
Chapter 6

Inference

In this chapter, we assume the normal linear model,y ∼ N(µ, σ2I), with µ ∈ E
of dimensionp. We have shown that theOLS estimate ofµ is µ̂ = Py; theBLUE

of a′y is a′µ̂; var(a′µ̂) = σ2‖ Pa ‖2, and

µ̂ ∼ N(µ, σ2P ) (6.1)

We will mostly discuss the case with var(y) = σ2I because the somewhat more
general case of var(y) = σ2Σ with Σ = Σ′ > 0 known requires only a change of
inner product.

The density ofy is

f(y) =

(
1√
2πσ

)n

exp
(
−‖ y − µ ‖2/2σ2

)

=

(
1√
2πσ

)n

exp
(
−[‖ Py − µ ‖2 + ‖ Qy ‖2]/2σ2

)
(6.2)

By examination of the density, we see that the pair(Py, ‖ Qy ‖) is a complete
minimal sufficient statistic for(µ, σ2). We have seen in the last chapter thatPy
andQy are independent since they are uncorrelated and normally distributed. In
addition, by (6.1),̂µ = Py has a normal distribution, and

‖ Qy ‖2/σ2 ∼ χ2(n− p)

a central chi-squared random variable.
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6.1 Log-likelihood

The log-likelihood function for(µ, σ2) is easily derived from (6.2) to be

L = −n
2

log(σ2) − n

2
log(2π) − n

2
σ2
(
‖ Py − µ ‖2 + ‖ Qy ‖2

)

For anyσ2, µ̂ = Py maximizesL, so theBLUE µ̂ is the maximum likelihood
estimator given normal errors. To find the maximum likelihood estimate ofσ2 we
maximize theprofile log-likelihood, which is the log-likelihood function with the
argumentµ set equal to its estimatêµ,

L∗(σ2) = L(µ = µ̂, σ2) = −n
2

log(σ2) − n

2
log(2π) − 1

2
σ2[0 + ‖ Qy ‖2] (6.3)

L∗ is just L with one of the parameters, hereµ, fixed at its mle. In general,
the estimate of the parameters fixed by substitution in the log-likelihood would
depend on the remaining parameters, so we would condition onµ = µ̂(σ2) to
recognize this dependence. In this problem, the estimate ofµ is the same for any
value ofσ2, so this dependence is suppressed. The value ofσ2 that maximizes
L∗ must also maximizeL. DifferentiatingL∗ with respectσ2 gives and solving
givesσ̂2

mle = ‖ Qy ‖2/n, which differs slightly from the unbiased estimateσ̂2 =
‖ Qy ‖2/(n−p). A third estimator ofσ2 is also plausible if we select a somewhat
different criterion:

Theorem 6.1 Let σ̃2(k) = ‖ Qy ‖2/k. Then the value ofk that minimizes the
mean square error mse(σ̃2(k)) = var(σ̃2(k)) + bias2 is k = n− p+ 2.

Proof. Homework.
Also, since(Py, ‖ Qy ‖2) is a complete sufficient statistic,a′µ̂ is the uniform

minimum variance unbiased estimator ofa′µ.

6.2 Coordinates

The results are similar for models in coordinate form. If we havey = Xβ+ε, with
ε ∼ N(0, σ2I), then anyOLS estimator ofβ is a maximum likelihood estimate
of β; it is unique if the columns ofX provides a basis forE , and thenβ̂ ∼
N(β, σ2(X ′X)−1). For rank-deficient choices ofX, β̂ will have a singular normal
distribution. All the estimable functions will be normallydistributed with positive
variance, while the non-estimable functions will have zerovariance.
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6.3 Hypothesis testing

The general problem for the type of test we will consider starts with y ∈ ℜn;
µ = E(y) ∈ E , a subspace of dimensionp; Var(y) = σ2I; σ2 > 0.

Suppose thatE0 is a proper subspace ofE , which means thatE0 ⊂ E butE0 6= E
anddim(E0) = q < p. This does not exclude the possibility thatE0 = {0}. The
general linear hypothesis can be stated as

NH: µ ∈ E0

AH: µ ∈ E butµ 6∈ E0

We start withℜn, which is decomposed intoE andE⊥, E+E⊥ = ℜn andE∩E⊥ =
{0}. We again divideE into two orthogonal spaces,E0 andE −E0. This is exactly
the part ofE not inE0 and must have dimensionp− q. Thus,

ℜn = E⊥ + E0 + (E − E0) (6.4)

The hypothesis test consists of projecting the dataY onto the three subspaces in
the decomposition (6.4), and then comparing lengths. In particular, if the null
hypothesis is true, then‖ PE−E0

y ‖2 should be small relative to an appropriate
reference measure of scale, such as‖ PE⊥y ‖2/(n− p) = ‖ Qy ‖2/(n− p). This
comparison of lengths is the basis of anF -test.

Before presenting general results, we consider a very special and important
case of simple linear regression. The linear model can we written as

yi = β0 + β1xi + εi, i = 1, 2, . . . , n

X = (x1, . . . , xn)′, andE = R(Jn, X); µ = (Jn, X)β; β ′ = (β0, β1). Now
consider:

NH: β1 = 0
AH: β1 6= 0

In terms of subspaces, this is equivalent to:

NH: µ ∈ R(Jn)
AH: µ 6∈ R(Jn) butµ ∈ R(Jn, X)

Here,p = 2; q = dim(R(Jn)) = 1; p − q = 1. In this exampleE0 = R(Jn),
andE − E0 is the part ofX that is orthogonal to the column of 1s, and it thus has
spanning vector(I − JnJn

′/Jn
′Jn)X = X − x̄Jn = (xi − x̄).

Next, suppose we consider the hypothesis:
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NH: β1 = 3 or yi = β0 + 3xi + ei

AH: β1 6= 3

We can rewrite the model as:

ỹi = yi − 3xi = β0 + β̃1xi + εi

and one again tests NH:β1 = 0.
Finally, suppose we wish to test:

NH: β0 = β1 = 0
AH: At least one ofβj 6= 0

In this case,E = R(Jn, X); E0 = {0}, soE − E0 = E − {0}.

