defined in the last theorenspganor rangeof C,
R(C). Supposé/, Vs, ... are all vector spaces such thatjfe C thenz; € V;
for all .. ThenR(C) = NV;, the intersection of all vector spaces containinig
Thus the span of’ is the “smallest” vector space that includes all the eleseht
C.

Theorem 2.3 Every basis for a finite dimensional vector spacéas the same
number of elements.

Proof. Let By = {x1,...,x,} andBy = {y1, ...,y } be two bases foV'. Since
B is a basis foll/, every element oB; can be written as a linear combination of
the elements oB;. Hencey; U By is linearly dependent. By TheordmP.1, there
is at least one indek such thatz,, is a linear combination of the remaining and

of y,. Define the seD; = {y:} + B; — {xx} with k£ chosen to be the first index
that satisfies Theorem 2.1. We show that (1) every vectdr aan be written as

a linear combination of the elementsih, and (2)D; is a linearly independent
set. Combining these two results, it follows that is a basis fol/. First, B; is a
basis forl/, so anyz € V' can be written as

2= i =Y v+ x (lin. comb.y; and allzs exceptz;)
i=1 ik
SO any vectorz can be written as a linear combination of the element®gf
which shows that the span @, is V. Now suppose thab; were not linearly
independent. Then we must have that somes a linear combination of the
otherzs andy;. Buty; is a linear combination of thes, and hence; must be a
linear combination of thes alone. But the:s are linearly independent, giving a
contradiction. Hencel), is a basis fol/.

We continue in this manner until all thes are added to be basis one at a time,
giving a sequencé)y, D,, ..., D,,. We must have: > m or else the last few
ys would be linear combinations of the first few. Adding tkeeto theys shows
m > n, proving the result.
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Definition 2.6 (Dimension) The number of elements in a badisof a vector
spaceV is called thedimensiorof V, writtendim (V).

Example The setS, is a vector space of dimension two. One possible basis
for this space i{(1,0,1),(0,1,1)'}. Is {es, e2} another basis for this space?
Why or why not?

The following are immediate consequences of this defindimhthe preceding
theorem:

1. R™ is a vector space of dimensian
2. Anyn + 1 vectors inR" are linearly dependent.

3. Any set ofn linearly independent vectors i forms a basis foiR".

Theorem 2.4 (Completion of a basis)If {x1,...,z;} is a linearly independent
set of vectors i (dim(V') = n, k < n), there exists elemenig, 4, ..., z, such
that{z,...,z,} is a basis forV. The setry.1,...,x, iS not unique.

Proof. Homework.

Definition 2.7 (Coordinates) Given a basisB = {x1,...,z,} for V,anyy € V
can be written as
Yy = Z QG4

uniquely. The vectofay, ..., a,)" € R™ is called thecoordinates of; relative to
the basisB.

Definition 2.8 (Isomorphism) Anisomorphisnbetween two vector spacEsand
Visal ~ 1 map that preserves linear relations: forx,, o € V andy, y1,y» €
U, we havel'(z) = y and

T(Oéll'l + Oégl’g) = OélT(fL'l) + OzQT(l'Q)

= Y1+ a2y
The following results follow from the definition of isomorgtspaces.
1. T(0) = 0.

2. Thereis a functioi~! : U — V such thatl' ' (T'(z)) = z, forallz € V.
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3. T By + Paye) = BT (1) + BT (22)

4. {xy,...,z,} are linearly independent if and only if7(x,),...,
T(x,,)} are linearly independent.

5. Two isomorphic vector spaces have the same dimension.

For example, consider the spage= {(a,b,a + b)’, (a,b) € R}, which can
be easily shown to be a vector space of dimension two. Conidemap from
Sy — R? defined byT'(z) = T((a,b,a +b)') = (a,b)’. One can show that the
condition of DefinitioZB is satisfied, and $g is isomorphic tak?. This result
generalizes as follows:

Theorem 2.5 Any realn-dimensional vector space is isomorphicio.

Proof. Let V' be a realh-dimensional vector space. To establish the theorem, we
need to construct an isomorphism betwéeand®”. Let B = {x1,...,z,} bea
basis forV/. Then for ally € V' there exists unique real coordinates/, ..., a¥

such that .
Y= Z Oé;yxi
=1

Now, define

of

Ty)=1 : | e

ay

and

T(Biyr + Baye) = T[H Z ol i 4 P Z o’ ;]
= T[Z(ﬁla%ﬂ + Goor?) ;]
praft + Baai®

Bradi + Bra
= BiT() + BT (y2)

showing that Definitiof Z]8 holds. The-11 property follows from the uniqueness
of theas given the basis.

Example 3, + Bit + (B2t? € P, is clearer than the equivalent expression of a
guadratic polynomial that would be the expression of itsrdoates with respect
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Bo
to a fixed basis. As examples, this polynomial is giver(b)ﬁl with respect to
B2
Bo — B+ 20
the basis{, t, t?), or B — B with respect to the basist+1, 2 +t—1,
B2

or ... We will use bases when convenient, but generally no¢dé on them.

