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Chapter 1

Introduction

Linear models have a dominant role in statistical theory andpractice. Most stan-
dard statistical methods are special cases of the general linear model, and rely on
the corresponding theory for justification.

The goal of this course is to develop the theoretical basis for analyses based
on a linear model. We shall be concerned with laying the theoretical foundation
for simple as well as complex data sets.

Linear models is one of the oldest topics in the statistics curriculum. The
main role of linear models in statistical practice, however, has begun to undergo
a fundamental change due in large measure to available computing. Balanced
experiments were often required to make analysis possible.This has produced a
fundamental change in the way we can think about linear models, as much less
stress can be placed on the special cases where computationsare easy and more
can be placed on general ideas. Topics that might have been standard, such as the
recovery of interblock information in an incomplete block experiment, is of much
less interest when computers can be used to appropriately maximize functions.

However, standard results are so elegant, and so interesting, that they deserve
study in their own right, and for that reason we will study thetraditional body of
material that makes up linear models, including many standard simple models as
well as a general approach.

The goal of these notes is to develop acoordinate-free approachto linear
models. Coordinates can often sever to make problems unnecessarily complex,
and understanding the features of a problems that are not dependent on coordinates
is extremely valuable. The problems introduced by parameters are more easily
understood given the coordinate-free background.

1
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1.1 Some simple examples

1.1.1 One sample problem

The simplest linear model has datayi, i = 1, . . . , n such that eachyi has the same
distribution with meanµ and varianceσ2 > 0. Normality, or other distributional
assumptions, are sometimes needed, but will not be used in the first few weeks of
the course. In the one-sample problem, the goals are to learnaboutµ and possibly
σ2.

A modelfor this problem can we obtained by writing:

yi = µ + (yi − µ)

= µ + εi

whereεi = yi − µ. Each observation is then taken to be the sum of a fixed part,
in this case the parameterµ, and a random partεi, a random variable with zero
mean and varianceσ2. In the spirit of this course, we will collect the responses
into a vectory = (y1, . . . , yn)′, and theεi into ε = (ε1, . . . , εn). Writing Jn to be
a vector of lengthn of all ones, the one-sample model can be written as

y = Jnµ + ε

We will soon be learning the linear algebraic background to interpret this equation.
The vector on the left is any arbitrary vector inn-dimensional space. On the right
we have two vectors.ε is also an arbitrary vector inn-dimensional space, while
Jnµ is a vector that isconstrainedto live in a part ofn-dimensional space. This
will be a characteristic form of (fixed-effect) linear models.

1.1.2 One way layout

Suppose we letyij be thejth observation in theith population,i = 1, . . . , p; j =
1, . . . , ni ben =

∑
ni independent observations. We then specify a mean struc-

ture:

E(yij|Group= i) = µi (1.1)

Var(yij|Group= i) = σ2

so each group has its own mean but a common variance. This model is (somewhat)
more complex because the mean now depends on the index and is therefore con-
ditional. In matrix terms, suppose thatp = 3, and writey = (y11, y12, . . . , ypnp

)′
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to be the vector of responses. Then we can write

y =






Jn1
0 0

0 Jn2
0

0 0 Jn3











µ1

µ2

µ3




+ ε (1.2)

This is a model is just like the one-sample model except that the description of the
fixed part is more complicated. The fixed part is now in a more complex space of
dimensionp rather than 1.

In such a model we may wish to address several goals:

1. Estimate the cell meansµi, and obtain estimates of uncertainty.

2. Test hypotheses such asµ1 = µ2 = . . . = µp, or µi = µj or more generally
∑

αiµi = constant, where theαi are known numbers.

3. Estimate the index of the largest of theµi. A comparative experimentis one
in which several treatments indexed here from1, . . . , p, are to be compared,
and the goal is to decide which is the best one or the best few. This leads
to many interestng questions, in particular many questionsconcerning how
to make inferences when faced with mulitple objectives (comparing many
treatments).

and so on. This model is linear because it is linear in the unknown location pa-
rametersµi.

Parameterizaton. A general form of the one-way model given by (1.2), is

y = Xβ + ε

where

X =






Jn1
0 0

0 Jn2
0

0 0 Jn3




 ; β =






µ1

µ2

µ3






This is in fact aparametricor coordinateversion of a linear model because of the
fixed choice ofX. In fact, (1.2) is just one of many possible ways of writing the
linear model for the one-way classification. IfA is anyp × p nonsingular matrix,
meaning that there is a matrixA−1 such thatAA−1 = I, we can write

y = XAA−1β + ε

= (XA)(A−1β) + ε

= X∗γ + ε
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which is a completely equivalent form of this linear model, but with parametersγ
rather thanβ. There are several different choices that are commonly usedfor A
(we setp = 3 for illustration):

1. The three parameters are the overall meanµ, α1 = µ1−µ, andα2 = µ2−µ.
This is the “effects” parameterization seen most often.

A1 =






1 1 0
1 0 1
1 −1 −1






2. This sets the parameters to beµ1, µ2−µ1 andµ3−µ1. This parameterization
is the default used by R.

A2 =






1 0 0
1 1 0
1 0 1






3. This is called the Helmert parameterization, and is the default used by S-
Plus. It is convenient for computing, but usually not convenient for inter-
pretation.

A3 =






1 1 1
1 −1 1
1 0 −2






The approach to linear models we use will try to avoid specificparameterization,
since it is not relevant to for many important topics.

1.1.3 One-way random effects

The one-way model we have just discussed was aconditional model for fixed
groups. Suppose that the groups were in fact a random sample from a population
of groups. Since all that changes from group to group is the mean, one way to
view this problem is to assume that theµi are random draws from a population,
with meanµ and varianceτ 2. The rules for iterated mean and variance can then
be applied to get the unconditional model,

E(yij = E [E(yij|Group= i)]

= E [µi]

= µ
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and

Var(yij = E [Var(yij|Group= i)] + Var [E(yij|Group= i)]

= E
[

σ2
]

+ Var [µi]

= σ2 + τ 2

Thus, the unconditional model is that E(yij) = µ but var(yij) = σ2 + τ 2. In
addition, although theyij are conditionally independent given group, they are un-
conditionally correlated, since cov(yij, yik) = τ 2. The simpler mean structure for
the random effects model is offset by a more complex variancestructure.

1.1.4 Simple linear regression

The simple linear regression model is a special case of (1.1), if we take

µi = β0 + β1xi (1.3)

and further assume that thexi are known, fixed constants. The model can be
written as

yij = β0 + β1xi + εij, i = 1, . . . , p; j = 1, . . . , ni (1.4)

One usually sees this model written as

yk = β0 + β1xk + εk, wherek = 1, . . . , n =
∑

ni (1.5)

losing the identification of observations with a population. For this model we may
wish to:

1. Estimate theβs andσ2.

2. Make tests concerning theβs, in particular ofβ1 = 0.

3. Obtain interval estimates forβ0 + β1xi. This is theprediction problem.

4. Examine the assumption that the cell meansµi are linear in thexs.

and so on. You should have all seen the simple regression model in great detail,
especially in Stat 8061 if not elsewhere, and we shall look atregression only as a
special case of the general linear model.
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Chapter 2

Linear Algebra for Linear Models

Finite dimensional linear algebra is at the foundations of linear model theory. We
study this topic only as it provides a basis for this work, notas an end in itself.
These notes are very similar to Paul Halmos’ superb undergraduate linear algebra
textbook,Finite-Dimensional Vector Spaces. The book J. Schott (1997),Matrix
Analysis for Statistics, presents a super set of the material in these notes, and is
recommended as a useful reference (but it costs more that $100).

2.1 Basic definitions

Suppose thatV = {x, y, . . .} is a set. We writex, y ∈ V .