6.3.1 The geometry ofF tests

Before formally developing the usual tests, let’s look at the geometry. Begin with
E , the projection onE , PE , and the projection onE⊥ = QE . Consider testing:

NH: µ ∈ E0

AH: µ ∈ E

Under NH, we find̂µ0 = PE0
y while under AH,µ̂ = PEy. Look next at lengths of

projections:‖ PE0
y ‖2 ≤ ‖ PEy ‖2. In fact, we can write:

‖ PEy ‖2 = ‖ PE0
y ‖2 + ‖ PE−E0

y ‖2

The basic idea of testing is this: Ifµ ∈ E0, then,y should be almost as close to
the smaller spaceE0 as it is to the bigger spaceE . That is,‖ PE−E0

y ‖2 should be
small. More specifically, under the null hypothesis,

E‖ PE−E0
y ‖2 = (p− q)σ2 + ‖ PE−E0

µ ‖2 (6.5)

Since under both NH and AH

E‖ QEy ‖2 = (n− p)σ2

it follows that the ratio:

f =
‖ PE−E0

y ‖2/(p− q)

‖ QEy ‖2/(n− p)
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is independent ofσ2 and will be small if NH:µ ∈ E0 is true and increase with
‖ PE−E0

µ ‖2, or as we move away from NH. Under normality,‖ PE−E0
y ‖2/σ2 ∼

χ2(p − q, δ2), and the parameter isδ2 = ‖ PE−E0
µ ‖2/σ2. Since‖ QEy ‖2 ∼

χ2(n − p), we have thatf has a non-centralF -distribution in general, andf ∼
F (p− q, n− p, δ2), the usualF test.

It is never necessary to compute‖ PE−E0
y ‖2 directly, since (6.5) can be used

to find it by subtraction, and thus, writingRSSAH = ‖ QEy ‖2, and RSSNH =
‖ QE0y ‖2,

f =
[RSSNH − RSSAH]/(p− q)

RSSNH/(n− p)

Computer programs generally obtain the needed sums of squares using the
QR factorization. Start withX and obtainX = Q1R whereQ1 has orthonor-
mal columns that span the column space ofX. Then, for example,‖ QEy ‖2 =
‖ (I − PE)y ‖2 = ‖ y −Q1Q1

′y ‖2 = y′y−(Q1y)
′(Q1y), which is just the differ-

ence of two inner products. Computation of quantities like‖ PE−E0
y ‖2 are also

straightforward if the columns ofX can be permuted so that the firstq columns
spanE0. Then computing‖ PE0

y ‖2 is easy, and‖ PE−E0
y ‖2 can be found by

subtraction.

6.4 Likelihood ratio tests

Supposey ∼ N(µ, σ2I), σ2 > 0, µ ∈ E and consider testing the same general
hypothesis as in the last section:

NH: µ ∈ E0

AH: µ 6∈ E0 butµ ∈ E

The likelihood function for(µ, σ2) is:

L(µ, σ2; y) =

(
1√

2πσ2

)n

exp(−‖ y − µ ‖2/2σ2)

The likelihood ratio statistic is

Λ(y) =
supNHL(µ, σ2; y)

supAHL(µ, σ2; y)
(6.6)
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heresupNH means thatµ ∈ E0 andσ2 > 0 while supAH meansµ ∈ E andσ2 > 0.
Evidence against NH corresponds toΛ(y) < k for somek. We find:

µ̂0 = PE0
y;

σ̂2
0 = ‖ QE0

y ‖2/n (6.7)

L(µ̂0; σ̂
2
0; y) = c× (‖ QE0

y ‖2/n)−n/2

wherec is a constant that does not depend on the data. Under the alternative
hypothesis AH, we find:

µ̂ = PEy

σ̂2 = ‖ QEy ‖2/n (6.8)

L(µ̂, σ̂2; y) = c× (‖ QEy ‖2/n)−n/2

and the constantc is the same for both hypotheses. Substituting (6.7) and (6.8)
into the (6.6) and simplifying gives:

Λ(y) =

(
‖ QE0

y ‖2/n

‖ QEy ‖2/n

)−n/2

Now, Λ(y) ≤ k if and only if ‖ QE0
y ‖2/‖ QEy ‖2 ≥ k1. The quadratic forms

involved are easy to compute, since:

I = PE +QE = PE0
+ PE−E0

+QE

QE0
= PE−E0

+QE

‖ QE0
y ‖2 = ‖ PE−E0

y ‖2 + ‖ QEy ‖2

Thus:

‖ QE0
y ‖2

‖ QEy ‖2 =
‖ QEy ‖2 + ‖ PE−E0

y ‖2

‖ QEy ‖2

= 1 +
p− q

n− p
f

wheref is the usualF statistic for this hypothesis,

f =
‖ PE−E0

y ‖2/(p− q)

‖ QEy ‖2/(n− p)
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which has theF (p− q, n− p, δ2 = ‖ PE−E0
µ ‖2/σ2) distribution. Thus, the like-

lihood ratio test is a monotonic function off , and so theF -test is the likelihood
ratio test. If the null hypothesis is true, thenδ2 = 0 andf ∼ F (p− q, n− p). The
centralF is used to find significance levels of the test, and the non-central F can
be used to construct power functions, as in Section 6.10.

6.5 General Coordinate Free hypotheses

In the general coordinate free approach to linear models, the general linear hy-
pothesis is:

NH: Bµ = 0
AH: Bµ 6= 0

whereB is anr × n matrix and without loss of generality,ρ(B) = r. We shall
convert this into the format of the general linear hypothesis that we have seen
previously.

Kronecker products. We introduce a bit of new notation that will (eventually)
simplify some discussions. SupposeA is anm×n matrix andB is ap×q matrix.
The Kronecker product ofA andB, writtenA⊗B, is defined by

A⊗ B =




a11B · · · a1nB
...

...
...

am1B · · · amnB




Some useful properties of the Kronecker product are:

A⊗ (B ⊗ C) = (A⊗ B) ⊗ C

(A⊗B)(C ⊗D) = (AC ⊗BD)

(A⊗B)′ = (A′ ⊗ B′)

(A+B) ⊗ (C +D) = A⊗ C + A⊗D +B ⊗ C +B ⊗D

a(A⊗ B) = (aA⊗ B) = (A⊗ aB)

(A⊗B)−1 = A−1 ⊗ B−1

tr(A⊗ B) = tr(A) × tr(B)

We return to a specific example of a general linear hypothesis. Supposey ∼
N(µ, σ2I) is 8 × 1, and letµ = (µ1, u2, µ3, µ4)

′, andJ2 = (1, 1)′. Then suppose
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thatµ = µ0 ⊗ J2, so

µ′ = (µ1, µ1, µ2, µ2, µ3, µ3, µ4, µ4)
′

This is the one-way model with four groups and two observations per group. The
estimation spaceE is thenR(I4 ⊗ J2), and the columns of this matrix are an
orthogonal basis forE .