2.2 Linear Subspaces

Definition 2.9 (Subspace)A subsetV/ C V is alinear subspaci for all scalars
a,B,and allz,y € M, thenaz + By € M.

Equivalently,)M is a linear subspace if for all, y € M, and all scalars, x +y €
M andax € M. ThusM is a subspace if and only if it is closed under vector
addition and multiplication.

Example R™ . Choose any vector, # 0, and consided! = {azg, o € R}.
ThenM = R(zo) is a vector space of dimension one. This is a line.

Example Choose any,, z; € R” that are linearly independent vectors, and
considerM = {axy + fx1 | o, 5 € R}. ThenM is a vector space. What do you
suppose its dimension is? This is a plane.

Example The setS; = {(a,b,a + b)’, (a,b) € R?} is a subspace dk?, with
basis(a, a,0)’, (0, b,b)’ for any non-zera andb.

Example LetC be any set of vectors i. ThenR(C') = {z|x = X ayci, ¢; €
C, a; scalar$ is a vector space containedlinor V' itself. R(C) is a linear sub-
space of dimensior n. R(C') is called ahyperplanéf it has dimension greater
than two.

Theorem 2.6 If M is a linear subspace, théhe M.

Proof r e M = —x e M = x—x € M = 0¢c M. InR", for example, the
set of all vector subspaces is the set of all lines, planeshgpdrplanes to pass
through the origin.

Sometimes in statistical applications it is useful to cdesia linear subspace
that is shifted or translated from the origin. This can hapder example, in
models that include an intercept. It is therefore helpfuh&we the following
definition of a space that is displaced from the origin.
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Definition 2.10 (Flat) Supposel/ C V' is a linear subspace angl € V. Then a
flat consists of z + yo|x € M}. We will writey, + M whereM is a subspace to
indicate a flat.

By consideringtranslations flats are equivalent to vector spaces.Ylfis a
random variable whose domain is the flgt+- M, then, ify, is fixed,Y — y, has
domainM.

ExampleSet setS, = {(1,1,1)' + 2,z € S, } is a flat because ¢ S,.

Example In %2, consider

M:{a<;>|ae§fﬁ}andy0:<g>

Then the flaty, + M is given by the set

worr={(2)va( ) men]

which is just a straight line that does not pass through tigggibut rather through
the point(2, 2). The choice ofj, is not unique and it can be any point yo + ya,
wherey, = «(1,2)". For example, it = —2, theny = (0, —2) and ifa = +1,
theny = (3,4)’, and so on. For any, not of this form, we simply get a different
flat. This is summarized in the next remark.

Theorem 2.7 The two spaces

Fr = {zlz=y+z,y0€V,ze M CV}
F, = {zlz=pn+z,yn € Fl,e e M CV}

are the same subspace, so the representation of the flat isigpie.

Definition 2.11 (Sum and intersection of subspaced)et H, K be two linear
subspaces. Then:
H+K={r+ylrec Hyc K}

is thesumof H and K. The intersection off and K is
HNK = {z|xr € Handz € K}

Theorem 2.8 BothH + K and H N K are linear subspaces.



18 CHAPTER 2. LINEAR ALGEBRA FOR LINEAR MODELS

Proof. Homework

Definition 2.12 (Disjoint subspaces)Two subspaces are disjoint F N K =
{0}, the null vector.

Theorem 2.9 If HNK = {0}, andz € H+ K, then the decomposition= z+y
withx € H andy € K is unique.

Proof. Suppose = = +y andz = 2’ +¢'. Then,x — 2’ € H andy — ¢y’ € K.
We must haver + y = 2/ + ¢’ orx — 2’ = y — 3/, which in turn requires that
x—x' =y—y =0,since 0is the only vector commontbandK. Thus,x = 2’
andy = /.

Theorem 2.10If H N K = {0}, thendim(H + K) = dim(H) + dim(K). In
generaldim(H + K) = dim(H) + dim(K) — dim(H N K).

Proof. Homework.

Definition 2.13 (Complement of a space)f M and M¢ are disjoint subspaces
of V.andV = M + M¢, thenM¢ is called acomplemenbdf M.

Remark 2.2 The complement is not unique. R?, a subspacé/ of dimension
1 consists of a line through the origin. A complemendbfs given by any other
line M¢ # «M through the origin, because linear combinations of any twehs
lines sparir?.

2.3 Linear Transformations

Definition 2.14 A linear transformatiom on a vector spac¥ is a function map-
pingV — V; C V such that

Aoz + By) = aA(z) + BA(y)
forall o, e Randallz,y € V.
Remark 2.3 For 0 € V, A(0) = 0 for any linear transformatiom.

Examplesif forall z € V,

1. A(z) =0, thenA is called thenull transformationjust written 0.
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2. A(x) = z, then A is theidentity transformation This transformation is
generally called.

3. A(z) = —z, thenA is areflection through origin

Definition 2.15 (Sum of linear transformations) The sum of two linear trans-
formations is defined by:

(A+ B)(z) = A(z) + B(x).