Definition 2.1 (Vector Space)The setV is a vector spaceif all elements ofV
satisfy the following addition and scalar multiplication axioms:

Axiom 2.1 (Addition) Suppose there is a binary operator “+” that acts on ele-
ments ofV such thatx + y ∈ V , and

1. x + y = y + x (commutative)

2. x + (y + z) = (x + y) + z (associative)

3. There exists a unique vectorzero, 0 ∈ V such that0 + x = x + 0 = x for
all x ∈ V .

4. For all x ∈ V , there exists a unique vector (−x) ∈ V . such thatx+(−x) =
0.

7
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Axiom 2.2 (Scalar multiplication) Letα, β,. . . be real numbers, and letx, y, . . . ∈
V be vectors. Then:

1. αx ∈ V (αx exists and is well defined)

2. α(βx) = (αβ)x (associative law)

3. α(x + y) = αx + αy (distributive law)

4. (α + β)x = αx + βx (distributive law)

5. There exists a scalar1 such that1x = x for all x ∈ V . 1 is unique.

Remark 2.1 A vector space isclosedunder both addition and under scalar mul-
tiplication.

Thus, a setV is a vector space if and and only if for allx, y ∈ V and scalarsα, β,
we haveαx + βy ∈ V .

Several of the usual properties of vectors can be deduced from the axioms,
including:

1. 0x = 0, where0 is a scalar.

2. (−α)x = −(αx)

3. α(0) = 0, 0 ∈ V

4. αx = 0 ⇒ α = 0 or x = 0

The symbol “0” describes an element both inV and a scalar. This should cause
only the minimum of confusion since in context exactly whichmeaning for the
symbol is intended should be clear.

Example. Suppose thatx′ = (α1, . . . αn) is ann-tuple of real numbers,αj ∈
ℜ. By convention, all vectors are column vectors, so the transpose is required to
displayx in a row. This space is calledℜn, and is the basic space of interest in
linear models. Lety′ = (β1, . . . , βn) ∈ ℜn. Then scalar multiplication for any
scalarγ is defined by

γx = γ







α1
...

αn







=







γα1
...

γαn
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and addition is defined by

x + y =







α1
...

αn







+







β1
...

βn







=







α1 + β1
...

αn + βn







With these definitions,ℜn is a vector space because it satisfies all the axioms.
Consider the following five sets:

S0 = {(a, a, a)′, a ∈ ℜ}

S1 = {(a, 0, a)′, a ∈ ℜ}

S2 = {(a, b, a + b)′, (a, b) ∈ ℜ}

S3 = {(a, a, a)′, a ∈ ℜ+}

S4 = {(1, 1, 1)′ + (a, b, a + b)′, (a, b) ∈ ℜ}

The setsS0, S1 andS2 are vector spaces, butS3 andS4 are not. The setS0 was
encountered in the discussion of the one sample problem in Chapter 1.

Example. A real polynomial of degreen is defined byx =
∑n

i=0 αit
i, for

real numbers(α0, . . . , αn). The space of all such polynomials is calledPn+1. If
y =

∑n
i=0 βit

i, thenx+y =
∑n

i=0(αi +βi)t
i. One can easily show that the axioms

are satisfied, andPn+1 is a vector space.
We next turn to the question of relationships between elements of a vector

spaceV , in particular examining linear relationships.

Definition 2.2 (Linear dependence)A set of vectorsC = {x1, . . . , xn} is called
linearly dependentif there exists scalars{α1, . . . , αn} not all equal to 0 such that

n∑

i=1

αixi = 0.

If
∑

αixi = 0 ⇒ αi = 0 for all i, thenC is linearly independent.

The concept of linear dependence is fundamental to the studyof linear models.
Here are some consequences of this definition.

1. If 0 ∈ C, thenC is linearly dependent by setting all the scalars to zero
except for the scalar associated with the vector 0, which canbe arbitrary.

2. If C is linearly independent, then for anyC1 ⊂ C, C1 is linearly indepen-
dent.
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3. If C1 is linearly dependent, then isC linearly dependent?

In the vector spaceℜn, suppose thatei is the vector with a “1” for itsi-th
element, and all other elements equal to zero. Then the set{e1, . . . , en} must be a
linearly independent set. Ifx ∈ ℜn(α1, . . . , αn)′, then

x = α1x1 + · · · + αnxn

and every vector inℜn is a unique linear combination of theei, with uniqueness
following from linear independence. The set{e1, . . . , en} is called thecanonical
basisor standard basisfromℜn.

Here is a modestly more complicated example. Suppose that

S2 = {(a, b, a + b)′, a, b ∈ ℜ}

let x1 = (3, 0, 3)′ andx2 = (0, 4, 4)′, which are two vectors inS2. Consider any
other vector inS2, sayx3 = (a, b, a+b)′ = (a/3)x1+(b/4)x2, so then(x1, x2, x3)
is a linearly dependent set. All the vectors inS2 are of length three, but the linearly
independent set has only two vectors.

Now consider the setC = {x1, x2, x3} given by

x1 =






1
−1
0




 , x2 =






16
12
3




 , x3 =






0
28
3




 (2.1)

Each of thexi ∈ ℜ3 = {x = (α1, α2, α3)
′|αi ∈ ℜ}. The setC = {x1, x2, x3} is a

linearly dependent set because16x1 − x2 + x3 = 0.
SupposeY = β1x1 + β2x2 + β3x3 + ε, βi 6= 0, i = 1, 2, 3, where thexs are

given by (2.1). What is the meaning of linear dependence for this linear model?
Since, for the example given above,x2 − x3 = 16x1, or x1 = (x2 − x3)/16, by
substituting forx1 we write:

Y = β1x1 + β2x2 + β3x3 + ε

= β1

[
x2 − x3

16

]

+ β2x2 + β3x3 + ε

=

[

β1

16
+ β2

]

x2 +

[

−
β1

16
+ β3

]

x3 + ε

= γ1x2 + γ2x3 + ε

This result suggests that theγj, the parameters in the “reduced” mean function,
are uninterpretable, because the value of the parameter depends onβ1, a quantity
that cannot be estimated.
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Here is another example:

C =












1
0
0




 ,






0
1
0




 ,






0
0
1












= {e1, e2, e3}

This is thecanonical basisfor ℜ3. It is a linearly independent set.
Suppose we have an arbitrary collection,C = {x1, . . . , xn}. Then the set

{x1, x2, . . . , xn,
n∑

i=1

αixi}

is always linearly dependent.

Theorem 2.1 A collectionC = {x1, x2, . . . xn} is linearly dependent if and only
if there existsα1, . . . αn, and an indexk ≤ n such that

xk =
n∑

i6=k

αixi

Proof. Assumexk =
∑n

i6=k αixi. Then:

0 = xk + (−xk) =
n∑

i6=k

αixi + (−1)xk

=
n∑

i=1

αixi

with αk = −1, and hence thexi are linearly dependent.
Next, assume thatC is linearly dependent. Then0 =

∑n
i=1 βixi for some

{β1, . . . , βn}. Sinceβk 6= 0 for some indexk, then

0 =
n∑

i6=k

βixi + βkxk

1

βk
0 =

n∑

i6=k

βi

βk
xi + xk

xk =
n∑

i6=k

αixi, whereαi = −
βi

βk

and the theorem is proved.
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Definition 2.3 (Basis of a vector space)A collectionB of vectors inV is abasis
for V if:

1. B is linearly independent

2. For all y ∈ V , {B, y} is linearly dependent; that is, there exists{α1, . . . , αn}
such thaty =

∑n
i=1 αixi, whereB = {x1, . . . , xn}. Equivalently, then, any

y ∈ V can be written as a linear combination of the elements ofB.

A basis is a fundamental set that generatesV . If V = ℜ3, here are three of the
infinite number of possible bases:

B1 =












1
1
1




 ,






0
1
0




 ,






0
0
1












B2 =












1
1
1




 ,






1
−1
0




 ,






1
1
−2












B3 =












1
0
0




 ,






0
1
0




 ,






0
0
1












Suppose we select a fixed basis, one of the infinite number of bases. The rep-
resentation of anyy ∈ V with respect to that basis is unique. Suppose that
C = {x1, . . . , xn} is a basis, andy =

∑
αixi =

∑
βixi. Then: 0 = y − y =

∑
(αi − βi)xi =

∑
γixi ⇒ γi = 0 for all i (assuming thaty 6= 0), which is the

definition of linear independence. This suggests the following:

Definition 2.4 (Coordinates) If B is a basis forV andy =
∑

αixi, xi ∈ B, then
{α1, . . . , αn} are the coordinates ofy with respect to the basisB.