Consider the NH:B1µ = 0 with B1 given by:

B1 =

(
1 0 0 0 −1 0 0 0
1 0 −2 0 1 0 0 0

)

which picks out contrastsµ1 − µ3 andµ1 − 2µ2 + µ3 to be equal to zero while
completely ignoring group four. There are other matrices that would pick out the
same pair of restrictions, such as

B2 =

(
0 1 0 0 −1 0 0 0
0 1 0 −2 1 0 0 0

)

Sinceµ ∈ E , the hypothesesB1µ = 0 andB2µ = 0 must be equivalent to
B1(PEµ) = B2(PEµ) = 0, or equivalently ifB is any matrix so thatBµ = B1µ,

(PEB
′)′ = 0

We next computePE . If ei is thei-th canonical basis vector (theith column ofI4,
then

PE =
4∑

i=1

(ei ⊗ J2)(ei ⊗ J2)
′

(ei ⊗ J2)
′(ei ⊗ J2)

= (I4 ⊗ J2J2
′/2)

and an easy calculation gives

(PEB1
′)′ =

1

2

(
1 1 0 0 −1 −1 0 0
1 1 −2 −2 1 1 0 0

)

=
1

2

(
1 0 −1 0
1 −2 1 0

)
⊗ (1, 1)

We can now describe the subspaces involved. Under the null hypothesis,µ 6∈
R(PEB1

′), and henceE − E0 = R(PEB1
′). Although we don’t really need to

find E0 for theF -test, we can computeE0 to be the span of anyA matrix whose
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columns provide a completion of the rows ofPEB1
′ as a basis forE . ThenA

provides a basis forE0. One such basis forE0 is

A′ =

(
1 1 1 1 1 1 0 0
0 0 0 0 0 0 1 1

)
=

(
1 1 1 0
0 0 0 1

)
⊗ (1, 1)

A general expression forR(A) is R(PEQPEB
′) Thus the general coordinate free

hypothesis is equivalent to

NH: µ ∈ E0

AH: µ 6∈ E0 butµ ∈ E

where
E − E0 = R(PEB

′) of dimensionr

and
E0 = R(PEQPEB

′) of dimensionρ(E) − r

The statistic for testing the general coordinate free hypothesis is then

f =
‖ PE−E0

y ‖2/r

‖ QEy ‖2/(n− ρ(E))

which is distributed as a non-centralF (r, n− ρ(E), δ2), with

δ2 =
‖ PE−E0

µ ‖2

σ2

If the hypothesis is NH:Bµ = h, for some known vectorh, we can proceed by
translation. Suppose we can find anα ∈ E such thatBα = h. ThenBµ = h Bα
or B(µ − α) = 0. That is, translate the problemy ∼ N(µ, σ2I) to y ∼ N(µ −
α, σ2I). We can always find a specificα as follows. LetB = V DU ′ be the
singular value factorization ofB, soV andD arer× r, andU is n× r. Then one
solution is given byα = UD−1V ′h.

6.6 Parametric hypotheses

We return to a parameterized linear model,

y = Xβ + ε; E(ε) = 0; Var(ε) = σ2I; E = R(X); X : n× r rankp ≤ r.

Suppose we partitionβ ′ = (β1
′, β2

′), whereβ1 is q × 1 and consider testing
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NH: β2 = 0
AH: β2 6= 0

assuming, of course, thatβ2 is estimable. We can partition the model to conform
to the hypothesis by writingy = X1β1 +X2β2 + ε. We can identifyE0 = R(X1)
andPE0

= Projection on columns ofX1. The spaceE − E0 is just the part of the
column space ofX2 that is orthogonal toX1, given byE − E0 = R((I − P1)X2)
All the computations are thus quite straightforward. If theNH were: β2 = β20,
we can proceed by translation.

This is equivalent to the testing situation:

NH: y = X1β1 + ε
AH: y = X1β1 +X2β2 + ε

LettingP1 be the projection on the column space ofX1, we can rewrite the AH
model as:

AH∗ : y = X1β
∗

1 + (I − P1)X2β2 + ε = X1β
∗

1 +X2.1β2

whereX2.1 is the part ofX2 orthogonal toX1. The two representations are the
same only ifR(X2) = R(X2.1), which is guaranteed ifX has full rank, but not
otherwise. Even in the full rank case, is it legitimate to usethe same symbolβ2 in
AH and AH*? Is it necessary to use a different symbolβ1 andβ∗

1? Is the notation
for β1 under NH appropriate?

In the orthogonalized version, theF -test is immediate, sinceSSregis just the
length of the projection onto the column space ofX2.1, and, sinceX1 andX2.1 are
orthogonal, this is justY ′P2.1Y , or, assumeX2.1 is of full rank,

Y ′X2.1(X2.1
′X2.1)

−1X2.1
′Y

with df equal to the number of columns inX2.1. The Analysis of Variance table is
given by Table 6.6.

Finally, we turn to the general parametric hypothesis. LetA1 : r× p be a rank
r matrix so that the columns ofA1

′ are all inR(X ′), insuring thatA1
′β is a vector

of estimable functions ofβ. Suppose we were interested in the hypothesis:

NH: Ψ1 = A1β = 0
AH: Ψ1 = A1β 6= 0
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Table 6.1: Analysis of Variance for a parametric hypothesis

Source df SS MSF E(MS)
X1 +X2.1 p ‖ PXy ‖2

X1 q ‖ P1y ‖2 ‖ P1y ‖2/q

X2.1 p− q ‖ P2.1y ‖2 ‖ P2.1y ‖2/(p− q)

E⊥ n− p ‖ QXy ‖2 σ̂2 = ‖ QEy ‖2/(n− p)

The structure of this hypothesis indicates that the coordinatesβ are not of primary
interest, rather interest centers on the set of estimable functionsΨ1. This is gen-
erally true for over-parameterized models, since the elements ofβ are usually not
estimable.

SinceA1 is of full row rank, we can always find a matrixA0 so that the square
matrix

A =

(
A0

A1

)

is of full rank soA−1 exists. Then:

y = Xβ + ε = XA−1Aβ + ε = ZΨ + ε = Z0Ψ0 + Z1Ψ1 + ε

whereZ = XA−1, so we can now proceed as in the multiple regression case just
discussed. This ‘trick’ of reparameterizing to get the parameters reduces a new
problem to an old one. If we have constructedA so thatA0

′A1 = 0, thenZ0
′Z1 =

0, so theF test becomes particularly simple, since then(I − PZ0
)Z1 = Z1.