Remark 2.4 One can easily show that the set of all linear transformagidn:
V — Visitself a vector spacg (V).

Definition 2.16 (Product of linear transformations) The product of two linear
transformationsA and B is defined by:(AB)(z) = A(B(z)). Order matters:
generally,AB # BA.

Here are some easily derived properties of the product:
1. A0 = 0A = 0 (here0 is the null transformation)
2. AT=1A=A
3. A(B+C)=AB+ AC
4. A(BC) = (AB)C
We will write AA = A%, and

AA---A=A™
—_——

m

Definition 2.17 (Range of a linear transformation) Therangeof a linear trans-
formation is defined as:

R(A) ={yly = Az,z € V}

R(A) is alinear subspace &f since ify; € R(A) andy, € R(A), then there
existsz; such that;, = A(x;) andz, such that, = A(zy) andA(ax; + fzy) =
aA(x1) + BA(x2) = ayr + By2 € R(A).

Definition 2.18 (Rank of a transformation) The rank of a linear transformation
A = p(A) is the dimension oR(A).
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Definition 2.19 (Null space) The null space of a linear transformatiohis
N(A) = {z|z € V, A(z) = 0}

that is, the set of points that mapsA to zero.

Theorem 2.11 N(A) is a linear subspace df .

Proof. Consider anyt, y € N(A). ThenA(az + fy) = aA(z) + BA(y) = 0, so
az + By € N(A). Since NA) is closed under addition and scalar multiplication,
itis a linear subspace.

Definition 2.20 The dimension of M) is calledv(A).

Example In 12, suppose that

and define

so A(x) preserves the last two elements of any vectoRfy and sets the first
element to zero. Herég(A) = {z| first coordinate ofc = 0, other coordinates
arbitrary,r € R*}, and thug(A) = 2. Similarly, N(A) = {z| first coordinate of:
is arbitrary, other coordinates &g, which is a subspace of dimensiof4) = 1.

Theorem 2.12
p(A) +v(A) =n =dim(V).

Proof. Homework.
Example Supposd’ = %3, and

1 Ty + X2 1 0
A ) = To + T3 = (l’l +JJ2) 0 + (JJQ + 1’3) 1 (22)
T3 x|+ 2122'2 + 3 1 1



2.3. LINEAR TRANSFORMATIONS 21

The transformatiomd maps fromR? to the subspac®(A4) = S,. Then NA) is

the set
1 0 0
1 1 0

or points of the form
1
a( 1 ) € N(A)
-1

which is seen to be a subspace of dimension one.

Solving linear equations of the form(z) = y for x is a common problem
in linear models. The question of whether or not these egusitihave a unique
solution depends on the null spacef

Theorem 2.13 The equatioMz = y has a solution, for eachy € V' if and only
if v(A) = 0, or equivalentlyA(z) = 0 = = = 0.

Proof. Supposed(z) = 0 = = = 0, and therv(A) = 0. Let{zy,...,z,} bea
basis forV’. Then{ Az, ..., Az, } aren vectors in/’. These vectors are linearly
independent (it o; Az; = 0, then A(Y oyz;) = 0 andy” oyz; = 0, which is a
contradiction), and, since there areof them, they form a basis fdr. Hence,
anyy € V can be written as a linear combination of the columnglof and the
coordinates of; with respect to this basis gives the required

Suppose thatlz = y has a solution for aly € V. Findn vectors inV/,
{1, ..,yn} that are a basis fov" and the corresponding vectofs,, ..., z,}.
Thexs must also be linearly independent becausé K;z; = 0 then

A(Z \Niti) = Z NiA(x;)
= Z AiYi
0

which contradicts the fact that thg are linearly independent. Thefi(z) = 0
only if z = 0 by linear independence.

Remark 2.5 If Az = y has a solution for each € V then the solution is unique,
since ify = Azy = Az, thenA(x; — x9) = 0, and thisis so only if; — x5 = 0
orr; = x».



22 CHAPTER 2. LINEAR ALGEBRA FOR LINEAR MODELS

Example.The linear transformation defined Hy_(2.2) has null space

and hence the equation§x) = y will not have a unique solution. lf, is a
solution to these equations, then so is any vector of the faym «(1,—1,1)".
This set of solutions forms a flat.

Definition 2.21 (Inverse and Nonsingular) WhenAz = y has a unique solution
for all y € V then thenverse A~! is defined byd~'y = z. In this caseA is said
to benonsingularotherwiseA is singulat

Theorem 2.141f A is nonsingular then
1. p(A) =nandr(A) =0.
2. A7TA=AAT = 1.
3. If AandB are nonsingular, therl B is nonsingularandAB)~! = Bt AL

Theorem 2.151If {x4,...,z,} is a basis forV and{y, ..., y,} is also a basis
for V' then there exists a unique nonsingular linear transforoati such that

Proof. Homework.

The importance of this proposition in linear models is that can work with
any basis, and transform at the end to any other basis. Againgdinate systems
become irrelevant.

Theorem 2.16 If B is nonsingular, thep(AB) = p(BA) = p(A).
Proof. Homework.

