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Chapter 5

Distribution Theory

In this chapter, we summarize the distributions related to the normal distribu-
tion that occur in linear models. Before turning to this general problem that
assumes normal errors, we discuss asymptotic distributions, assuming only the
two-moment assumptions on the errors discussed previously in these notes.

5.1 Consistency of least squares estimates
We begin with a few consistency results that stand on their own and do not depend
on normality.

Definition 5.1 (Weak consistency) Suppose that θn is an estimate of a parameter
θ based on a sample of size n. We say θn is a weakly consistent estimate of θ if
lim Pr(|θn − θ| > δ) = 0 for any δ > 0, or equivalently lim Var(θn) = 0.

Consider now the standard model:

y = µ, µ ∈ E = R(X) (5.1)

This model is commonly written in the additive error form, with

y = µ + ε, µ ∈ E = R(X), E(ε) = 0, Var(ε) = σ2I (5.2)

Models (5.1) and (5.2) are equivalent formulations. While not all statistical mod-
els can be formulated using additive errors (for example, this doesn’t make any
sense for binomial errors), this formulation makes some sense for linear mod-
els. This model includes only two moment assumptions concerning ε, but does
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90 CHAPTER 5. DISTRIBUTION THEORY

not give the exact distribution. We know that µ̂ = Py, and E(µ̂) = µ and
Var(µ̂) = σ2P . Suppose we allow n to increase. As n increases in the above
sequences, the vector space keeps expanding, and E , as a consequence, changes
for each n.

Theorem 5.1 (Huber (1981, p. 157) Under (5.1), if the errors are independent,
then:

1. µ̂i is a consistent estimator of µi if and only if hii → 0, where hii is the i-th
diagonal element of the projection matrix P .

2. µ̂ is a consistent estimate of µ if and only if max hii → 0.

Proof. First, assume that hii → 0. To demonstrate weak consistency, we need
to show that:

Pr(|µ̂i − µi| > δ) → 0

as n →∞. But µ̂i is unbiased for µi, and thus by the Tchebychev inequality:

Pr(|µ̂i − µi| > δ) ≤ var(µ̂i)

δ2
=

hiiσ
2

δ2

and the conclusion follows. Independence is not used here so this part is true for
uncorrelated errors also.

To show necessity, we use contradiction, and bound Pr(|µ̂i − µi| > δ) away
from zero. If ε is the vector of errors, then µ̂ = Py = P (µ + ε) and µ − µ̂ =
P (µ− µ + ε) = Pε. Writing this row-wise, and writing pi

′ as the i-th row of P ,

µ̂i − µi = pi
′ε = hiiεi +

n∑

j 6=i

hijεj = w + z

Now, w depends only on εi and z on the remaining elements of ε, and so the
independence assumption for elements of ε implies independence of w and z. We
can therefore write

Pr(|w + z| ≥ δ) ≥ P (w ≥ δ, z ≥ 0) + P (w ≤ −δ, z < 0)

= P (w ≥ δ)P (z ≥ 0) + P (w ≤ −δ)P (z ≤ 0)

≥ min[P (w ≥ δ), P (w ≤ −δ)]

This implies that

Pr(|µ̂i − µi| > δ) ≥ min[Pr(εi ≥ δ

hii

), Pr(εi ≤ − δ

hii

)] > 0
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Thus, if hii > 0, we do not have consistency, so we must have that hii → 0. Also,
max(hii) ≥ mean(hii) = p/n, hence a necessary condition is p/n → 0.

What does this mean? The requirement here is the all the diagonal elements
of the projection matrix, which are usually called the leverages, go to zero. One
interpretation is that the number of parameters must not grow too fast. A second
interpretation is on each of the hii.