We can also get the same result, but without findingA0. SinceΨ1 = A1β is
estimable, the columns ofA1

′ ∈ R(X ′). Thus there is aB1 : r × n such that

A1
′ = X ′B1

′

or
A1 = B1X

Thus, we can write
A1β = 0 ⇔ B1Xβ = B1µ = 0

and this is exactly the same as the general coordinate free hypothesis test derived
in the last section.
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We will proceed with the computations as ifX has full column rank. If the
less than full rank case, simply replace(X ′X)−1 with any generalized inverse to
get the same result. We find

E − E0 = R(PEB1
′)

= R(X(X ′X)−1X ′B1
′)

= R(X(X ′X)−1A1
′)

E0 = R(PEQR(PEB1
′
)
)

= R(X(X ′X)−1X ′ −X(X ′X)−1A1
′)

A bit of straightforward algebra will give expressions bothfor the projection on
E − E0 and for its length. We find

PE−E0
y = X(X ′X)−1A1

′[A1(X
′X)−1X ′X(X ′X)−1A1

′]−1A1(X
′X)−1X ′y

= X(X ′X)−1A1
′[A1(X

′X)−1A1
′]−1A1(X

′X)−1X ′Y

and

‖ PE−E0
y ‖2 = Y ′X(X ′X)−1A1

′[A1(X
′X)−1A1

′]−1A1(X
′X)−1X ′Y

= β̂ ′A1
′[A1(X

′X)−1A1
′]−1A1β̂

Sinceψ̂1 = A1β̂, we can write Var(ψ̂1) = σ2[A1(X
′X)−1A1

′], we can rewrite the
last result as:

‖ PE−E0
y ‖2 = σ2ψ̂1

′[Var(ψ̂1)]
−1ψ̂1

and theF test is

F =
‖ PE−E0

y ‖2

(p− q)σ̂2

=
ψ̂1[V̂ar(ψ̂1)]

−1ψ̂1

p− q

andF ∼ F (p − q, n − p, δ2). The non-centrality parameter as a function ofA1

andβ is

δ2 =
β ′A1

′[A1(X
′X)−1A1

′]−1A1β
2

σ2

andδ2 = 0 only if A1β = ψ1 = 0.
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6.7 Relation of least squares estimators under NH
and AH

In general regression situations, it is often of interest tocompare estimates of
parameters under different models/hypotheses, particularly when theXs are co-
variates. We can proceed as follows to make this comparison in the full rank case:

µ̂NH = Xβ̂NH = PEy − PE−E0
y

= X(X ′X)−1X ′y −X(X ′X)−1A′[A(X ′X)−1A′]−1A(X ′X)−1X ′Y

while
µ̂AH = Xβ̂AH = X(X ′X)−1X ′Y

or
Xβ̂NH = Xβ̂AH −X(X ′X)−1A′[A(X ′X)−1A′]−1A(X ′X)−1X ′Y

SinceX is of full rank,

β̂NH = (I − (X ′X)−1A′[A(X ′X)−1A′]−1A)β̂AH

E(β̂NH) = (I − (X ′X)−1A′[A(X ′X)−1A′]−1A)βAH

which can be used to explore biases, etc.A(X ′X)−1A′ is called thealias matrix.
Example. The one-way anova model can be written asyij = βi + εij, i =

1, . . . , b; j = 1, . . . , ni;
∑
ni = n; ε ∼ N(0, σ2I). Then, as usual,E = R(X1, . . . , Xp),

whereXi is a vector of zeroes, except for the rows from groupi where it is one.
Now dim(E) = p andPEy is a vector with valuēyi+ for all observations at level
i; QEy = (yij − ȳi+) andσ̂2 = ‖ QEy ‖2/(n − p) =

∑∑
(yij − ȳi+)2/(n − p).

Suppose that thep-th treatment is a control and we wish to test:

NH: βp = 1
p−1

∑p−1
i=1 βi

AH: NH not true

Under NH,β̂′ = (ȳ1+, . . . ȳp+),
̂

Var(β̂) = σ̂2diag(1/ni) = σ̂2(X ′X)−1. To apply
the previous full-rank set-up, write the null hypothesis inthe form: NH:Aβ =
0; A = (1/(p− 1), . . . ., 1/(p− 1),−1) so that

Aβ̂ =
1

p− 1

p−1∑

i=1

ȳi+ − ȳp+
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and

A(X ′X)−1A′ =

(
1

p− 1

)2 p−1∑

i=1

n−1
i + n−1

p

Thenp− q = 1 and:

F = (Aβ̂)′[A(X ′X)−1A′]−1(Aβ̂)/σ̂2

= (Aβ̂)′[V̂ar(Aβ̂)]−1(Aβ̂)

=

1
p−1

[∑p−1
i=1 ȳi+ − ȳp+

]2

σ̂2[ 1
(p−1)2

∑p−1
i=1 n

−1
i + n−1

p ]
∼ F (1, n− p, σ2)

To findδ2, simply substituteµi andσ2 for corresponding statistics intoF . Finally,
we can examine the aliases under the NH. We get:

β̂NH = (I − (X ′X)−1A′[A(X ′X)−1A′]−1A)β̂AH

= β̂AH − (X ′X)−1A′Aβ̂AH

[A(X ′X)−1A′]−1

= β̂AH − (X ′X)−1A′
(p− 1)−1∑ ȳi+ − ȳp+

(p− 1)−2
∑
n−1

i + n−1
p

Thej-th element of this vector is:

ȳj+ − cj(
1

p− 1

∑
ȳi+ − ȳp+)

where

c−1
j =

nj

p− 1

p−1∑

i=1

n−1
i +

nj(p− 1)

np

The adjustmentcj decreases withnj so we get more adjustment on the means that
are relatively more variable.

For this testing situation, the earlier ANOVA can be subdivided into Table 6.7
The “Remainder” line in the ANOVA can be used to test for differences between
the firstp− 1 treatments (ignoring treatmentp).

6.8 Analysis of Variance Tables

The computations for the division of sums of squares into components due to
various sources are usually combined into an “Analysis of Variance” table, which
has the canonical form given in Table 6.8. Mean squares are ofcourseSS/df .
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Table 6.2: Analysis of variance table

Source df SS MSF E(MS)
Mean=E0 1 nȳ2

++ σ2 + nβ̄2

Treatments=E − E0 p− 1
∑
ni(ȳi+ − ȳ++)2 σ2 + σ2δ2/(p− 1)

R(X(X ′X)−1A′) 1
Remainder p− 2

Error n− p
∑∑

(yij − ȳi+)2 σ2

Table 6.3: Canonical Analysis of Variance Table

Source df SS MSF E(MS)
E p ‖ PEy ‖2

E0 q ‖ PE0
y ‖2 ‖ PE0

y ‖2/q

E − E0 p− q ‖ PE−E0
y ‖2 ‖ PE⊥

0
∩Ey ‖2/(p− q)

E⊥ n− p ‖ QEy ‖2 σ̂2 = ‖ QEy ‖2/(n− p)
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To calculate expected mean squares, recall that if Var(y) = σ2I, E(y) = µ,
then E(‖ PMy ‖2) = dim(M)σ2 + ‖ PMµ ‖2, so

E

(
‖ PMy ‖2

dim(M)

)
= σ2 +

1

dim(M)
‖ PMµ ‖2

so we simply substituteµ for y in the expression for the mean square and addσ2.
Power considerations usually require calculation of the non-centrality param-

eterδ2 = ‖ PE−E0
µ ‖2. Typically,δ2 is a function of the unknownµ and of sample

sizes.