Theorem 2.17 For any linear transformations! and B:
1. p(AB) < man(p(A), p(B))
2. p(A+ B) < p(A) + p(B)

Proof. Homework.
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2.4 Projections

Projections are special linear transformations that ateemely useful in linear
models. Suppose thaf is ann-dimensional vector space, add and N are

subspaces of’ such thatM + N = {z = 2+ ylzr € M,y =€ N} = V and

MNON={z|lz€ M,z N} ={0}. (Thus,N = M*©.)

Definition 2.22 For all z € V, consider the unique decomposition- z+y, x €
M,y € N. The transformationP,; vz = x is called theprojection ofz on M
along N. Similarly, the linear transformatio®y ;2 = y is the projection ot on
N along M.

Theorem 2.18. Pyjy = I — Pyn-

Because of the above relationship between these two piajsctve will define
further notationQ v = I — Pyju-

Theorem 2.19 A linear transformatiori” on V' is a projection for somé/ and
Nifandonly if7?z =Tz forall z ¢ V.

Proof. If T is a projection, thenfot =z +y,x € M,y € N,
T2, =TTz=T(T2) =Tz =z =Tz,

sincex has no component ify.

Supposel™?z = Tz, forallz € V. Let N = N(T) = {z|Tz = 0}, the null
space ofl’, andM = {z|Tz = z}. We will showM + N =V andM NN = {0},
and hencd’ = Py y.

1. If 2 € M, thenTz = z. Also, if z € N, thenTz = 0, and ifz &
MNN,Tz=0,sothatM NN = {0}.

2. ToshowM + N = V considerany: € V. Thenz =Tz + (I —T)z. Let
r=Tzy=(—-T)zandz =z +y. Then

Te=T(Tz)=T*2=Tz=x
which implies thatc € M. Also,
Ty=TI~-T)z=Tz—T?2=0

so thaty € N. ThusV = M + N andT is precisely the projection ofi/
alongN. This completes the proof.
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Definition 2.23 (Idempotent) A linear transformatiori’ is calledidempotenif
T? =T.

Consequences of the previous theorebet P, be the projection of\/; along
Ny, and letP, be the projection of\/; along/NV,. Then:

1. P, + P, is a projection if and only itP, P, = P,P; = 0. This condition is
equivalent to requiring that/; N My = {0}.

To prove this result, multiply to obtain

(P, + P)? = P!+ P+ PP+ PP
= P12+P22+P1P2+P2P1

so we must have that
P1P2 —|— P2P1 - 0

Multiply on the left and right byP;, gives the two equations

PP+ PRPRP = 0
PIRBP+ PP =

Subtracting these two equations gives>, — P, P, = 0, and thusP, P, =
P2P1 - 0

2. P, — P, is a projection if and only itP?, P, = P, P, = P,. In this case, we
must havell, C M;.

3. IfPP, = PP, thenP, P, is a projection.

2.5 Inner Products
Let V' be a finite dimensional vector space.

Definition 2.24 (Inner Product) A real inner product ori/ is a function defined
onV x V — R, written (z, y), such that, for allz, y € V,

1. (z,y) = (y,x) (Symmetry)

2. (@1 + aawe,y) = oy (21, y) + (22, y) (linearity)
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3. Forallx # 0, (z,x) > 0 (honnegative)

Example Suppose: has coordinates = (v4,...,7,) € R™ andy has coor-
dinatesh = (A\1,...,\,) € R", both relative to some fixed basfs, ..., z,}.
The usual inner product is

(z,y) =D %hi=7'A (2.3)
i=1

If V' = R, and the basis chosen is the canonical bésis. . ., e, }, theny = =
and)\ = y, and [Z3B) corresponds to the usual Euclidean inner produraither
inner product is

(z,9)a = Z Z aijYiN; (2.4)
i=1j=1
with the fixed constants;; selected so that;; = a;; and}" 3" a;;v,7; > 0.

Definition 2.25 (Real inner product space)A real inner product spacg’, (-, -))
is a pair such that’ is a real vector space an(g, -) is a real inner product defined
onV.

Theorem 2.20 (Cauchy-Schwartz inequality)For any inner product

| (2,9) | < [(z.0)(y. y)]""?

Equality holds if and only it = cy for somec € R.

Proof. If (x,z) = 0 or (y,y) = 0, the result is immediate, sin¢e, 0) = 0, for
all z € V, so we can assume, r) > 0 and(y,y) > 0. Letw = z/(x,2)"/? and
z=y/(y,y)"*. We showf (w, 2) | < 1:

0<(w—2zw—2)=(w,w)—2w,z2)+ (2,2) =2 —2(w, 2)
so that
(w,2) <1
Similarly,
0<(w+zw+z)=2+2w,2),

so that(w, z) > —1. Combining these givegw, z)| < 1 as required, To prove
the second part, we will have equality(if — z,w —z) = 0 or (w+z,w+2z) = 0.
This will hold only if w = +2, orx = +((x,2)"2/(y,y)"/?) x y, so equality
holds only ifz = cy.
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Definition 2.26 (Cosines)The cosine functions a function fromV x V. — R
defined by:

(z,9)
[(z, 2)(y, y)]'/?

cos(z,y) =
provided|| z || # 0 and|| y || # 0.