For example, suppose we have a one-way anova problem with t groups and ni

observations in group i. The projection matrix P is given by

P = diag (Jn1Jn1
′/n1, . . . , JntJnt

′/nt)

so a typical leverage for a case in group i is 1/ni.
If we fix t and n1 but allow all the other ni to grow large, then the leverages

corresponding to the first group will be fixed at 1/n1 while all the other leverages
approach zero. Thus, all the group means except the first will be consistent. If we
the ni fixed but allow t → ∞, all the leverages are fixed and non-zero, and the
estimate of the mean is not consistent.

Theorem 5.2 Let a′µ = a′Xβ be any estimable function of the mean in a general
linear model, scaled so that ‖ Xa ‖2 = 1. Then var(a′µ̂) = σ2, and a′µ̂ is
consistent for a′µ if and only if maxi |si| → 0, where si is the i-th component of
the vector X ′a.

Proof. Huber (1981, page 159).

Theorem 5.3 If maxi hii → 0, then a′µ̂ is asymptotically normally distributed for
all a ∈ <n. If not, then some linear combinations of the µ̂i are not asymptotically
normal.

Proof. Huber (1981, p. 159)

This last theorem is the key to understanding the asymptotic behavior of esti-
mates in the linear model without the assumption of normality of the errors. We
get asymptotic normality as long as the leverages all go to zero as the sample size
increases. If any of the leverages are large, then the asymptotic distribution of
some linear combinations may not be normal.

Theorem 5.4 Li-Duan theorem. Suppose that x has a multivariate distribution,
and without loss of generality, assume that E(x) = 0 and var(x) = I . Suppose
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further that E(y|x) = g(x′β) for some unknown and unspecified smooth function
g. If

E(a′x|b′x) = α0 + α1(b
′x)

for all vectors a and b, or equivalently

E(x|Bx) = PBx

for all matrices of appropriate dimension B. Then the OLS estimate of β from
fitting a linear model with E = R(X) is a consistent estimate of cβ for some
constant c that is typically nonzero.

Proof. We simplify the problem by assuming that (X ′X) = I , and so the
ols estimator is just β̂ = X ′y. This can always be attained by appropriate linear
transformation of the predictors. We examine the expectation of the product xy:

E(xy) = E[E(xy|β′x, y)] . . . iterated expectations
= E[E(x|β′x, y)y]
= E[E(x|β′x)y] . . . conditional independence
= E[(Pβx)y] . . . linear predictors
= Pβ[E(xy)] . . . the projection matrix is constant

We have shown that E(xy) ∈ R(β), so it has expectation cβ for some non-zero
constant c, and so E(X ′y) = cβ.

5.2 The Normal Distribution
Most of linear model theory, for example testing and other inference, will require
some specification of distributions, and, of course the normal or Gaussian distri-
bution plays the central role here.

Definition 5.2 (Univariate Normal distribution) The univariate normal density
with respect to Lebesgue measure is

f(y|µ, σ) =
1√
2πσ

exp
(
− 1

2σ2
(y − µ)2

)
(5.3)

where σ > 0 and −∞ < y < ∞. We usually write y ∼ N(µ, σ2).

Normal distributions depend only on first and second moments; all higher mo-
ments depend only on constants, µ and σ2.
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Definition 5.3 (Multivariate Normal Distribution) A random vector y has a mul-
tivariate normal distribution if a′y has a univariate normal distribution for all
a ∈ <n. If E(y) = µ and Var(y) = Σ, and y has a multivariate normal distribu-
tion, then

a′y ∼ N(a′µ, a′Σa)

so that µ and Σ characterize the multivariate normal and we can write y ∼
N(µ, Σ).

Theorem 5.5 If y ∼ N(µ, Σ) and A : n× p and b : p× 1 are fixed, then

Ay + b ∼ N(Aµ + b, AΣA′).

Proof. Follows from the previous construction method: a′(Ay + b) = (a′A)y +
a′b ∼ N(a′Aµ + a′b, a′AΣA′a) for all a.

5.2.1 Characteristic functions
We define characteristic functions and then give several of their properties without
proof.