6.9 F tests andt tests

Recall that we have justifiedF -test as the likelihood ratio tests for hypotheses of
interest assuming normality. Thet-tests are usually justified by looking at ratios
like

Estimate− hypothesized value
Standard error of the estimate

where the numerator is normally distributed, and the denominator is an indepen-
dentχ2-distributed estimate of its standard deviation. This typeof test, comparing
an estimate to an estimate of its error, is called in general aWald test. Wald tests
and likelihood ratio tests are generally asymptotically equivalent, but for some
tests in the normal linear model they are in fact identical.

Supposey ∼ N(µ, σ2I), µ ∈ E , and we want to test

NH: c′µ = 0, c ∈ ℜn,
AH: c′µ 6= 0

which is a specialization of the general coordinate free hypothesis test, withr = 1.
Then:

E0 = {µ|µ ∈ E , µ ⊥ c} = {PEz|z′PEc = 0, z ∈ ℜn}
= {PEz|z ∈ R⊥(PEc)}

If c ∈ E⊥, thenE = E0 and there is nothing to test. Thus, assumePEc 6= 0, and
E − E0 = R(PEc).
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Let z = PEc. Then:

F =
‖ PE−E0

y ‖2

σ̂2

=
‖ (z,y)

(z,z)
z ‖2

σ̂2

=
(z, y)2

(z, z)σ̂2

=
(c, µ̂)2

‖ PEc ‖2σ̂2

=
(BLUE of c′µ)2

(SE ofc′µ)2

since(z, y) = (PEc, y) = c(µ̂) and Var(c′µ̂) = σ̂2‖ PEc ‖2.
Under normality,

c′µ̂− c′µ

σ‖ PEc ‖
∼ N(0, 1)

and
σ̂2 ∼ σ2χ2(n− p)/(n− p)

independent of̂µ. So,

t =
(c′µ̂− c′µ)/(σ‖ PEc ‖)√

σ̂2/σ2

=
c′µ̂

σ̂‖ PEc ‖

=
N(0, 1)√

χ2(n− p)/(n− p)
∼ t(n− p)

andF = t2.
Now suppose that the hypothesis is

NH: c′µ = k 6= 0
AH: c′µ 6= k

Under NH, we can find (many) vectorsα ∈ E such thatc′α = k. We can always
do this if PEc 6= 0 (if PEc 6= 0, then there is at least one vectorα∗ ∈ E such
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that (c, α∗) 6= 0. Let α = kα∗/(c, α∗)). The hypothesis can then we written as
NH: c′µ = c′α or NH: c′(µ − α) = 0. This suggests translatingy to y − α and
proceeding as before. This yields:

t =
c′µ̂α

σ̂2
α‖ PEc ‖2

=
c′PE(y − α)

σ̂2
α‖ PEc ‖2

But,

σ̂2
α =

‖ QE(y − α) ‖2

n− p
=

‖ QEy ‖2

n− p
= σ̂2

becauseα ∈ E . Thus,

t =
c′µ̂α

σ̂2
α‖ PEc ‖2

=
c′PEy − c′α

σ̂‖ PEc ‖

=
c′µ̂− k

σ̂‖ PEc ‖
as expected. Finally it is clear that we can construct confidence intervals forc′µ
in the usual way: A1 − α × 100% confidence interval is the set of points in the
range

c′µ̂± t(1 − α/2;n− p)σ̂‖ PEc ‖

6.10 Power and Sample Size

In the fixed effects linear modely ∼ N(µ, σ2I), with µ ∈ E ⊂ ℜn, the general
linear hypothesis is a test ofµ ∈ E0 ⊂ E versusµ ∈ E . The test statistic is given
by

f =
‖ PE−E0

y ‖2/ν1

‖ QEy ‖2/ν2

whereν1 = ρ(E − E0) andν2 = n − ρ(E). andf ∼ F (ν1, ν2, δ
2). The non-

centrality parameterδ2 is

δ2 = ‖ PE−E0
µ ‖2/σ2
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Although not completely clear from the definition,δ2 depends on the sample size,
or in design problems, on the number of replications.

We define thepowerof a statistical test, denoted as1−β, to be the probability
of detecting a false null hypothesis, or, more precisely, the probability of rejecting
the null hypothesis at a given levelα, for a given value ofδ2, or

1 − β = Pr
[
F (ν1, ν2, δ

2) > F (α; ν1, ν2, δ
2 = 0)

]

Example.Consider a one-way model witht groups andm observations per
group, for a total ofn = tm observations. The estimation spaceE is spanned by
R(It ⊗ Jm). Suppose thatE0 = R(Jn), and consider the test ofµ ∈ E0 versus the
alternativeµ ∈ E , the usual test for the equality of group means. For this test, the
non-centrality parameter is

δ2 = ‖ PE−E0
µ ‖2/σ2

=
t∑

i=1

m(µi − µ̄+)2/σ2

For example, supposet = 5, m = 10. To compute the power of theF test, we
need to specify the significance level, sayα = 0.05, and a particular value ofδ2 by
specifying a pattern for the group means. For this example, suppose we consider
the alternative hypothesis to beµ1 = µ2 = µ3 = µ4 = 0 andµ5 = kσ. Thus four
of the group means are equal but only group five may be different. Thenδ2 can be
computed to be4mk2/5. To get the power, we first need to get the critical value.
Using R,

> qf(.95,4,45) get the upper tail of the central F distribution
[1] 2.578739

At k = 1, 2, 3, the power is:

> pf(qf(.95,4,45),4,45,4 * 10* c(1,2,3)ˆ2/5, lower.tail=FALSE)
[1] 0.5540384 0.9959826 0.9999999

A graph of the power as a function ofk is shown in Figure 6.1 The following
generates this graph:

> kvals <- seq(0,3,length=41)
> pow <- pf(qf(.95,4,45),4,45,4 * 10* kvalsˆ2/5, lower.tail=FALSE)
> plot(kvals,pow,type="l",xlab="k",ylab="Power")
> pow1 <- pf(qf(.95,4,20),4,20,4 * 5* kvalsˆ2/5, lower.tail=FALSE)
> lines(kvals,pow1)
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Figure 6.1: Power for one-way anova with the alternative as specified in the text.