The Cauchy-Schwartz inequality saysos(z,y) | < 1. The cosine function
is invariant under multiplication of andy by positive scalars, as one might hope.
Example In %2 with the usual inner product,

T1Y1 + ToYo

cos(f) =
V@ +23) (13 +13)

Definition 2.27 (Norm) A function|| = || is a normon a vector spacé’ if, for
anyx,y eV,

1| z]| >0.

2. || z || =0ifand only ifz = 0.

3. || cx || =|c| x || = || foranyc € R.
4 lle+yll<lzl+lvl

Definition 2.28 (Distance) A functiond(z, y) is a distanceon a vector spac®
if, foranyz,y € V,

There are many choices for norms and distance functionfel€bordinates
of = relative to a given basis are = (vy1,...,7,)’, @ general class of norms is

given by
1/
l, = {> P}
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The most familiar member of this family is thevo-norm also called the Eu-

clidean norm,

Iz lly = (z,2)"* = 4"y

Other important members of this class includegben norm

Il fly =" Il

and the infinity norm
| @ [l = max|]

All these norms satisfy the definition.

2.6 Orthogonality
Let (V, (-,)) be an inner product space.

Definition 2.29 Vectorsz,y € (V,(-,-)) are orthogonalif (z,y) = 0. We will
write this asx L .

M m
Example R", usual inner product. It = o,y = : |, thenz Ly
Tn M
if > ~vn; = 0, or equivalently ifcos(x, y) = 0 (the angle betweenandy is 7 /2).
gs! m
Example R". If x = o,y = : |, but the inner product is given
Tn Mn

by (Z.3), thenz L yif (z, Ay) = >3 a;;74m; = 0. In the usual Euclidean sense,
orthogonality does not imply perpendicular (angler/2) relative to(-, ).

Definition 2.30 (Orthogonal vectors) The set of vector§z,, ..., z,,} is called
orthogonal if (z;,z;) = 0,7 # j. The set is calledrthonormalif in addition
(i) =z |?=1,i=1,..,m.

Definition 2.31 (Orthogonal Spaces)SubsetsS; ¢ V andS; C V are orthog-
onal S; L Syifforall x € S;,y € Sy, « L y. If S; L Ss, then the linear
subspaces spanned By and .S, are orthogonal.
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Definition 2.32 (Orthogonal flats) Two flats are orthogonal if their correspond-
ing linear subspaces are orthogondly = x; + M;; F5 = x5 + M,, thenM; L
My = Fy L .

Definition 2.33 (Orthogonal basis) A basis forV is called anorthogonal basis
if the basis set is orthogonal. The basi®ithonormabr onbif all elements of an
orthogonal basis have unit length.

Definition 2.34 (Orthogonal complement) If C is a linear subspace i, the
orthogonal complemenmtdf C, written C+ (and readC perp, is the set of all vec-
tors inV that are orthogonal to all vectors i@.

We have previously defined the complemeéfitof C' to be any subspace such
that the direct sunC' + C¢ = V. The spaceC* is a particularC¢ with the
additional property.

Example %2 with the usual inner product. If C is a line through the orijgin
C* is a perpendicular line through the origin. One can verift ti* is a linear
subspacéC+)*+ = C.

Definition 2.35 Suppose” € D C V, with an inner product-,-). Then we
define the orthogonal complement®felative toD as:

CH(D) ={yly € Dand(z,y) =0, forall z € C}
Theorem 2.21 Every linear subspace has an orthonormal basis.

Proof. Many of the important results in linear models are vastig@ified by
using an orthonormal basis. The proof of this theorem isttoasve: we actually
find an orthonormal basis from any arbitrary basis, . . ., z,,}.

Gram Schmidt OrthogonalizationWe begin with any{z, ..., z,} for the
subspacel/. We will construct an orthonormal basig, . . ., v, } with the addi-
tional useful property theR ({z1, ..., zx}) = R({y1,...,ux}), k=1, .n,

1. Lety1 = I.

2. We want to find),, and linear combination af, andx, such thati(y;, y») =
0 andR(l’l, .I'Q) = R(yl, yg) Set

Y2 = Ty + Q1Y
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so that(yy, y2) = (y1, 22 + a1y1) = (y1, x2) + a(y1, y1) = 0. Solving fora

gives:
Y1, T
oy = m:22)
Iy ||
and thus
_ (ylyxZ)
Yo = Xg — 7 Y1
|y |l

The vectorgy; andy, span the same space R$z, x2) because they are
not collinear and they are just linear combinationspandz,, so they are
an orthogonal basis for this space.