Definition 5.4 The characteristic function of a random n-vector z is

ϕz(t) = E(exp(it′z)), t ∈ <n

The characteristic function of the univariate normal, y ∼ N(0, 1) is

E(exp(ity)) = exp(−t2/2) (5.4)

Suppose α is a nonzero scalar, and b is also a scalar. Then

ϕz+b(t) = exp(it′b)ϕz(t) (5.5)
ϕαz(t) = ϕz(αt) (5.6)

Using these two results, the characteristic function of z = µ + σy where y ∼
N(0, 1) is

ϕµ+σy(t) = exp(itµ)ϕy(σt) = exp(itµ− t2σ2/2)

This is the characteristic function of a N(µ, σ2) random variable. For an m × n
matrix A, the characteristic function of Az is

ϕAz(s) = E(exp(is′Az)) = ϕz(A
′s) (5.7)
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where s is m × 1. There is a one to one correspondence between characteristic
functions on <n and distributions on <n, so finding a characteristic function is
equivalent to finding a distribution.

The random vectors w and z are independent if and only if their joint charac-
teristic function factors into a product of their marginal characteristic functions:

ϕ[w,z]

(
t1
t2

)
= ϕz(t1)ϕw(t2) (5.8)

Suppose z1, . . . , zn are independent and identically distributed N(0, 1). Then we
can apply (5.8) to find the characteristic function of z = (z1, . . . , zn) to be

ϕ[z1, . . . , zn](t) =
n∏

i=1

ϕ[zi](ti)

=
n∏

i=1

exp(−t2i /2)

= exp(−t′t/2)

where t = (t1, . . . , tn)′. To find the characteristic function of y = µ+Σ1/2z, which
of course follows a N(µ, Σ) distribution, we need only apply (5.5) and (5.7),

ϕ[y](t) = ϕ[µ+Σ1/2z](t)

= exp(it′µ)ϕ[Σ1/2z](t)

= exp(it′µ)ϕ[z](Σ
′1/2t)

= exp(it′µ− t′Σt/2)

5.2.2 More independence
Theorem 5.6 The n-vector z and the m-vector w are independent if and only if
a′z and b′w are independent for all a ∈ <n and b ∈ <m.

Proof. Homework.
We turn now specifically to the multivariate normal distribution, and consider

arbitrary linear combinations a′y and b′y. We know that, for general distributions,
the notion of uncorrelated is not equivalent to the notion of independent. For the
normal case, however, we can get a stronger result.

Theorem 5.7 (Independence of linear combinations) If y ∼ N(µ, Σ), then a′y
and b′y are independent if and only if they are uncorrelated.
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Proof. a′y and b′y are independent if and only if

ϕ
[a
′
y,b
′
y]

(
t1
t2

)
= ϕ

a
′
y
(t1)ϕb

′
y
(t2) (5.9)

for all t1, t2. The three characteristic functions are easily computed to be

ϕ
[a
′
y,b
′
y]

(
t1
t2

)
= exp(i(t1a

′ + t2b
′)µ− .5(t1a + t2b)

′Σ(t1a + t2b))(5.10)

ϕ
[a
′
y]
(t1) = exp(it1a

′µ− .5t21a
′Σa) (5.11)

ϕ
[b
′
y]
(t1) = exp(it1b

′µ− .5t21b
′Σb) (5.12)

The left-hand side of (5.9) is given by (5.10) and the right-hand side is given by
the product of (5.11) and (5.12). After a little algebra, we will see that these two
are equal if and only if

t1t2a
′Σb = 0

for all t1 and t2. Thus a′y and b′y are independent if and only if a′Σb = 0, or
equivalently, if and only if they are uncorrelated.

Theorem 5.8 (Independence of linear forms) y ∼ N(µ, Σ). Then Ay and By
are independent if and only if AΣB′ = 0. If Σ = I , then the condition is AB′ = 0.