This graph shows the power function both for the casem = 10 and for the case
m = 5; the latter has uniformly lower power. For example, atk = 1, the power
with m = 5 is 25% while form = 10 it is 55%.

6.11 Simple linear regression

The simple linear regression model is E(y) = β01 + β1x+ ε, with ε ∼ N(0, σ2I)
andx = (x1, . . . , xn)′, and at least two of thexi are distinct. ThenE = R(Jn, X),
andp = dim(E) = 2. Consider the test of:

NH: β1 = 0
AH: β1 6= 0



6.11. SIMPLE LINEAR REGRESSION 125

Under NH,E0 = R(Jn) andE − E0 = R(X − x̄Jn). Thus, theF test is just

F =
‖ PE−E0

y ‖2/1

‖ QEy ‖2/(n− 2)

=
‖ QEy ‖2 − ‖ QE0

y ‖2

‖ QEy ‖2/(n− 2)

=
‖ PE0

y ‖2 − ‖ PEy ‖2

‖ QEy ‖2/(n− 2)

Each of these projections are very easy to evaluate for simple linear regression.
We find:

‖ QE0
y ‖2 =

∑
(yi − ȳ)2 =

∑
y2

i − nȳ2 = ‖ y ‖2 − ‖ PE0
y ‖2

‖ QEy ‖2 =
∑

(yi − β̂0 − β̂1xi)
2 =

∑
(yi − ȳ − β̂1(xi − x̄))2

PE0
y has componentsyi − ȳ andPE−E0

y has componentŝβ1(xi − x̄). Continuing,

‖ QEy ‖2 =
∑

(yi − ȳ)2 − β̂2
1

∑
(xi − x̄))2

= ‖ QEy ‖2 − ‖ PE−E0
y ‖2

= ‖ y ‖2 − ‖ PE0
y ‖2 − ‖ PE−E0

y ‖2

It is easy to see that̂β2
1‖ x− x̄Jn ‖2 = ‖ PE−E0

y ‖2, so theF -statistic is just

F =
β̂2

1‖ x− x̄Jn ‖2

σ̂2
=

β̂2
1

v̂ar(β̂1)
= t2

andF = t2 ∼ F (1, n− 2, δ2) with

δ2 =
‖ PE−E0

y ‖2

σ2
=
β2

1‖ X − x̄Jn ‖2

σ2

The power depends onδ2, and hence on the size of the slope, in units ofσ, and on
the dispersion of thexis. To increase power, the only factor under the control of
the experimenter is the‖ X − x̄Jn ‖2, which should be made as large as possible.
Suppose eachxi ∈ [−1, 1]; else, takexi = ∞ or −∞. First, argue that̄x = 0, by
symmetry, since the power of the test does not depend on sign.Then: taken/2
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Table 6.4: Analysis of Variance for Simple linear regression

Source df SS MSF E(MS)
R(Jn) 1 nȳ2 σ2 + n(β0 + β1x̄)

2

R(X − x̄1) 1 β̂2
1‖ x− x̄1 ‖2 σ2 + β2

1‖ x− x̄1 ‖2

Error= E⊥ n− 2 ‖ QEy ‖2 σ2

observations at−1 andn/2 observations at+1 (show that any other arrangement
has smaller value for the norm‖ x− x̄ ‖2.

The analysis of variance table for simple regression is given in Table 6.11. For
β0, the EMS is obtained from

σ2 + ‖ PR(Jn)y ‖2 = σ2 + ‖ µ1 ‖2 = σ2 + nµ2

All the subspaces in the anova are orthogonal so we get a decomposition of the
sum of squares.

Next, consider the test of:

NH: β0 = 0
AH: β0 6= 0

Why is theF -test NOT equal tonȳ2/σ̂2? Order matters! Here,E = R(Jn, X) as

before, butE0 = R(X) andE − E0 = R(QE0
Jn) = R(I − XX

′

X
′
X
Jn), and

PE−E0
y =

(I − XX
′

X
′
X

)JnJn
′(I − XX

′

X
′
X

)

Jn
′(I − XX

′

X
′
X

)Jn

Y

and

‖ PE−E0
y ‖2 =

(
∑
yi −

∑
yixi

∑
xi/

∑
x2

i )
2

n− (
∑

xi)2∑
x2

i

=
(ȳ − β̃1x̄)

2

1/n− x̄2/
∑
x2

i

=
n
∑
x2

i (ȳ − β̃1x̄)
2

∑
(xi − x̄)2
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whereβ̃1 is estimated under NH thatβ0 = 0, β̃1 =
∑
xiyi/

∑
x2

i .
Since

∑
xiµi/

∑
x2

i =
∑
xi(β0 + β1xi)/

∑
x2

i = nβ0x̄/
∑
x2

i + β1, the non-
centrality parameter for thisF - test is (after some algebra):

δ2 =
‖ PE−E0

µ ‖2

σ2
= nβ2

0

∑
(xi − x̄)2

∑
x2

i

Now
∑

(xi − x̄)2/
∑
x2

i ≤ 1, and it equals 1 if̄x = 0. Thus, the design that
maximizes the power of this test is: any{x1, . . . , xn} with x̄ = 0.

6.12 One Way layout

The model can be written asyij = βi + εij , i = 1, . . . , b; j = 1, . . . , ni;
∑
ni =

n; ε ∼ N(0, σ2I). Then, as usual,E = R(X1, . . . , Xp), whereXi is a vector of
zeroes, except for the rows from groupi where it is one (or any common nonzero
number). As shown previously,dim(E) = p; PEy = (ȳi+); QEy = (yij − ȳi+);
σ̂2 = ‖ QEy ‖2/(n − p) =

∑∑
(yij − ȳi+)2/(n − p). Consider some tests of

hypotheses.

6.12.1 Overall test

This hypothesis can be stated as

NH: βi = β, i = 1, 2, . . . , p
AH: βi not all equal

Again all the computations are easy. Under NH:

PE0
y = ȳ++Jn =

∑
niȳi+

n
Jn

‖ PE0
y ‖2 = nȳ2

++

Projections and lengths onE − E0 are easily then obtained by subtraction:

PE−E0
y = PEy − PE0

y = ȳi+ − ȳ++

‖ PE−E0
y ‖2 = ‖ PEy ‖2 − ‖ PE0

y ‖2

=
p∑

i=1

ni(ȳi+ − ȳ++)2
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Table 6.5: Analysis of Variance for the one-way design.