3. Continuing with this process, we next fipgsuch that:
ys # 0

(Y1,93) = (y2,93) =0

R<y17 y2>y3) = R($1, $2,$3)

The reasonable choice is:

Y3 = T3 + Q1Y1 + Qols

so that
0 = (y1,y3)
= (Y1, v3) + a1(y1, y1) + a2(y1,y2)
= (y1,23) + a1(y1,91) +0

soa; = —(23,11)/|| y1 ||>. By asimilarargumenty, = —(z3,4)/| v2 ||°-
For the general case, take

xkuyz
Z H2 Yi-

This yields an orthogonal basis that spans the same spdesg as. , z, }.
If an orthonormal basis is wanted, simply normalizeghez; = v; /|| vi ||
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This is the simplest algorithm, but it is numerically defrdieespecially if
some of thers are of vastly different lengths, or if any of the cosinesuaen the
xS are particularly small. This can lead to cancellation b$igificant digits in a
computed result. There are many other orthogonalizatigorghms.

Modified Gram-SchimdtA more stable approach to getting an orthonormal
basis does the computations in a different order.

1. Start with any basis, say'” ..., 2©}.

2. Lety; = z1”/| 2\” ||, soy, has unit length. Renormalize and orthogonal-

ize toy; the remaining(z”, ..., 2V} via

= —(xl(-o),yl)yl, 1=2,...,n

3. Lety, = 2" /|| 28" |, soy» has unit length.

4. Renormalize and orthogonalizegpthe remaining[x§,2), ...,z via

)M )

xz('z x; _(xz 7y2)y27i:37"'7n

and continue in the same manner.

The modified Gram Schmidt has the advantage of being coniguigdlyy more
stable, since it renormalizes at each step. Of course themany other methods
of getting an orthonormal basis, particularly t9& method we will learn shortly.

2.6.1 Coordinates with respect to an Orthonormal Basis

. Suppose we have an orthonormal bgsis . .., z,}. What are the coordinates
of anyy € V with respect to this basis? We haye= > \;z;. How do we find
the \;? We can compute the inner prodigtz;) = (3 A\iz;, ;) = A;, SO we can
recover the\; just be computing inner products. Hence,

y=> (y,x)u;. (2.5)

Also, || y [I> = || S \izi |I” = = X A\ (24, 2;) = 3 A2 so the norm-squared of a
vector is the sum of the squared coefficients with respeat tartlaonormal basis.
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2.6.2 Orthogonal Projections

For any subspacé&/ € V, there are many projections, one for each choice of
N such thatM + N = V. By requiring thatM and N be orthogonal we will
end up with a unique orthogonal projection with many usefal elegant geomet-
ric and statistical properties. Since orthogonality dejseon the inner product,
orthogonal projections will be unique only up to choice & thner product.

Recall that forA/ € V, where{V,(-,-)}, is a real inner product space, we
defined the orthogonal complement as

Mt = {z|(z,y) =0,y € M,z € V}

soM* isthe set of all vectors il that are orthogonal to all vectors . Suppose
dim(M) = m,dim(V) = n.

Theorem 2.22
M n M+ = {0}.

Proof. The only vector that satisfi€s, ) = 0 isz = 0, and this is the only vector
in common to these sets.

Theorem 2.23
M+ M+ =V and(M*+)* = M.

Proof. Let {zi,...,x,} be a basis forM, and extend it to{z,,...,z,} for
V. By the Gram-Schmidt method we can without loss of gengraksume that
{z1,...,x,} is an orthonormal basis fav/ and{z, ..., z,} is an orthonormal
basis forV. Thus,z,,.1,...,z, € M+ by construction. They are linearly inde-
pendent, selim(M+) > n —m. Butdim(M + M*) < nsinceM + M+ C V
andM NM+ = {0}. Thusdim(M) +dim(M+) < nanddim(M+) < n—m and
thereforedim(M+) = n — m. The completion of the-basis is an orthonormal
basis forM+ andV = M + M+ .

The proof of(M+)+ = M starts with the orthonormal basis far+ and
extends it toV” in the same way.

Definition 2.36 The projection on\/ along M+ is called theorthogonal projec-
tion relative to (; -). We will usually writeP, ;. as Py and Py @SQ .
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Given an orthonormal basis, evaluation of an orthogongkeptmn is easy.
SupposéV! is a linear subspacdjm(M) = m. We want to find a specific repre-
sentation forP,, with the inner product-, -). Find an orthonormal basis fa/,
{z1,...,x,} which we know can be constructed from any basis. Therzany
can be written as = > ; A\;x;, and so

In addition,
| Puz P = Yo(za)’ = DN

Quz = Y (za)z, = Y, Nzy=z—Pyz

= IZ—P]\/[Z:(I—PM)Z
1Quzl* = 3 (zz)?= 3 N=[zI"~| Puz |’

i=m+1 i=m+1

By constructiont = Py;z € M andy = Q2 € M+, and this decomposition of
z is unique. We don't actually need to have a basisibt, as we can computg
fromy =z —z,andlz = Pyz+ Quz givesQyz = 1 — Py z.