Proof. This is a generalization of the Theorem 5.7. Since y is normally distributed,
so are Ay and By. Then Ay and By are independent if and only if a′Ay and b′By
are independent for all a and b, and by Theorem 5.7, this holds if and only if
a′AΣB′b = 0 for all a and b so AΣB′ = 0.

Theorem 5.9 (Independence of orthogonal projections) Suppose y ∼ N(µ, σ2I),
and P1, . . . , Pk are pairwise orthogonal projections onto M1, . . . , Mk respec-
tively, with

∑
Pi = I or equivalently,

∑R(Pi) = <n. Then:

1. P1y, . . . , Pky are mutually independent random vectors.

2. Piy ∼ N(Piµ, σ2Pi).

Proof. For the first result, PiPj = 0 implies pairwise uncorrelated and hence
independence. Mutual independence follows from factorization of the charac-
teristic function as was done to find the characteristic function of the standard
multivariate normal, from (5.7).
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For the second part of the theorem, we can use a characteristic function argu-
ment, as follows:

ϕ[Piy](t) = ϕy(Pit) = exp(it′Piµ− t′Pit/2)

which we recognize as the unique characteristic function of a N(Piµ, σ2Pi) ran-
dom variable.

We can extend this to looking separated at each dimension of <n separately.
Suppose {x1, . . . , xn} is an orthonormal basis for <n. Then

y =
n∑

i=1

(xi, y)xi =
n∑

i=1

Piy

is the sum of the projections onto each basis vector. By application of Theorem
5.9,

(xi, y) = xi
′y ∼ N(xi

′µ, σ2xi
′Pixi)

Now if Var(y) = σ2I , then Pi = xixi
′, and σ2xi

′Pixi = σ2. Thus each coordi-
nate of y relative to any orthonormal basis is normal with appropriate mean and
variance σ2. These coordinates are independent if the original ys are independent.

Similarly, if Γ is an orthogonal matrix, Cov(y) = σ2I , then Γy ∼ N(Γµ, σ2I).

5.2.3 Density of the Multivariate Normal Distribution
Suppose z1, . . . , zn are iid N(0, 1). Then the density of

z =




z1
...

zn


 ∼ N(0, I)

is

f(z) =
n∏

i=1

1√
2π

exp(−z2
i /2) =

1

(2π)n/2
exp(−z′z/2)

To find the density of Y ∼ N(µ, Σ), for Σ > 0, we use a standard change-of-
variables argument (e.g., Casella and Berger, 1990, Sec. 4.3), and

g(y) =
1

(2π)n/2 det(Σ)1/2
exp

(
−1

2
(y − µ)′Σ−1(y − µ)

)
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5.3 Chi-squared distributions
The chi-squared is the most important of the many distributions that are derived
from the normal distribution. These distributions play a fundamental role in lin-
ear models since the distribution of quadratic forms and in particular lengths of
projections will have distributions related to the chi-squared.

Definition 5.5 (Central chi-squared random variable) Suppose that z1, . . . , zm

are independent and identically distributed (iid) N(0, 1). Then X =
∑m

i=1 z2
i ∼

χ2(m), a central chi-squared random variable with m degrees of freedom (df).

If X ∼ χ2(m), then X has density

f(x) =
x(m−2)/2 exp(−x/2)

2m/2Γ(m/2)

for x ≥ 0, and zero otherwise. The characteristic function is

ϕx(t) = (1− 2it)−n/2

We now add the assumption of normality to the linear model to get distribu-
tions of functions of quadratic forms.