Definition 2.5 (Finite dimensional) A vector space isfinite dimensionalif there
exists a basis with a finite number of vectors.

Example. P3 is finite dimensional, since it has basisB = {1, t+1, t2 + t+1}.
If z ∈ P3 = 4t2 + 4t + 1 = −5(1) + 0(t + 1) + 4(t2 + t + 1), z has coordinates
(5, 0, 4) relative to this basis. If the basis isA = {1, t, t2}, the coordinates ofz
are(1, 4, 4).
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Many useful results in linear algebra do not involve coordinates, and these
carry over to linear models, so picking a basis may be unnecessary and in fact
may be confusing, as it almost surely is in the last example. We will attempt to
use the coordinate free approach whenever possible.

Theorem 2.2 (Span ofC) Let C be a set of vectors. Then the set of all possible
linear combinations of elements ofC is a vector space.

We call the vector space defined in the last theorem thespanor rangeof C,
R(C). SupposeV1, V2, . . . are all vector spaces such that ifxi ∈ C thenxi ∈ Vi

for all i. ThenR(C) = ∩Vi, the intersection of all vector spaces containingC.
Thus the span ofC is the “smallest” vector space that includes all the elements of
C.

Theorem 2.3 Every basis for a finite dimensional vector spaceV has the same
number of elements.

Proof. Let B1 = {x1, . . . , xn} andB2 = {y1, . . . , ym} be two bases forV . Since
B1 is a basis forV , every element ofB2 can be written as a linear combination of
the elements ofB1. Hence,y1 ∪ B1 is linearly dependent. By Theorem 2.1, there
is at least one indexk such thatxk is a linear combination of the remainingxs and
of y1. Define the setD1 = {y1} + B1 − {xk} with k chosen to be the first index
that satisfies Theorem 2.1. We show that (1) every vector inV can be written as
a linear combination of the elements inD1, and (2)D1 is a linearly independent
set. Combining these two results, it follows thatD1 is a basis forV . First,B1 is a
basis forV , so anyz ∈ V can be written as

z =
n∑

i=1

γixi =
n∑

i6=k

γixi + γk × (lin. comb.y1 and allxs exceptxk)

so any vectorz can be written as a linear combination of the elements ofD1,
which shows that the span ofD1 is V . Now suppose thatD1 were not linearly
independent. Then we must have that somexj is a linear combination of the
otherxs andy1. But y1 is a linear combination of thexs, and hencexj must be a
linear combination of thexs alone. But thexs are linearly independent, giving a
contradiction. Hence,D1 is a basis forV .

We continue in this manner until all theys are added to be basis one at a time,
giving a sequenceD1, D2, . . . , Dm. We must haven ≥ m or else the last few
ys would be linear combinations of the first few. Adding thexs to theys shows
m ≥ n, proving the result.
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Definition 2.6 (Dimension) The number of elements in a basisB of a vector
spaceV is called thedimensionof V , writtendim(V ).

Example. The setS2 is a vector space of dimension two. One possible basis
for this space is{(1, 0, 1)′, (0, 1, 1)′}. Is {e1, e2} another basis for this space?
Why or why not?

The following are immediate consequences of this definitionand the preceding
theorem:

1. ℜn is a vector space of dimensionn.

2. Any n + 1 vectors inℜn are linearly dependent.

3. Any set ofn linearly independent vectors inℜn forms a basis forℜn.

Theorem 2.4 (Completion of a basis)If {x1, . . . , xk} is a linearly independent
set of vectors inV (dim(V ) = n, k < n), there exists elementsxk+1, . . . , xn such
that{x1, . . . , xn} is a basis forV . The setxk+1, . . . , xn is not unique.

Proof. Homework.

Definition 2.7 (Coordinates) Given a basisB = {x1, . . . , xn} for V , anyy ∈ V
can be written as

y =
∑

αixi

uniquely. The vector(α1, . . . , αn)′ ∈ ℜn is called thecoordinates ofy relative to
the basisB.

Definition 2.8 (Isomorphism) An isomorphismbetween two vector spacesU and
V is a1 ∼ 1 map that preserves linear relations: forx, x1, x2 ∈ V andy, y1, y2 ∈
U , we haveT (x) = y and

T (α1x1 + α2x2) = α1T (x1) + α2T (x2)

= α1y1 + α2y2

The following results follow from the definition of isomorphic spaces.

1. T (0) = 0.

2. There is a functionT−1 : U → V such thatT−1(T (x)) = x, for all x ∈ V .
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3. T−1(β1y1 + β2y2) = β1T
−1(x1) + β2T

−1(x2)

4. {x1, . . . , xm} are linearly independent if and only if{T (x1), . . . ,
T (xm)} are linearly independent.

5. Two isomorphic vector spaces have the same dimension.

For example, consider the spaceS2 = {(a, b, a + b)′, (a, b) ∈ ℜ}, which can
be easily shown to be a vector space of dimension two. Consider the map from
S2 → ℜ2 defined byT (x) = T ((a, b, a + b)′) = (a, b)′. One can show that the
condition of Definition 2.8 is satisfied, and soS2 is isomorphic toℜ2. This result
generalizes as follows:

Theorem 2.5 Any realn-dimensional vector space is isomorphic toℜn.

Proof. Let V be a realn-dimensional vector space. To establish the theorem, we
need to construct an isomorphism betweenV andℜn. Let B = {x1, . . . , xn} be a
basis forV . Then for ally ∈ V there exists unique real coordinates{αy

1, . . . , α
y
n}

such that

y =
n∑

i=1

αy
i xi

Now, define

T (y) =







αy
1
...

αy
n







∈ ℜn

and

T (β1y1 + β2y2) = T [β1

∑

αy1

i xi + β2

∑

αy2

i xi]

= T [
∑

(β1α
y1

i + β2α
y2

i )xi]

=







β1α
y1

1 + β2α
y2

1
...

β1α
y1

n + β2α
y2

n







= β1T (y1) + β2T (y2)

showing that Definition 2.8 holds. The 1∼ 1 property follows from the uniqueness
of theαs given the basis.

Example. β0 + β1t + β2t
2 ∈ P2 is clearer than the equivalent expression of a

quadratic polynomial that would be the expression of its coordinates with respect
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to a fixed basis. As examples, this polynomial is given by






β0

β1

β2




 with respect to

the basis (1, t, t2), or






β0 − β1 + 2β2

β1 − β2

β2




with respect to the basis1, t+1, t2+t−1,

or . . . We will use bases when convenient, but generally not depend on them.

2.2 Linear Subspaces

Definition 2.9 (Subspace)A subsetM ⊂ V is a linear subspaceif for all scalars
α, β, and allx, y ∈ M , thenαx + βy ∈ M .

Equivalently,M is a linear subspace if for allx, y ∈ M , and all scalarsα, x+ y ∈
M andαx ∈ M . ThusM is a subspace if and only if it is closed under vector
addition and multiplication.

Example. ℜn . Choose any vectorx0 6= 0, and considerM = {αx0, α ∈ ℜ}.
ThenM = R(x0) is a vector space of dimension one. This is a line.

Example. Choose anyx0, x1 ∈ ℜn that are linearly independent vectors, and
considerM = {αx0 + βx1 | α, β ∈ ℜ}. ThenM is a vector space. What do you
suppose its dimension is? This is a plane.

Example. The setS2 = {(a, b, a + b)′, (a, b) ∈ ℜ2} is a subspace ofℜ3, with
basis(a, a, 0)′, (0, b, b)′ for any non-zeroa andb.

Example. LetC be any set of vectors inV . ThenR(C) = {x|x =
∑

αici, ci ∈
C, αi scalars} is a vector space contained inV or V itself. R(C) is a linear sub-
space of dimension≤ n. R(C) is called ahyperplaneif it has dimension greater
than two.