Finding the closest vector in a subspaéonsiderz € V, M C V. We know
that there is a unique decomposition= =z + vy, = € M, y € M+. What is the
vectorw € M thatminimizes|| z — w ||* (as usual, relative to (-))? Is it unique?
Now

lz=wl|®* = [lz+y—w]|
= le—w+y]”
= Je—w*+[y|*+2@—w,y)
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but bothz andw € M andy € M+, and thusz — w,y) = (2,y) + (w,y) =
0 + 0 = 0, which means that

2 2 2
lz=w|"=[z-wl"+[y]

To minimize this, only the| x — w || term matters, since we are free to choose
anyw € M andz € M, simply setw = x. The minimum value of the norm is
just|| y [I*.

Write x = Pyz andy = Q2. So, relative to the inner product -), the
closest point inM to z is the projection of: onto M along M+, Py;z, and its
distance from\V/ is || Qa2 ||

Also, the above construction shows that

L2 1P = 11 Parz |I° + | Qarz I

These results are intimately related to linear models, asbeaseen from the
following picture. In the linear model problem, we may wishdhoosei €
R(X) = M so that| y — 2 ||* is minimized. For a given inner product, we know
the answer igi = P,,Y, and the minimum value dfy — /i |* = || QuY ||*. Of
course, the answer depends on the inner product.

2.7 More on Transformations and Projections
In this section we return to the discussion of linear trarmsfiions.

Definition 2.37 The transpose aofl, denoted as!’ with respect to the inner prod-
uct (-, -) is defined by the following identity inandy:

(Az,y) = (z,A'y), forall z,y € V.
From the definition(A’)" = A.
Theorem 2.24 A’ is a linear transformation ofy.

To prove this we need the following theorem.

Theorem 2.25 For A and B linear transformations oV, (-, )}, if (z, Ay) =
(z, By), forall z,y € V, thenA = B.

Proof. Homework.
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Definition 2.38 A linear transformation isymmetridf forall =,y € V, (x, Ay) =
(Az,y). We write this asd = A’. The notion of symmetry depends on the inner
product(-, ).

Definition 2.39 A symmetric linear transformation jgositive definiteif for all
x #0 eV, (x,Ax) > 0, and ispositive semi-definitéf (z, Az) > 0 for all =z #
0eV.

Definition 2.40 A symmetric linear transformation ionsingulaif Az = y has
a solution for eachy € V or, equivalentlyAz = 0 = = = 0.

Theorem 2.26 If A is symmetric and positive definite, thdris nonsingular.

Proof We need to show that fod positive definite Az = 0 = = = 0. Now by
the Schwartz inequality

| (2, Az) [ <[]  [|[| Az |

Suppose| Az || = 0 for x # 0. Then for thisz, | (z, Ax)| = (z,Az) = 0
and thusA is not positive definite. By contradiction, then, no sucbxists. We
here therefore justified in using the two different termssingular and positive
definite as synonyms.

Thus far, all results have been stated for a fixed inner priodDaoe is then
led to ask how results change when the inner product chawogetthere is a
relationship between results with different inner prodd¢te connection between
inner products is provided by the next theorem.

Theorem 2.27 If A is positive definite symmetric with respectto), then((z,y)) =
(Az,y) is also an inner product ofY’. Thus one can generate a different inner
product for every symmetric positive definite linear tramsfation A.

Proof. We need to verify the definition of an inner product.
1. ((z,y)) = (Az,y) = (z, Ay) (Symmetry ofA)
2. ((qxy + anxe,y)) = (1 Az + agAxg,y) = a1 ((z,y)) + az((z2,v))
3. ((z,x)) = (Az,y) > 0if x # 0 sinceA is positive definite.

We can now apply these ideas to characterize orthogonagironfs.
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Theorem 2.28 P, a linear transformation odV/, (-, -)} is anorthogonal projec-
tionif and only if P = P? = P'.

Before beginning the proof, we recall thatis a projection if? = P?, so it is the
final imposition of symmetry that make&3 an orthogonal projection. Since the
notion of symmetry depends on the inner product, so doesiti@rof orthogonal
projection.

Proof

1. Suppose the linear transformatifns an orthogonal projection ontd C
V. Consider: € V,z = x +y,x € M,y € M+, sothatPz = 2. Now for
anyw € V, we will have tha{ (7 — P)w, Pz) = 0 becausé/ — P)w € M+
andPz € M. We can therefore write:

(w,Pz) = (Pw+ (I —P)w,Pz)

Pw,Pz)+ ((I — P)w, Pz)

Pw, Pz)

Pw,Pz) + (Pw, (I — P)z)

Pw,Pz+ (I — P)z)

= (Puw,2)

(
(
(
(

and thusP = P'. P = P? because” is a projection.

2. Now supposeé® = P? = P’. P is thus a projection by idempotency, and
it projects onR(P) along N P). An orthogonal projection requires that
N(P) = R(P)*, so we must show that

[R(P)|= =N(P)

First, taker € R(P) andy € N(P), thensince® = P%, Pz = z andPy =
0, and
(z,y) = (Pz,y) = (z, Py) = (2,0) =0
This shows that
y € [R(P)]*, and NP) C [R(P)]*
Suppose
y € [R(P)]* buty & N(P).