Source df SS MSF E(MS)
Mean =E0 = R(1) 1 nȳ2

++ σ2 + nβ̄2

Groups =E − E0 p− 1
∑
ni(ȳi+ − ȳ++)2 σ2 + σ2δ2/(p− 1)

Error =E⊥ n− p ‖ QEy ‖2 σ2

and the last sum of squares hasp− 1 d.f. TheF -test is then given by

F =
‖ PE−E0

y ‖2

(p− 1)σ̂2
∼ F (p− 1, n− p, δ2)

and the non-centrality parameter is given by

δ2 = ‖ PE−E0
µ ‖2/σ2 =

p∑

i=1

ni(βi − β̄+)2)/σ2.

These results can be summarized in the analysis of variance table given in Table
6.5.

6.12.2 Orthogonal Contrasts

In most linear models, we will want to make multiple inferences concerning
cj

′µ, j = 1, . . . , m. One setting for this uses orthogonal contrasts. Consider the
coordinate free linear modely ∼ N(µ, σ2I).

Definition 6.1 (Contrast) For c ∈ ℜn, c′µ is a contrast ifc ⊥ Jn; that is(c, Jn) =
0.

Several comments are in order here. First, contrasts dependon the inner prod-
uct. In the usual inner product (which is the one generally used when the covari-
ance matrix is proportional to the identity),(c, Jn) = c′Jn, so a contrast is any
linear combination of the elements ofµ with sum of the multipliers equal to zero.
When any other inner product is used, then the notion of orthogonality changes
with the inner product. For example, ify ∼ N(0,Σ), the natural inner product is
(a, y) = a′Σ−1y, so the definition requires thata′Σ−1Jn = 0. Second, all con-
trasts are estimable, since they are just linear combinations of the elements ofµ.
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Finally, this definition of a contrast differs from the usualdefinition, which is typi-
cally defined as a linear combination of the elements of a parameter vector. Using
this definition avoids any problems caused by changes in parameterization.

Definition 6.2 (Orthogonal contrasts) Let cj, j = 1, . . . , m bem vectors such
that (cj , ck) = 0, j 6= k and (cj, Jn) = 0, j = 1, . . . , m. Then(cj, µ), j =
1, . . . , m, are a set ofm orthogonal contrasts.

Of course, orthogonality depends on the inner product.
Consider testing:

NH: (cj, µ) = 0
AH: (cj, µ) 6= 0

for j = 1, . . . , m. This corresponds to conductingm separate tests and is clearly
not the same as testing the hypothesisCµ = 0, whereC ism× n with rowscj ′.

Theorem 6.2 If cj ′µ is a contrast forE , then theBLUE of cj ′µ is cj ′µ̂.

Proof. TheBLUE of (c, µ) is (Pc, y) = (c, µ̂).
Let cm+1, . . . , cp be any completion of thec- basis forE . Clearly, we can write:

ℜn = R(1) +
m∑

j=1

R(cj) + R(cm+1, . . . , cp) + E⊥

and, in terms of lengths,

‖ y ‖2 = ‖ P1y ‖2 +
m∑

j=1

‖ Pcj
y ‖2 + ‖ P[cm+1,...cp]y ‖2 + (n− p)σ̂2

Now we know thatPcj
y = [(cj, y)/(cj, cj)]cj so that‖ Pcj

y ‖2 = (cj, y)
2/(cj, cj)

is trivial to compute. The test statistic for testing NH:cj
′µ = 0 is just:

F =
‖ Pcj

y ‖2

σ̂2
∼ F (1, n− p, δ2)

with δ2 = ‖ Pcj
µ ‖2/σ2. Since thecj are mutually orthogonal, they must be

linearly independent, and then the statistic for simultaneously testing the NH that
all thecj ′µ = 0, j = 1, . . . , m will then be given by

F =

∑m
i=1 ‖ Pcj

y ‖2

mσ̂2
∼ F (1, n− p, δ2)
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with δ2 =
∑m

i=1 ‖ Pcj
µ ‖2/mσ2.

We now turn to the parametric version. In the full rank parametric case, still
with Var(y) = σ2I, µ = Xβ, a contrast in theβs is a linear combinationa′β such
that

a′β = a′(X ′X)−1X ′µ

so that ifc = X(X ′X)−1a, thena′β is the same asc′µ. Sincec is just a linear
combination of the columns ofX, c ∈ E .

Look at the conditions of orthogonality toJn and mutual orthogonality. We
need imposec′Jn = 0 to get a contrast, equivalent toa′(X ′X)−1X ′Jn = 0. This
may be a bit unexpected, since one might expect the conditionsa′Jn = 0.

If ci′cj = 0, then

ai
′(X ′X)−1X ′X(X ′X)−1aj = ai

′(X ′X)−1aj = 0

Thus, with respect to the inner product[a, b] = a′(X ′X)−1b, we have the condi-
tions[ai, aj] = 0 and[aj , X

′Jn] = 0, for all i andj.
Let’s look at one-way anova withni observations per group,E(yij) = βi. Then

compute

c = X(X ′X)−1a = (X1, . . . , Xp)diag(n−1
j )a =




Jn1
a1/n1
...

Jnp
ap/np




Two contrasts are orthogonal ifci′cj = 0 = ai
′diag(n−1

j )aj . Also,Jn
′c = 0 if and

only if Jn
′X(X ′X)−1a = 0, if and only if (n1, . . . , np)diag(n−1

j )a = 0, or if and
only if Jn

′a = 0.
Here is a little numerical example,p = 3. Suppose that the first contrast

is c1′ = (−1, 0, 1), and the second contrast isc2′ = (a1, a2, a3) For the second
orthogonal contrast, we must havea1+a2+a3 = 0 and also−a1/n1+a3/n3 = 0.
There are of course lots of solutions to these equations, andthey depend onn1 and
n3. One choice isa1 = n1/(n1 + n3), a2 = 1 anda3 = n3/(n1 + n3). No one
would typically be interested in such a contrast, since it depends on sample size
as well as on parameters. Consequently, one would usually not use orthogonal
contrasts unlessX ′X = kI.