Theorem 5.10 Consider the standard coordinate free normal linear model y ∼
N(µ, σ2I), µ ∈ E of dimension p. Then if P is the orthogonal projection on E ,

‖ P (y − µ) ‖2

σ2
∼ χ2(p)

Proof. Let x1, . . . , xp be an orthonormal basis for E . Then

P (y − µ) =
p∑

i=1

(xi, y − µ)xi

and

‖ P (y − µ) ‖2 =
p∑

i=1

(xi, y − µ)2

But (xi, y−µ) ∼ N(0, σ2), and are independent for each i. Thus (xi, y−µ)/σ2 ∼
N(0, 1), and so the result follows by the definition of the central chi-squared.
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Theorem 5.11 Suppose that E1, . . . , Ek is an orthogonal partition of the p-dimensional
subspace E ⊂ <n, and Pi are the associated orthogonal projection operators, so
E =

∑ Ei, PE =
∑

Pi, and
∑

dim(Ei) = p. Then:

‖ P (y − µ) ‖2

σ2
=

k∑

i=1

‖ Pi(y − µ) ‖2

σ2
(5.13)

where the left side of (5.13) is distributed as a χ2(p), and each term on the right
side is distributed as an independent χ2(dim(Pi)).

Theorem 5.12 In the standard coordinate free normal linear model y ∼ N(µ, σ2I),
µ ∈ E of dimension p, if P is the orthogonal projection on E , then

‖ (I − P )y ‖2

σ2
∼ χ2

n−p

Generalized least squares In the linear model y ∼ N(µ, σ2Σ) with Σ = Σ′ > 0
known, Theorems 5.11–5.12 still hold, if we replace the inner product (a, b) = a′b
with the inner product (a, b)Σ−1 = (a, Σ−1b) and replace the norm ‖ a ‖2 = a′a
by the norm ‖ a ‖2

Σ−1 = a′Σ−1a.

5.3.1 Non-central χ2 Distribution
Definition 5.6 Let z1, . . . , zm be independent N(µi, 1) random variables. Define
X =

∑m
i=1, z

2
i to be a non-central chi-squared random variable with degrees of

freedom m, and non-centrality parameter δ2 =
∑m

i=1, µ
2
i = µ′µ.

The density of X can be written, for x > 0 as:

f(x) =
∞∑

k=0

[
exp(−δ2/2)(δ2/2)k

k!

]
x(2k+m−2)/2 exp(x/2)

2(2k+m)/2Γ[(2k + m)/2)]

This is a Poisson mixture of central χ2s with degrees of freedom 2k +m and with
k ∼ Po(δ2/2). Sometimes, λ = δ2/2, the mean of the Poisson, is used for the
non-centrality parameter.

Suppose that Xi ∼ χ2(mi, δ
2
i ), i = 1, 2. The mean and variance of X1 are

given by

E(X1) = m1 + δ2
1 (5.14)

Var(X1) = 2(m1 + 2δ2
1) (5.15)
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If X1 and X2 are independent, then X1 + X2 ∼ χ2(m1 + m2, δ
2
1 + δ2

2). The
characteristic function of X = X1 is given by

ϕx(t) =
∞∑

k=0

exp(−δ2/2)(δ2/2)k

k!

1

(1− 2it)k+m/2

=
exp(−δ2/2)

(1− 2it)m/2

∞∑

k=0

(δ2/2)[1/(1− 2it)]k

k!

The infinite sum in this last expression is just the sum of terms for the expectation
of a Poisson variate t, where t ∼ Po(δ2/2), so E[1/(1 − 2it)] = exp(δ2/[2(1 −
2it)]). Substituting, we get

ϕx(t) =
1

(1− 2it)m/2
exp

(
δ2

2

[
1

1− 2it
− 1

])

=
1

(1− 2it)m/2
exp

(
δ2it

1− 2it

)

Return to the general coordinate free normal linear model, y ∼ N(µ, σ2Σ)
with Σ = Σ′ > 0 known. Use the norm (a, b)Σ−1 = (a, Σ−1b) and norm
‖ a ‖2

Σ−1 = a′Σ−1a and suppose that P1, . . . , Pk mutually orthogonal projections
and y =

∑
Piy. Then Piy, i = 1, . . . , k are independent:

‖ y ‖2 = ‖ P1y ‖2 + · · ·+ ‖ Pky ‖2

and
‖ Piy ‖2

σ2
∼ χ2(dim(Pi), δ

2
i )

and δ2
i = ‖ Piµ ‖2/σ2.