Thus,Py # 0. If x # 0 andz € R(P),0 = (z,y) = (Pz,y) = (z, Py).
Since Py € R(P), substitutePy for = and get(Py, Py) = 0. Thusy €
N(P).
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Theorem 2.291f P is an orthogonal projection, then
1. (Pz,x) >0

2. | Pz < .

Proof.
1. (Pz,z) = (P(Px),z) = (Px,Px) >0

2. |« =lU-P+P = 1U=Pz+Pe|f’=|~Pa|" +
| Pz ||” + 2(Pzx, (I — P)x). SinceP is an orthogonal projection, this last
inner product can be writtefx, P'(I — P)z) = (z, P({ — P)x) = 0, and
thus
lz =1 (I = P)z |+ Pz ||* > || P |

becausd| (I — P)z || > 0.

Definition 2.41 Two orthogonal projectiongl and B are calledorthogonal and
written A L B, if R(A) L R(B).

Theorem 2.30 Let A and B be orthogonal projections. TheA L B if and only
if AB =0.

Proof

1. If A L B,thenR(A) L R(B) since forx € R(A),y € R(B),(x,y) =0
by orthogonality of the spaces. Thus, forallz € V.0 = (Aw, Bz) =
(w, ABz) only if AB = 0.

2. If AB =0, thenA(Bz) = 0 for all z € V which meansk(B) is contained
inN(A) = [R(A)]*,soR(A) L R(B).

Theorem 2.31Let Ay, ..., A, be orthogonal projections and let = >F | A,.
A is an orthogonal projection if and only #;A; = 0, # j.

Proof. If A;A; =0,i # j, easy calculations show = A*andA = A'. If Aisan
orthogonal projection, then we must show thatA;)(z) = 0, i # j. Consider
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any fixed vector: € R(A;), soA;z =z and|| Az |* = || = |I°.

lz|® > || Az |”

_ (Azx, x)

= Z(Aix, x)

i=1

k
= Y| A |?
=1
b 2
= > [ AiAx ||
=1

k
2 2
= [ Az "+ Aidjz |
i#]

k
= [z |*+ 21l Aidje |
i

This shows thatd; A;z = 0 for j # i for all x € R(A). Now for anyz ¢ R(A),
we can writez = = + y, with x € R(A) andy € the orthogonal complement of
R(A) =R(I — A). Thenifz € R(4;), A;A;z = A;Ajx = 0, and so the same
proof will apply to anyz € V.

Let { M, ..., M} be orthogonal subspaces such that= M; + M, + M3 +
...+ M. Let{Py, ..., P} be the respective orthogonal projections ontothe
ThenP = Y | P, is an orthogonal projection ontt/ and each: € M can be
uniquely represented as= z; + ... + z; with z; € M;. This is an important
result for fitting linear models, where eadfli, can be identified with an “effect”
of interest, and” can be uniquely decomposed into components along £ach

For anyz € M,

k k k
Px:ZPi:)s:ZPixi:in =z
i=1 i=1 i=1
and
2
| Pz |* = || Si, P ||

k k
= (Q_P=,) P
i=1 i=1
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I
Mw

k
Z (Px, Pix)
7j=1

.
—_

> |l

= Y (Pux, Px)

=1

= ZIIPxH

=1

=

2.8 Orthogonal transformations

Definition 2.42 A linear transformatiord is called anorthogonal transformation
if || Az || = || = ||, forall z € V.

An orthogonal transformation is nonsingular sincelif = 0, thenx = 0 (if not,
then(z, x) # 0).

Theorem 2.32 A isorthogonalf and only if(Az, Ay) = (x,y), forall x,y € V.

Proof AssumeA is orthogonal. From a homework problem,

(@.y)= /Dl z+yl* =l =~y |’
SO

(Az, Ay) = (/D] Az + Ay ||° — || Az — Ay ||]
= (/D[ Al +y) I = | Alz =) |I”]
= W/Dlle+y I ~lz—yl*=(zy)

where the last results follow because A is orthogonal.

Now assuméAz, Ay) = (z,y) forall z,y € V. Then| Az ||* = (Az, Az) =
(z,z) = || = ||* which by definition says that is orthogonal.

The direct implication of this theorem is that (1) orthogbmansformations
preserve lengths, and (2) orthogonal transformationgpresangles, that is, cosines,
or equivalently inner products, are preserved. The projpossaysA is orthogo-
nal if and only if(Ax, Ay) = (z,y), or (z,y) = (x, A’Ay), so(A)A = I (from a
homework problem).

Theorem 2.33If {z1,...,z,} is an orthonormal basis fov" and A is orthogo-
nal, then{ Az, ..., Az,} is an orthonormal basis fov".
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Proof (Az;, Ax;) = d;;, whered,; = 1 if i = j and= 0 otherwise.

Theorem 2.34 Let {zy,...,z,} and{yi,...,y,} be orthonormal bases for'.
The linear transformation defined by; = y; is orthogonal.

Proof Forz € V,z = 3 \ja; and|| = ||* = X A2. Then
| Az ||* = | A N |I° = | SNz [P = 11 S higs [P =20 = = ||

and thusA is orthogonal.
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