Theorem 2.6 If M is a linear subspace, then0 ∈ M .

Proof. x ∈ M ⇒ −x ∈ M ⇒ x − x ∈ M ⇒ 0 ∈ M . In ℜn, for example, the
set of all vector subspaces is the set of all lines, planes andhyperplanes to pass
through the origin.

Sometimes in statistical applications it is useful to consider a linear subspace
that is shifted or translated from the origin. This can happen, for example, in
models that include an intercept. It is therefore helpful tohave the following
definition of a space that is displaced from the origin.
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Definition 2.10 (Flat) SupposeM ⊂ V is a linear subspace andy0 ∈ V . Then a
flat consists of{x + y0|x ∈ M}. We will writey0 + M whereM is a subspace to
indicate a flat.

By consideringtranslations, flats are equivalent to vector spaces. IfY is a
random variable whose domain is the flaty0 + M , then, ify0 is fixed,Y − y0 has
domainM .

ExampleSet setS4 = {(1, 1, 1)′ + z, z ∈ S2} is a flat because0 /∈ S4.
Example. In ℜ2, consider

M =

{

α

(

1
2

)

|α ∈ ℜ

}

andy0 =

(

2
2

)

Then the flaty0 + M is given by the set

y0 + M =

{(

2
2

)

+ α

(

1
2

)

|α ∈ ℜ

}

which is just a straight line that does not pass through the origin, but rather through
the point(2, 2). The choice ofy0 is not unique and it can be any pointy = y0+yα,
whereyα = α(1, 2)′. For example, ifα = −2, theny = (0,−2)′ and ifα = +1,
theny = (3, 4)′, and so on. For anyy0 not of this form, we simply get a different
flat. This is summarized in the next remark.

Theorem 2.7 The two spaces

F1 = {z|z = y0 + x, y0 ∈ V, x ∈ M ⊂ V }

F2 = {z|z = y1 + x, y1 ∈ F1, x ∈ M ⊂ V }

are the same subspace, so the representation of the flat is notunique.

Definition 2.11 (Sum and intersection of subspaces)Let H, K be two linear
subspaces. Then:

H + K = {x + y|x ∈ H, y ∈ K}

is thesumof H andK. The intersection ofH andK is

H ∩ K = {x|x ∈ Handx ∈ K}

Theorem 2.8 BothH + K andH ∩ K are linear subspaces.
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Proof. Homework

Definition 2.12 (Disjoint subspaces)Two subspaces are disjoint ifH ∩ K =
{0}, the null vector.

Theorem 2.9 If H∩K = {0}, andz ∈ H+K, then the decompositionz = x+y
with x ∈ H andy ∈ K is unique.

Proof. Supposez = x + y andz = x′ + y′. Then,x − x′ ∈ H andy − y′ ∈ K.
We must havex + y = x′ + y′ or x − x′ = y − y′, which in turn requires that
x−x′ = y−y′ = 0, since 0 is the only vector common toH andK. Thus,x = x′

andy = y′.

Theorem 2.10 If H ∩ K = {0}, thendim(H + K) = dim(H) + dim(K). In
general,dim(H + K) = dim(H) + dim(K) − dim(H ∩ K).

Proof. Homework.

Definition 2.13 (Complement of a space)If M and M c are disjoint subspaces
of V andV = M + M c, thenM c is called acomplementof M .

Remark 2.2 The complement is not unique. Inℜ2, a subspaceM of dimension
1 consists of a line through the origin. A complement ofM is given by any other
line M c 6= αM through the origin, because linear combinations of any two such
lines spanℜ2.

2.3 Linear Transformations

Definition 2.14 A linear transformationA on a vector spaceV is a function map-
pingV → V1 ⊆ V such that

A(αx + βy) = αA(x) + βA(y)

for all α, β ∈ ℜ and allx, y ∈ V .

Remark 2.3 For 0 ∈ V , A(0) = 0 for any linear transformationA.

Examples. If for all x ∈ V ,

1. A(x) = 0, thenA is called thenull transformation, just written 0.



2.3. LINEAR TRANSFORMATIONS 19

2. A(x) = x, thenA is the identity transformation. This transformation is
generally calledI.

3. A(x) = −x, thenA is areflection through origin.

Definition 2.15 (Sum of linear transformations) The sum of two linear trans-
formations is defined by:

(A + B)(x) = A(x) + B(x).

Remark 2.4 One can easily show that the set of all linear transformations A :
V → V is itself a vector spaceL(V ).

Definition 2.16 (Product of linear transformations) The product of two linear
transformationsA and B is defined by:(AB)(x) = A(B(x)). Order matters:
generally,AB 6= BA.

Here are some easily derived properties of the product:

1. A0 = 0A = 0 (here0 is the null transformation)

2. AI = IA = A

3. A(B + C) = AB + AC

4. A(BC) = (AB)C

We will write AA = A2, and

AA · · ·A
︸ ︷︷ ︸

m

= Am.

Definition 2.17 (Range of a linear transformation) Therangeof a linear trans-
formation is defined as:

R(A) = {y|y = Ax, x ∈ V }

R(A) is a linear subspace ofV since ify1 ∈ R(A) andy2 ∈ R(A), then there
existsx1 such thaty1 = A(x1) andx2 such thaty2 = A(x2) andA(αx1 + βx2) =
αA(x1) + βA(x2) = αy1 + βy2 ∈ R(A).

Definition 2.18 (Rank of a transformation) The rank of a linear transformation
A = ρ(A) is the dimension ofR(A).
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Definition 2.19 (Null space)The null space of a linear transformationA is

N(A) = {x|x ∈ V, A(x) = 0}

that is, the set of pointsx that mapsA to zero.

Theorem 2.11 N(A) is a linear subspace ofV .

Proof. Consider anyx, y ∈ N(A). ThenA(αx + βy) = αA(x) + βA(y) = 0, so
αx + βy ∈ N(A). Since N(A) is closed under addition and scalar multiplication,
it is a linear subspace.

Definition 2.20 The dimension of N(A) is calledν(A).

Example. In ℜ3, suppose that

x =






x1

x2

x3




 ,

and define

A(x) =






0
x2

x3






so A(x) preserves the last two elements of any vector inℜ3, and sets the first
element to zero. Here,R(A) = {x| first coordinate ofx = 0, other coordinates
arbitrary,x ∈ ℜ3}, and thusρ(A) = 2. Similarly, N(A) = {x| first coordinate ofx
is arbitrary, other coordinates are0}, which is a subspace of dimensionν(A) = 1.

Theorem 2.12

ρ(A) + ν(A) = n = dim(V ).

Proof. Homework.
Example. SupposeV = ℜ3, and

A






x1

x2

x3




 =






x1 + x2

x2 + x3

x1 + 2x2 + x3




 = (x1 + x2)






1
0
1




+ (x2 + x3)






0
1
1




 (2.2)
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The transformationA maps fromℜ3 to the subspaceR(A) = S2. Then N(A) is
the set

(x1 + x2)






1
0
1




+ (x2 + x3)






0
1
1




 =






0
0
0






or points of the form

α






1
1
−1




 ∈ N(A)

which is seen to be a subspace of dimension one.
Solving linear equations of the formA(x) = y for x is a common problem

in linear models. The question of whether or not these equations have a unique
solution depends on the null space ofA.

Theorem 2.13 The equationAx = y has a solutionxy for eachy ∈ V if and only
if ν(A) = 0, or equivalentlyA(x) = 0 ⇒ x = 0.

Proof. SupposeA(x) = 0 ⇒ x = 0, and thenν(A) = 0. Let {x1, . . . , xn} be a
basis forV . Then{Ax1, . . . , Axn} aren vectors inV . These vectors are linearly
independent (if

∑
αiAxi = 0, thenA(

∑
αixi) = 0 and

∑
αixi = 0, which is a

contradiction), and, since there aren of them, they form a basis forV . Hence,
anyy ∈ V can be written as a linear combination of the columns ofAx, and the
coordinates ofy with respect to this basis gives the requiredx.