5.4 The distribution of quadratic forms
Suppose y is a random vector of length n, and A is an n× n matrix. A quadratic
form in y is the quantity y′Ay. We will assume A is symmetric, but this is irrele-
vant since .5(A+A′) is always symmetric, and y′Ay = .5y′(A+A′)y. Quantities
such as these are fundamental in linear models, and we would like to know the
distribution of y′Ay. The following theorem characterizes matrices A for which
y′Ay has a chi-squared distribution.
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Theorem 5.13 Let A denote a matrix of rank p and let z ∼ N(0, I). Then z′Az ∼
χ2(p) if and only if A is an orthogonal projection on a space of rank p.

Proof. Assume A is an orthogonal projection. Then the spectral decomposi-
tion of A is

A = Γ

(
I 0
0 0

)
Γ′

so

z′Az = z′Γ

(
I 0
0 0

)
Γ′z = z′Γ1Γ1

′z

where Γ1 is the first p columns of Γ. Since Γ1
′z ∼ N(0, σ2Γ1

′Γ1), and Γ1
′Γ1 = I ,

so by definition z′Az ∼ χ2(p).
Next, assume z′Az ∼ χ2(p). Again write A in spectral form, but now we do

not assume that A is a projection, so the decomposition is

A = Γ

(
Λ 0
0 0

)
Γ′

and the diagonals of Λ positive but need not all be one. However, by assumption

p∑

i=1

λiz
2
i ∼ χ2(p) (5.16)

and each zi ∼ N(0, 1). We need to show that (5.16) implies that each of the λi

must be equal to 1. This can be done by calculating the characteristic function
of

∑
λiz

2
i and show that this is the characteristic function of χ2(p) if and only if

λi = 1.
A general quadratic form is given by

Q = (y − µ)′G(y − µ) (5.17)

where y ∼ N(µ, Σ), G is an arbitrary real symmetric matrix, and Σ of full rank.
Suppose that B is a square root of Σ, so Σ = BB′. We can write

Q = (y − µ)′B−1BGB′B′−1(y − µ) = z∗′BGB′z∗

where z∗ ∼ N(0, I). Writing the spectral decomposition of BGB′,

Q = z∗′Γ

(
Λ 0
0 0

)
Γ′z∗ = z∗∗′

(
Λ 0
0 0

)
z∗∗
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where z∗∗ = Γz∗ is also N(0, I). Finally, we get

Q =
p∑

i=1

λ2
i z
∗∗2 =

p∑

i=1

λ2
i χ

2(1)

since each of the z∗∗2i have independent χ2(1) distributions, and the λi are the
eigenvalues of BGB′. This shows that the distribution of a general quadratic
form of normal random variables (5.17) is distributed as a sum of χ2(1) random
variables. Johnson and Kotz (1972, Distributions in Statistics: Continuous Uni-
variate Distributions, Vol. II, p. 150–153) provide discussion, and Bowman and
Azzalini (1997, Applied Smoothing Techniques for Data Analysis, p. 87) discusses
computing percentage points for the ratio of two such quadratic forms.

Finally, we give a version of Cochran’s Theorem:

Theorem 5.14 Let A1, . . . , Am by n × n symmetric matrices, and A =
∑

Aj ,
with rank(Aj) = nj . Consider the following four statements:

• Aj is an orthogonal projection for all j.

• A is an orthogonal projection (possibly, A = I).

• AjAk = 0 for all (j, k).

• ∑
nj = n.

If any two of these conditions hold, then all four hold.

The application of this theorem to linear models is that if Theorem 5.14 holds,
and y ∼ N(µ, σ2I), then: Qj = y′Ajy ∼ χ2(nj, µ

′Ajµ/σ2) and Q1, . . . Qm are
independent.