Example2 × 2 tables. Supposeyijk = µij + εijk, Var(ε) = σ2I. The usual
model is:

yijk = µij + εijk

= µ+ (µi+ − µ) + (µ+j − µ) + (µij − µi+ − µ+j + µ) + εijk

= µ+ αi + βj + (αβ)ij + εijk
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where:

µ = µ̄++

αi = (µ̄i+ − µ̄++)

βj = (µ̄+j − µ̄++)

(αβ)ij = µij − µ̄i+ − µ̄+j + (̄µ)++

Now, theµij are the coordinates (parameters) relative to the implicit columns of
X (with a separate column for each cell). Are the contrasts that correspond to the
“usual” parameters orthogonal? Suppose the sample size in cell (i, j) is nij . The
usual contrasts are given by:

Cell: (1, 1) (1, 2) (2, 1) (2, 2)
a(α1) 1 1 -1 -1
a(β1) 1 -1 1 -1
a(αβ)11 1 -1 -1 1

Are these contrasts orthogonal? For example, isa(α1)
′(X ′X)−1a(β1) = 0?

Since(X ′X)−1 = diag(1/n11, . . . , 1/n22),

a(α1)
′(X ′X)−1a(β1) = 1/n11 − 1/n22 − 1/n21 + 1/n22

which can of course be zero, even if all thenij are not equal. But, one can easily
show that the 3 contrasts above (all orthogonal to the overall mean vector) are all
orthogonal if and only ifnij = n, i = 1, 2, j = 1, 2.

Σ 6= σ2I. Let’s look at contrasts for the general linear modely = Xβ + ε,
ε ∼ N(0,Σ), with Σ positive definite. By the usual method, this is equivalent to
Σ−1/22y = Z ∼ N(Wβ, σ2I), so we can proceed as before, using theZs andWs.
A test of NH:Bµ = 0 is equivalent to a test of NH:BΣ−1/2µ = 0. Orthogonality
changes in the same way: one must account for the inner product and the criterion
for ai andaj to be orthogonal isai

′(X ′Σ−1X)−1aj = 0.

6.13 Confidence Regions

Let {y1, . . . , yn} be independent identically distributed with distributionF (θ),
with θ ∈ Sθ ⊂ ℜk. The setSθ need not be a subspace. Aconfidence region
Cα({y1, . . . , yn}) for θ is a map,{y1, . . . , yn} → Sθ with the property that, for all
θ ∈ Sθ,

Pr
θ

(θ ∈ Cα({y1, . . . , yn})) ≥ 1 − α (6.9)
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Cα is calledconservativeif inequality holds in (6.9) for someθ; otherwise,Cα is
called exact.

Example. Suppose{y1, . . . , yn} ∼ N(µ, σ2), with σ2 known, andµ ∈ ℜ.
Then

z =
√
n
(
ȳ − µ

σ

)
∼ N(0, 1)

and, for allµ, σ2,
Pr(−zα/2 ≤ z ≤ zα/2) = 1 − α

and thus, for allµ,

Pr(ȳ − σ√
n
zα/2 ≤ µȳ +

σ√
n
zα/2) = 1 − α

The random interval given bȳy±σzα/2/
√
n will containµ with probability1−α,

and is therefore a1 − α× 100% confidence region forµ.
The previous example is standard and it serves to illustratethe basic idea of a

confidence region, but is provides little help as a general method. A usual method
for constructing confidence regions is to invert test procedures:

Cα = {θ0|NH : θ = θ0 is not rejected at levelα}

When likelihood ratio tests are used, such regions will haveuseful properties, such
as being based on minimal sufficient statistics.

It follows that:

Pr(θ ∈ Cα) = Pr(NH : θ = θ0 is not rejected at levelα) = 1 − α

Example.Suppose that{y1, . . . , yn} ∼ N2(µ, σ
2I2). The likelihood ratio test

for NH : µ = µ0 is

Λ =
exp{−1

2

∑
(yi − µ0)

′(yi − µ0)}
exp{−1

2

∑
(yi − ȳ)′(yi − ȳ)}

∝ n‖ ȳJn − µ0 ‖2

Under the null hypothesis,̄y − µ0 ∼ N2(0, (σ
2/n)I2), so thatn‖ ȳ − µ0 ‖2/σ2 ∼

χ2(2).
To turn this into a confidence statement, we will not reject the null hypothesis

if

‖ ȳ − µ0 ‖2 ≤ χ2(α, 2) × σ2

n
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As a function ofµ0, the confidence region is a circle of radius(χ2(α, 2)σ2/n)1/2.
Confidence region for any estimable function ofβ. Suppose we have a para-

metric linear modely ∼ N(Xβ, σ2I), whereX is ann × k matrix of rankp.
Suppose thatψ = Aβ = BXβ is any estimable function ofβ (the second equal-
ity follows from estimability), with rankA = q ≤ p. Then the hypothesis test

NH: ψ = ψ0

AH: ψ 6= ψ0

is rejected at levelα if

f =
1

p− q
(ψ̂ − ψ0)

′ ̂
Var(ψ̂)(ψ̂ − ψ0)

=
(ψ̂ − ψ0)

′(A(X ′X)+A′)−1(ψ̂ − ψ0)

(p− q)σ̂2

This is not the same formula for theF -test we have seen before, although it is
equivalent. IfF (1−α, p− q, n− p) is the1−α percentile of theF (p− q, n− p)
distribution, then the confidence region forψ is

{
ψ0|(ψ̂ − ψ0)

′(A(X ′X)+A′)−1(ψ̂ − ψ0) ≤ (p− q)σ̂2F (1 − α, p− q, n− p)
}

(6.10)
This is an ellipsoid centered at̂ψ = Aβ̂, with contours determined by the eigen-
structure of(A(X ′X)+A′)−1.

For the full-rank parameterization case,k = p, here are some special cases:

• Confidence region forβ:

{
β0|(β̂ − β0)

′(X ′X)−1(β̂ − β0) ≤ pσ̂2F (1 − α, p− q, n− p)
}

• If X = (Jn, X1), Thenψ = (0, Ip−1)β picks out all the coefficients except
for the intercept. Substituting into (6.10) gives the confidence region. f
X1 = (I − PJn

)X1, then the confidence region is

{
ψ0|(ψ̂ − ψ0)

′(X ′

1X1)
−1(ψ̂ − ψ0) ≤ (p− 1)σ̂2F (1 − α, p− q, n− p)

}

The matrixX1 is like X1, except that column means have been subtracted
off.
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• If ψ = Aβ picks out the lastq components ofβ, then the confidence region
is given by

{
ψ0|(ψ̂ − ψ0)

′C−1(ψ̂ − ψ0) ≤ (p− q)σ̂2F (1 − α, p− q, n− p)
}

whereC is the lower-rightq × q submatrix ofX ′X)−1.

The R packagecar , written by John Fox, contains functions for computing con-
fidence regions for pairs of regression coefficients. Similar routines, for pairs and
for triples, are available inArc .
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