Suppose thatAx = y has a solution for ally ∈ V . Find n vectors inV ,
{y1, . . . , yn} that are a basis forV and the corresponding vectors{x1, . . . , xn}.
Thexs must also be linearly independent because if

∑
λixi = 0 then

A(
∑

λixi) =
∑

λiA(xi)

=
∑

λiyi

= 0

which contradicts the fact that theyi are linearly independent. ThenA(x) = 0
only if x = 0 by linear independence.

Remark 2.5 If Ax = y has a solution for eachy ∈ V then the solution is unique,
since ify = Ax1 = Ax2 thenA(x1 − x2) = 0, and this is so only ifx1 − x2 = 0
or x1 = x2.



22 CHAPTER 2. LINEAR ALGEBRA FOR LINEAR MODELS

Example.The linear transformation defined by (2.2) has null space

N(A) = R











1
1
−1











and hence the equationsA(x) = y will not have a unique solution. Ifx0 is a
solution to these equations, then so is any vector of the formx0 + α(1,−1, 1)′.
This set of solutions forms a flat.

Definition 2.21 (Inverse and Nonsingular)WhenAx = y has a unique solution
for all y ∈ V then theinverse, A−1 is defined byA−1y = x. In this case,A is said
to benonsingular, otherwiseA is singular.

Theorem 2.14 If A is nonsingular then

1. ρ(A) = n andν(A) = 0.

2. A−1A = AA−1 = I.

3. If A andB are nonsingular, thenAB is nonsingular and(AB)−1 = B−1A−1.

Theorem 2.15 If {x1, . . . , xn} is a basis forV and{y1, . . . , yn} is also a basis
for V then there exists a unique nonsingular linear transformation A such that
Axi = yi.

Proof. Homework.
The importance of this proposition in linear models is that one can work with

any basis, and transform at the end to any other basis. Again,coordinate systems
become irrelevant.

Theorem 2.16 If B is nonsingular, thenρ(AB) = ρ(BA) = ρ(A).

Proof. Homework.

Theorem 2.17 For any linear transformationsA andB:

1. ρ(AB) ≤ min(ρ(A), ρ(B))

2. ρ(A + B) ≤ ρ(A) + ρ(B)

Proof. Homework.
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2.4 Projections

Projections are special linear transformations that are extremely useful in linear
models. Suppose thatV is ann-dimensional vector space, andM andN are
subspaces ofV such thatM + N = {z = x + y|x ∈ M, y =∈ N} = V and
M ∩ N = {z|z ∈ M, z ∈ N} = {0}. (Thus,N = M c.)

Definition 2.22 For all z ∈ V , consider the unique decompositionz = x+y, x ∈
M, y ∈ N . The transformationPM |Nz = x is called theprojection ofz on M
alongN . Similarly, the linear transformationPN |Mz = y is the projection ofz on
N alongM .

Theorem 2.18 . PN |M = I − PM |N .

Because of the above relationship between these two projections, we will define
further notation:QM |N = I − PN |M .

Theorem 2.19 A linear transformationT on V is a projection for someM and
N if and only ifT 2z = Tz for all z ∈ V .

Proof. If T is a projection, then forz = x + y, x ∈ M, y ∈ N,

T 2z = TTz = T (Tz) = Tx = x = Tz,

sincex has no component inN .
SupposeT 2z = Tz, for all z ∈ V . Let N = N(T ) = {z|Tz = 0}, the null

space ofT , andM = {z|Tz = z}. We will showM +N = V andM ∩N = {0},
and henceT = PM |N .

1. If z ∈ M , thenTz = z. Also, if z ∈ N , thenTz = 0, and if z ∈
M ∩ N, Tz = 0, so thatM ∩ N = {0}.

2. To showM + N = V consider anyz ∈ V . Thenz = Tz + (I − T )z. Let
x = Tz, y = (I − T )z andz = x + y. Then

Tx = T (Tz) = T 2z = Tz = x

which implies thatx ∈ M . Also,

Ty = T (I − T )z = Tz − T 2z = 0

so thaty ∈ N . ThusV = M + N andT is precisely the projection onM
alongN . This completes the proof.
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Definition 2.23 (Idempotent) A linear transformationT is called idempotentif
T 2 = T .

Consequences of the previous theorems. Let P1 be the projection ofM1 along
N1, and letP2 be the projection ofM2 alongN2. Then:

1. P1 + P2 is a projection if and only ifP1P2 = P2P1 = 0. This condition is
equivalent to requiring thatM1 ∩ M2 = {0}.

To prove this result, multiply to obtain

(P1 + P2)
2 = P 2

1 + P 2
2 + P1P2 + P2P1

= P 2
1 + P 2

2 + P1P2 + P2P1

so we must have that
P1P2 + P2P1 = 0

Multiply on the left and right byP1, gives the two equations

P1P2 + P1P2P1 = 0

P1P2P1 + P2P1 = 0

Subtracting these two equations givesP1P2 − P2P1 = 0, and thusP1P2 =
P2P1 = 0.

2. P1 − P2 is a projection if and only ifP1P2 = P2P1 = P2. In this case, we
must haveM2 ⊂ M1.

3. IfP1P2 = P2P1, thenP1P2 is a projection.

2.5 Inner Products

Let V be a finite dimensional vector space.

Definition 2.24 (Inner Product) A real inner product onV is a function defined
onV × V → ℜ, written(x, y), such that, for allx, y ∈ V ,

1. (x, y) = (y, x) (symmetry)

2. (α1x1 + α2x2, y) = α1(x1, y) + α2(x2, y) (linearity)
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3. For all x 6= 0, (x, x) > 0 (nonnegative)

Example. Supposex has coordinatesγ = (γ1, . . . , γn)
′ ∈ ℜn andy has coor-

dinatesλ = (λ1, . . . , λn)
′ ∈ ℜn, both relative to some fixed basis{x1, . . . , xn}.

The usual inner product is

(x, y) =
n∑

i=1

γiλi = γ′λ (2.3)

If V = ℜn, and the basis chosen is the canonical basis{e1, . . . , en}, thenγ = x
andλ = y, and (2.3) corresponds to the usual Euclidean inner product. Another
inner product is

(x, y)A =
n∑

i=1

n∑

j=1

aijγiλj (2.4)

with the fixed constantsaij selected so thataij = aji and
∑∑

aijγiγj > 0.

Definition 2.25 (Real inner product space)A real inner product space(V, (·, ·))
is a pair such thatV is a real vector space and(·, ·) is a real inner product defined
onV .

Theorem 2.20 (Cauchy-Schwartz inequality)For any inner product

| (x, y) | ≤ [(x, x)(y, y)]1/2

Equality holds if and only ifx = cy for somec ∈ ℜ.

Proof. If (x, x) = 0 or (y, y) = 0, the result is immediate, since(x, 0) = 0, for
all x ∈ V , so we can assume(x, x) > 0 and(y, y) > 0. Let w = x/(x, x)1/2 and
z = y/(y, y)1/2. We show| (w, z) | ≤ 1:

0 ≤ (w − z, w − z) = (w, w) − 2(w, z) + (z, z) = 2 − 2(w, z)

so that
(w, z) ≤ 1

Similarly,
0 ≤ (w + z, w + z) = 2 + 2(w, z),

so that(w, z) ≥ −1. Combining these gives|(w, z)| ≤ 1 as required, To prove
the second part, we will have equality if(w−z, w−z) = 0 or (w+z, w+z) = 0.
This will hold only if w = ±z, or x = ±((x, x)1/2/(y, y)1/2) × y, so equality
holds only ifx = cy.
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Definition 2.26 (Cosines)Thecosine functionis a function fromV × V → ℜ
defined by:

cos(x, y) =
(x, y)

[(x, x)(y, y)]1/2

provided‖ x ‖ 6= 0 and‖ y ‖ 6= 0.