Cochran’s theorem is a standard result that is the basis of the analysis of vari-
ance. If y′Ajy has a Chi-squared distribution, then Aj must be a projection matrix
but this theorem says more. If we can write the total sum of squares as a sum of
sum of squares components, and if the degrees of freedom add up, then the Aj

must be projections, they are orthogonal to each other, and they jointly span <n!

5.5 The Central and Non-Central F -distribution
Suppose that X1 ∼ χ2(n1, δ

2
1) and X2 ∼ χ2(n2, δ

2
2), with X1 and X2 independent.

Define the ratio:

F =
X1/n1

X2/n2

(5.18)
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The distribution of F is called the doubly non-central F -distribution with degrees
of freedom (n1, n2) and non-centrality parameters (δ2

1, δ
2
2). If in (5.18) δ2

2 = 0,
we write F (n1, n2; δ

2
1), and refer to this as the non-central F -distribution. If

δ2
1 = δ2

2 = 0 in (5.18), we write F (n1, n2), and we call (5.18) a central F distribu-
tion. The doubly non-central F arises only in nonstandard situations that we may
encounter later. Standard applications use the central F and the non-central F .

Suppose that f ∼ F (n1, n2, δ
2), then for n2 > 2,

E(f) =
n2(n1 + δ2)

n1(n2 − 2)

and, for n2 > 4, the variance is

V ar(f) = 2
(

n2

n1

)2 (n1 + δ)2 + (n1 + 2δ2)(n2 − 2)

(n2 − 2)2(n2 − 4)

Existence of the third central moment requires n2 > 6. If f ∼ F (n1, n2), so f has
a central distribution, the density of f can be written, for f > 0, as:

h(f) =
n

n1/2
1 n

n2/2
2 f (n1/2−1)

B(n1/2, n2/2)(n2 + n1f)(n1+n2)/2

where B(a, b) = Γ(a)Γ(b)/Γ(a + b) is the beta function. The density of the non-
central F can be written as a Poisson mixture of densities that are proportional to
those of central fs: Write fa,b ∼ F (a, b); ga,b = (a/b)fa,b = χ2(a)/χ2(b); and
f ∼ F (n1, n2, δ

2) and g = χ2(n1, δ
2)/χ2(n2), so f = n2g/n1. Then:

F (g) =
∞∑

k=0

exp(−δ2/2)(δ2/2)k

k!
Ggn1+2k,n2

(f)

The non-central F is not a Poisson mixture of central F s.

5.6 Student’s t distribution
Closely related to the F -distribution is Student’s t-distribution.

Definition 5.7 (Student’s t-distribution) Suppose that z ∼ N(µ, σ2), and s2 ∼
σ2χ2(d) such that z and s2 are independent. Then the ratio

t =
z

s
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is distributed as a non-central Student’s t distribution with d degrees of freedom,
and non-centrality parameter δ = µ2. The central Student’s t-distribution has
µ = 0.

The density function of the central t distribution is

f(t) =
(
d1/2B(1/2, d/2)(1 + t2/d)(d+1)/2

)−1

where B(a, b) is the Beta function. The density is symmetric about zero, has mean
zero, and variance d/(d−2) for d > 2. The case d = 1 corresponds to the Cauchy
distribution. From the definition, we see that t2 ∼ F (1, d), a central F with 1 and
d df.

In the normal linear model y ∼ N(µ, σ2I) with µ ∈ E , a p-dimensional sub-
space, an unbiased estimate of σ2 is given by σ̂2 = y′(I−P )y/(n−p). Let a′µ̂ be
the estimator of an estimable function, and so a′µ̂ ∼ N(a′µ, σ2a′Pa), independent
of σ̂2. Hence the ratio

t =
a′µ̂− a′µ

σ̂
√

a′Pa

is distributed as Student’s t with n− p df.