The Cauchy-Schwartz inequality says| cos(x, y) | ≤ 1. The cosine function
is invariant under multiplication ofx andy by positive scalars, as one might hope.

Example. In ℜ2 with the usual inner product,

cos(θ) =
x1y1 + x2y2

√

(x2
1 + x2

2)(y
2
1 + y2

2)

Definition 2.27 (Norm) A function‖ x ‖ is a norm on a vector spaceV if, for
anyx, y ∈ V ,

1. ‖ x ‖ ≥ 0.

2. ‖ x ‖ = 0 if and only ifx = 0.

3. ‖ cx ‖ = |c| × ‖ x ‖ for anyc ∈ ℜ.

4. ‖ x + y ‖ ≤ ‖ x ‖ + ‖ y ‖

Definition 2.28 (Distance)A functionδ(x, y) is a distanceon a vector spaceV
if, for anyx, y ∈ V ,

1. δ(x, y) ≥ 0.

2. δ(x, y) = 0 if and only ifx = y.

3. δ(x, y) = δ(y, x), so distance is symmetric.

4. δ(x, z) ≤ δ(x, y) + δ(y, z), the triangle inequality.

There are many choices for norms and distance functions. If the coordinates
of x relative to a given basis areγ = (γ1, . . . , γn)′, a general class of norms is
given by

‖ x ‖p =
{∑

|γi|
p
}1/p
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The most familiar member of this family is thetwo-norm, also called the Eu-
clidean norm,

‖ x ‖2 = (x, x)1/2 = γ′γ

Other important members of this class include thesum norm,

‖ x ‖1 =
∑

|γi|

and the infinity norm
‖ x ‖∞ = max

i
|γi|

All these norms satisfy the definition.

2.6 Orthogonality

Let (V, (·, ·)) be an inner product space.

Definition 2.29 Vectorsx, y ∈ (V, (·, ·)) are orthogonalif (x, y) = 0. We will
write this asx ⊥ y.

Example. ℜn, usual inner product. Ifx =







γ1
...

γn







, y =







η1
...

ηn







, thenx ⊥ y

if
∑

γiηi = 0, or equivalently ifcos(x, y) = 0 (the angle betweenx andy is π/2).

Example. ℜn. If x =







γ1
...

γn







, y =







η1
...

ηn







, but the inner product is given

by (2.4), thenx ⊥ y if (x, Ay) =
∑∑

aijγiηj = 0. In the usual Euclidean sense,
orthogonality does not imply perpendicular (angle= π/2) relative to(·, ·).

Definition 2.30 (Orthogonal vectors) The set of vectors{x1, . . . , xm} is called
orthogonal if (xi, xj) = 0, i 6= j. The set is calledorthonormalif in addition
(xi, xi) = ‖ x ‖2 = 1, i = 1, ..., m.

Definition 2.31 (Orthogonal Spaces)SubsetsS1 ⊂ V andS2 ⊂ V are orthog-
onal, S1 ⊥ S2 if for all x ∈ S1, y ∈ S2, x ⊥ y. If S1 ⊥ S2, then the linear
subspaces spanned byS1 andS2 are orthogonal.
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Definition 2.32 (Orthogonal flats) Two flats are orthogonal if their correspond-
ing linear subspaces are orthogonal:F1 = x1 + M1; F2 = x2 + M2, thenM1 ⊥
M2 ⇒ F1 ⊥ F2.

Definition 2.33 (Orthogonal basis)A basis forV is called anorthogonal basis
if the basis set is orthogonal. The basis isorthonormalor onbif all elements of an
orthogonal basis have unit length.

Definition 2.34 (Orthogonal complement) If C is a linear subspace inV , the
orthogonal complementof C, writtenC⊥ (and readC perp), is the set of all vec-
tors inV that are orthogonal to all vectors inC.

We have previously defined the complementCc of C to be any subspace such
that the direct sumC + Cc = V . The spaceC⊥ is a particularCc with the
additional property.

Example. ℜ2 with the usual inner product. If C is a line through the origin,
C⊥ is a perpendicular line through the origin. One can verify that C⊥ is a linear
subspace(C⊥)⊥ = C.

Definition 2.35 SupposeC ⊂ D ⊂ V , with an inner product(·, ·). Then we
define the orthogonal complement ofC relative toD as:

C⊥(D) = {y|y ∈ D and(x, y) = 0, for all x ∈ C}

Theorem 2.21 Every linear subspace has an orthonormal basis.

Proof. Many of the important results in linear models are vastly simplified by
using an orthonormal basis. The proof of this theorem is constructive: we actually
find an orthonormal basis from any arbitrary basis{x1, . . . , xn}.

Gram Schmidt Orthogonalization. We begin with any{x1, . . . , xn} for the
subspaceM . We will construct an orthonormal basis{y1, . . . , yn} with the addi-
tional useful property thatR({x1, . . . , xk}) = R({y1, . . . , yk}), k = 1, ..n.

1. Lety1 = x1.

2. We want to findy2, and linear combination ofy1 andx2 such that:(y1, y2) =
0 andR(x1, x2) = R(y1, y2). Set

y2 = x2 + α1y1
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so that(y1, y2) = (y1, x2 + α1y1) = (y1, x2) + α(y1, y1) = 0. Solving forα
gives:

α1 = −
(y1, x2)

‖ y1 ‖
2

and thus

y2 = x2 −
(y1, x2)

‖ y1 ‖
2 y1

The vectorsy1 andy2 span the same space asR(x1, x2) because they are
not collinear and they are just linear combinations ofx1 andx2, so they are
an orthogonal basis for this space.

3. Continuing with this process, we next findy3 such that:

y3 6= 0

(y1, y3) = (y2, y3) = 0

R(y1, y2, y3) = R(x1, x2, x3)

The reasonable choice is:

y3 = x3 + α1y1 + α2y2

so that

0 = (y1, y3)

= (y1, x3) + α1(y1, y1) + α2(y1, y2)

= (y1, x3) + α1(y1, y1) + 0

soα1 = −(x3, y1)/‖ y1 ‖
2 . By a similar argument,α2 = −(x3, y2)/‖ y2 ‖

2.
For the general case, take

yk = xk −
k−1∑

i=1

(xk, yi)

‖ yi ‖
2 yi.

This yields an orthogonal basis that spans the same space as{x1, . . . , xn}.
If an orthonormal basis is wanted, simply normalize theyi: zi = yi/‖ yi ‖.
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This is the simplest algorithm, but it is numerically deficient, especially if
some of thexs are of vastly different lengths, or if any of the cosines between the
xs are particularly small. This can lead to cancellation of all significant digits in a
computed result. There are many other orthogonalization algorithms.

Modified Gram-Schimdt. A more stable approach to getting an orthonormal
basis does the computations in a different order.

1. Start with any basis, say{x(0)
1 , . . . , x(0)

n }.

2. Lety1 = x
(0)
1 /‖ x

(0)
1 ‖, soy1 has unit length. Renormalize and orthogonal-

ize toy1 the remaining{x(1)
2 , ..., x(1)

n } via

x
(1)
i = x

(0)
i − (x

(0)
i , y1)y1, i = 2, . . . , n

3. Lety2 = x
(1)
2 /‖ x

(1)
2 ‖, soy2 has unit length.

4. Renormalize and orthogonalize toy1 the remaining{x(2)
3 , . . . , x(2)

n } via

x
(2)
i = x

(1)
i − (x

(1)
i , y2)y2, i = 3, . . . , n

and continue in the same manner.

The modified Gram Schmidt has the advantage of being computationally more
stable, since it renormalizes at each step. Of course there are many other methods
of getting an orthonormal basis, particularly theQR method we will learn shortly.

2.6.1 Coordinates with respect to an Orthonormal Basis

. Suppose we have an orthonormal basis{x1, . . . , xn}. What are the coordinates
of anyy ∈ V with respect to this basis? We havey =

∑
λixi. How do we find

theλi? We can compute the inner product(y, xj) = (
∑

λixi, xj) = λj , so we can
recover theλi just be computing inner products. Hence,

y =
∑

(y, xi)xi. (2.5)

Also,‖ y ‖2 = ‖
∑

λixi ‖
2 =

∑∑
λiλj(xi, xj) =

∑
λ2

i so the norm-squared of a
vector is the sum of the squared coefficients with respect to an orthonormal basis.
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2.6.2 Orthogonal Projections

For any subspaceM ∈ V , there are many projections, one for each choice of
N such thatM + N = V . By requiring thatM andN be orthogonal we will
end up with a unique orthogonal projection with many useful and elegant geomet-
ric and statistical properties. Since orthogonality depends on the inner product,
orthogonal projections will be unique only up to choice of the inner product.

Recall that forM ∈ V , where{V, (·, ·)}, is a real inner product space, we
defined the orthogonal complement as

M⊥ = {x|(x, y) = 0, y ∈ M, x ∈ V }

soM⊥ is the set of all vectors inV that are orthogonal to all vectors inM . Suppose
dim(M) = m, dim(V ) = n.

Theorem 2.22

M ∩ M⊥ = {0}.

Proof. The only vector that satisfies(x, x) = 0 is x = 0, and this is the only vector
in common to these sets.

Theorem 2.23

M + M⊥ = V and (M⊥)⊥ = M.

Proof. Let {x1, . . . , xm} be a basis forM , and extend it to{x1, . . . , xn} for
V . By the Gram-Schmidt method we can without loss of generality assume that
{x1, . . . , xm} is an orthonormal basis forM and{x1, . . . , xn} is an orthonormal
basis forV . Thus,xm+1, . . . , xn ∈ M⊥ by construction. They are linearly inde-
pendent, sodim(M⊥) ≥ n − m. But dim(M + M⊥) ≤ n sinceM + M⊥ ⊂ V
andM ∩M⊥ = {0}. Thusdim(M)+dim(M⊥) ≤ n anddim(M⊥) ≤ n−m and
thereforedim(M⊥) = n − m. The completion of thex-basis is an orthonormal
basis forM⊥ andV = M + M⊥ .

The proof of(M⊥)⊥ = M starts with the orthonormal basis forM⊥ and
extends it toV in the same way.

Definition 2.36 The projection onM alongM⊥ is called theorthogonal projec-
tion relative to (·, ·). We will usually writePM |M⊥ asPM andPM⊥|M asQM .
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Given an orthonormal basis, evaluation of an orthogonal projection is easy.
SupposeM is a linear subspace,dim(M) = m. We want to find a specific repre-
sentation forPM with the inner product(·, ·). Find an orthonormal basis forM ,
{x1, . . . , xn} which we know can be constructed from any basis. Then anyz ∈ V
can be written asz =

∑n
i=1 λixi, and so

z =
n∑

i=1

λixi

=
m∑

i=1

λixi +
n∑

i=m+1

λixi

= x + y

= PMz + QMz

In addition,

PMz =
m∑

i=1

(z, xi)xi =
m∑

i=1

λixi

‖ PMz ‖2 =
m∑

i=1

(z, xi)
2 =

m∑

i=1

λ2
i

QMz =
n∑

i=m+1

(z, xi)xi =
n∑

i=m+1

λixi = z − PMz

= Iz − PMz = (I − PM)z

‖ QMz ‖2 =
n∑

i=m+1

(z, xi)
2 =

n∑

i=m+1

λ2
i = ‖ z ‖2 − ‖ PMz ‖2

By constructionx = PMz ∈ M andy = QMz ∈ M⊥, and this decomposition of
z is unique. We don’t actually need to have a basis forM⊥, as we can computey
from y = z − x, andIz = PMz + QMz givesQMz = I − PMz.

Finding the closest vector in a subspace.Considerz ∈ V, M ⊂ V . We know
that there is a unique decompositionz = x + y, x ∈ M, y ∈ M⊥. What is the
vectorw ∈ M thatminimizes‖ z − w ‖2 (as usual, relative to (·, ·))? Is it unique?
Now

‖ z − w ‖2 = ‖ x + y − w ‖2

= ‖ x − w + y ‖2

= ‖ x − w ‖2 + ‖ y ‖2 + 2(x − w, y)
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but bothx andw ∈ M andy ∈ M⊥ , and thus(x − w, y) = (x, y) + (w, y) =
0 + 0 = 0, which means that

‖ z − w ‖2 = ‖ x − w ‖2 + ‖ y ‖2

To minimize this, only the‖ x − w ‖ term matters, since we are free to choose
anyw ∈ M andx ∈ M , simply setw = x. The minimum value of the norm is
just‖ y ‖2.

Write x = PMz andy = QMz. So, relative to the inner product(·, ·), the
closest point inM to z is the projection ofz onto M alongM⊥, PMz, and its
distance fromM is ‖ QMz ‖.

Also, the above construction shows that

‖ z ‖2 = ‖ PMz ‖2 + ‖ QMz ‖2.

These results are intimately related to linear models, as can be seen from the
following picture. In the linear model problem, we may wish to chooseµ̂ ∈
R(X) = M so that‖ y − µ̂ ‖2 is minimized. For a given inner product, we know
the answer iŝµ = PMY , and the minimum value of‖ y − µ̂ ‖2 = ‖ QMY ‖2. Of
course, the answer depends on the inner product.

2.7 More on Transformations and Projections

In this section we return to the discussion of linear transformations.

Definition 2.37 The transpose ofA, denoted asA′ with respect to the inner prod-
uct (·, ·) is defined by the following identity inx andy:

(Ax, y) = (x, A′y), for all x, y ∈ V.

From the definition,(A′)′ = A.

Theorem 2.24 A′ is a linear transformation onV .

To prove this we need the following theorem.

Theorem 2.25 For A and B linear transformations on{V, (·, ·)}, if (x, Ay) =
(x, By), for all x, y ∈ V, thenA = B.

Proof. Homework.
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Definition 2.38 A linear transformation issymmetricif for all x, y ∈ V , (x, Ay) =
(Ax, y). We write this asA = A′. The notion of symmetry depends on the inner
product(·, ·).

Definition 2.39 A symmetric linear transformation ispositive definiteif for all
x 6= 0 ∈ V, (x, Ax) > 0, and ispositive semi-definiteif (x, Ax) ≥ 0 for all x 6=
0 ∈ V .

Definition 2.40 A symmetric linear transformation isnonsingularif Ax = y has
a solution for eachy ∈ V or, equivalently,Ax = 0 ⇒ x = 0.

Theorem 2.26 If A is symmetric and positive definite, thenA is nonsingular.

Proof We need to show that forA positive definite,Ax = 0 ⇒ x = 0. Now by
the Schwartz inequality

| (x, Ax) | ≤ ‖ x ‖‖ Ax ‖

Suppose‖ Ax ‖ = 0 for x 6= 0. Then for thisx, | (x, Ax) | = (x, Ax) = 0
and thusA is not positive definite. By contradiction, then, no suchx exists. We
here therefore justified in using the two different terms, nonsingular and positive
definite as synonyms.

Thus far, all results have been stated for a fixed inner product. One is then
led to ask how results change when the inner product changes,or if there is a
relationship between results with different inner product. The connection between
inner products is provided by the next theorem.

Theorem 2.27 If A is positive definite symmetric with respect to(·, ·), then((x, y)) =
(Ax, y) is also an inner product onV . Thus one can generate a different inner
product for every symmetric positive definite linear transformationA.

Proof. We need to verify the definition of an inner product.

1. ((x, y)) = (Ax, y) = (x, Ay) (symmetry ofA)

2. ((α1x1 + α2x2, y)) = (α1Ax1 + α2Ax2, y) = α1((x, y)) + α2((x2, y))

3. ((x, x)) = (Ax, y) > 0 if x 6= 0 sinceA is positive definite.

We can now apply these ideas to characterize orthogonal projections.



2.7. MORE ON TRANSFORMATIONS AND PROJECTIONS 35

Theorem 2.28 P , a linear transformation on{V, (·, ·)} is anorthogonal projec-
tion if and only ifP = P 2 = P ′.

Before beginning the proof, we recall thatP is a projection ifP = P 2, so it is the
final imposition of symmetry that makesP an orthogonal projection. Since the
notion of symmetry depends on the inner product, so does the notion of orthogonal
projection.

Proof

1. Suppose the linear transformationP is an orthogonal projection ontoM ⊂
V . Considerz ∈ V, z = x + y, x ∈ M, y ∈ M⊥, so thatPz = x. Now for
anyw ∈ V , we will have that((I−P )w, Pz) = 0 because(I−P )w ∈ M⊥

andPz ∈ M . We can therefore write:

(w, Pz) = (Pw + (I − P )w, Pz)

= (Pw, Pz) + ((I − P )w, Pz)

= (Pw, Pz)

= (Pw, Pz) + (Pw, (I − P )z)

= (Pw, Pz + (I − P )z)

= (Pw, z)

and thusP = P ′. P = P 2 becauseP is a projection.

2. Now supposeP = P 2 = P ′. P is thus a projection by idempotency, and
it projects onR(P ) along N(P ). An orthogonal projection requires that
N(P ) = R(P )⊥, so we must show that

[R(P )]⊥ = N(P )

First, takex ∈ R(P ) andy ∈ N(P ), then sinceP = P 2, Px = x andPy =
0, and

(x, y) = (Px, y) = (x, Py) = (x, 0) = 0

This shows that

y ∈ [R(P )]⊥, and N(P ) ⊂ [R(P )]⊥

Suppose
y ∈ [R(P )]⊥ but y 6∈ N(P ).

Thus,Py 6= 0. If x 6= 0 andx ∈ R(P ), 0 = (x, y) = (Px, y) = (x, Py).
SincePy ∈ R(P ), substitutePy for x and get(Py, Py) = 0. Thusy ∈
N(P ).
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Theorem 2.29 If P is an orthogonal projection, then

1. (Px, x) ≥ 0

2. ‖ Px ‖2 ≤ ‖ x ‖2.

Proof.

1. (Px, x) = (P (Px), x) = (Px, Px) ≥ 0

2. ‖ x ‖2 = ‖ (I − P + P )x ‖2 = ‖ (I − P )x + Px ‖2 = ‖ (I − P )x ‖2 +
‖ Px ‖2 + 2(Px, (I − P )x). SinceP is an orthogonal projection, this last
inner product can be written(x, P ′(I − P )x) = (x, P (I − P )x) = 0, and
thus

‖ x ‖2 = ‖ (I − P )x ‖2 + ‖ Px ‖2 ≥ ‖ Px ‖2

because‖ (I − P )x ‖2 ≥ 0.

Definition 2.41 Two orthogonal projectionsA andB are calledorthogonal, and
writtenA ⊥ B, if R(A) ⊥ R(B).

Theorem 2.30 Let A andB be orthogonal projections. ThenA ⊥ B if and only
if AB = 0.

Proof

1. If A ⊥ B, thenR(A) ⊥ R(B) since forx ∈ R(A), y ∈ R(B), (x, y) = 0
by orthogonality of the spaces. Thus, for allw, z ∈ V, 0 = (Aw, Bz) =
(w, ABz) only if AB = 0.

2. If AB = 0, thenA(Bx) = 0 for all x ∈ V which meansR(B) is contained
in N(A) = [R(A)]⊥, soR(A) ⊥ R(B).

Theorem 2.31 Let A1, . . . , Ak be orthogonal projections and letA =
∑k

i=1 Ai.
A is an orthogonal projection if and only ifAiAj = 0, i 6= j.

Proof. If AiAj = 0, i 6= j, easy calculations showA = A2 andA = A′. If A is an
orthogonal projection, then we must show thatAi(Aj)(x) = 0, i 6= j. Consider



2.7. MORE ON TRANSFORMATIONS AND PROJECTIONS 37

any fixed vectorx ∈ R(Aj), soAjx = x and‖ Ajx ‖2 = ‖ x ‖2.

‖ x ‖2 ≥ ‖ Ax ‖2

= (Ax, x)

=
k∑

i=1

(Aix, x)

=
k∑

i=1

‖ Aix ‖2

=
k∑

i=1

‖ AiAjx ‖2

= ‖ Ajx ‖2 +
k∑

i6=j

‖ AiAjx ‖2

= ‖ x ‖2 +
k∑

i6=j

‖ AiAjx ‖2

This shows thatAiAjx = 0 for j 6= i for all x ∈ R(A). Now for anyz 6∈ R(A),
we can writez = x + y, with x ∈ R(A) andy ∈ the orthogonal complement of
R(A) = R(I − A). Then ifx ∈ R(Aj), AiAjz = AiAjx = 0, and so the same
proof will apply to anyz ∈ V.

Let {M1, . . . , Mk} be orthogonal subspaces such thatM = M1 + M2 +M3 +
. . .+Mk. Let{P1, . . . , Pk} be the respective orthogonal projections onto theMs.
ThenP =

∑k
i=1 Pi is an orthogonal projection ontoM and eachx ∈ M can be

uniquely represented asx = x1 + . . . + xk with xi ∈ Mi. This is an important
result for fitting linear models, where eachMk can be identified with an “effect”
of interest, andY can be uniquely decomposed into components along eachM .

For anyx ∈ M ,

Px =
k∑

i=1

Pix =
k∑

i=1

Pixi =
k∑

i=1

xi = x

and

‖ Px ‖2 = ‖
∑k

i=1 Pxi ‖
2

= (
k∑

i=1

Pix,
k∑

i=1

Pix)
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=
k∑

i=1

k∑

j=1

(Pix, Pjx)

=
k∑

i=1

(Pix, Pix)

=
k∑

i=1

‖ Pix ‖2

2.8 Orthogonal transformations

Definition 2.42 A linear transformationA is called anorthogonal transformation
if ‖ Ax ‖ = ‖ x ‖, for all x ∈ V .

An orthogonal transformation is nonsingular since ifAx = 0, thenx = 0 (if not,
then(x, x) 6= 0).

Theorem 2.32 A is orthogonalif and only if(Ax, Ay) = (x, y), for all x, y ∈ V .

ProofAssumeA is orthogonal. From a homework problem,

(x, y) = (1/4)[‖ x + y ‖2 − ‖ x − y ‖2]

so

(Ax, Ay) = (1/4)[‖ Ax + Ay ‖2 − ‖ Ax − Ay ‖2]

= (1/4)[‖ A(x + y) ‖2 − ‖ A(x − y) ‖2]

= (1/4)[‖ x + y ‖2 − ‖ x − y ‖2] = (x, y)

where the last results follow because A is orthogonal.
Now assume(Ax, Ay) = (x, y) for all x, y ∈ V . Then‖ Ax ‖2 = (Ax, Ax) =

(x, x) = ‖ x ‖2 which by definition says thatA is orthogonal.
The direct implication of this theorem is that (1) orthogonal transformations

preserve lengths, and (2) orthogonal transformations preserve angles, that is, cosines,
or equivalently inner products, are preserved. The proposition saysA is orthogo-
nal if and only if(Ax, Ay) = (x, y), or (x, y) = (x, A′Ay), so(A′)A = I (from a
homework problem).

Theorem 2.33 If {x1, . . . , xn} is an orthonormal basis forV andA is orthogo-
nal, then{Ax1, . . . , Axn} is an orthonormal basis forV .
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Proof (Axi, Axj) = δij , whereδij = 1 if i = j and= 0 otherwise.

Theorem 2.34 Let {x1, . . . , xn} and {y1, . . . , yn} be orthonormal bases forV .
The linear transformation defined byAxi = yi is orthogonal.

Proof. Forx ∈ V, x =
∑

λixi and‖ x ‖2 =
∑

λ2
i . Then

‖ Ax ‖2 = ‖ A
∑

λixi ‖
2 = ‖

∑
λiAxi ‖

2 = ‖
∑

λiyi ‖
2 =

∑

λ2
i = ‖ x ‖2.

and thusA is orthogonal.
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