
Chapter 4

Linear Models

4.1 Random vectors and matrices

Definition 4.1 Ann × p matrixZ = (zij) is a random matrixif its elements are
random variables defined on some probability space. Arandom vectoris a random
matrix with one column, which we will generally denote with alower case letter
like z.

The expectation E(Z) is defined element-wise:

Definition 4.2 E(Z) = [E(zij)].

For vectors,p = 1, the variance Var(z) is defined as

Definition 4.3 Var(z) = (Cov(zi, zj)) = Σ = (σij), ann× n symmetric matrix.

The following results are stated generally without any attempt at formalism;
proofs are left as exercises. LetA, B, C, a, b, . . . be fixed with dimensions that
should be clear from context.Z, y, andz are random. Then:

Theorem 4.1 E(AZB) = AE(Z)B

Theorem 4.2 Var(z) = Σz = E(z − Ez)(z − Ez)′

Theorem 4.3 If z is n× 1 then Var(z + c) = Var(z).
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Theorem 4.4 If z is n× 1 andB is n× p, let z = By, soy is p× 1. If E(y) = µ
and Var(y) = Σ, then

E(z) = BE(y) and Var(z) = BΣB′

Definition 4.4 If y is ann×1 random vector, andB is ann×n symmetric matrix,
theny′By is called aquadratic form.

Theorem 4.5 If b1 andb2 arem×1 vectors, then Var(b1, y) = Var(b1′y) = b1
′Σb1

and Cov((b1, y), (b2, y)) = Cov(b1′y, b2′y) = b1
′Σb2.

Definition 4.5 (Uncorrelated) Letz1 andz2 bel× 1 andm× 1 random vectors.
Thenz1 andz2 areuncorrelatedif for all d1 ∈ ℜl and alld2 ∈ ℜm,

Cov(d1
′z1, d2

′z2) = 0

Theorem 4.6 Suppose thaty ∈ ℜn, E(y) = µ and Var(y) = Σ. Thenz1 = B1y
andz2 = B2y are uncorrelated if and only ifB1ΣB2

′ = 0.

Proof.

Cov(d1
′z1, d2

′z2) = Cov(d1
′B1y, d2

′B2y)

= (d1
′B1)Σ(d2

′B2)
′

= d1
′(B1ΣB2

′)d2

which is zero for alld1, d2 if and only ifB1ΣB2
′ = 0.

Theorem 4.7 LetP be an orthogonal projection onto some subspace ofℜn,Q =
I − P , and lety be a randomn-vector with Var(y) = σ2I. Then:

1. Var(Py) = σ2P 2 = σ2P

2. Var(Qy) = σ2Q2 = σ2Q

3. Cov(Py,Qy) = 0 (becausePQ = 0).

Theorem 4.8 If Pi, i = 1, . . . , m are orthogonal projections such thatI =
∑
Pi,

andy is a randomn-vector with Var(y) = σ2I and E(y) = µ, then

1. E(Piy) = Piµ
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2. Piy andPjy are uncorrelated (by Theorem 2.31, ifP =
∑
Pi, andP and

all thePi are projections, thenPiPj = 0, i 6= j).

3. Var(Piy) = σ2Pi.

4. ‖ y ‖2 = ‖
∑
Piy ‖

2 =
∑

‖ Piy ‖
2 =

∑
y′Piy.

Theorem 4.9 Lety be a randomn-vector with E(y) = µ, Var(y) = Σ. Then:

E(y′My) = E(tr(y′My)) = tr(E(yy′M))

= tr(Σ + µµ′)M = µ′Mµ+ tr(ΣM)

In particular, ifM is an orthogonal projection withµ = 0 andΣ = σ2I, then
tr(ΣM) = tr(M) = ρ(M), the dimension ofR(M),

E(y′My) = σ2ρ(M)

4.2 Estimation

Let y ∈ ℜn be a randomn × 1 vector with E(y) = µ and Var(y) = σ2I. The
standard linear model assumes thatµ is a fixed vector that is in anestimation space
E ⊂ ℜn. The standard linear model requires only that the first two moments of
y be specified. Normality is more that we need. The orthogonal complementE⊥

will be called theerror space.
For now, we will use the canonical inner product and norm:

(z1, z2) = z1
′z2

‖ y −m ‖2 = (y −m)′(y −m) (4.1)

Definition 4.6 (Ordinary least squares) The ordinary least squares estimator (ols)
µ̂ of µ minimizes (4.1) over allm ∈ ℜn.

We have seen before that (4.1) is minimized by settingµ̂ = PEy, which is
a random variable becausey is random. The following theorem gives the basic
properties of̂µ.
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Theorem 4.10 If y is a randomn-vector such that E(y) = µ ∈ E , Var(y) =
σ2I, dim(E) = p, andµ̂ is the ordinary least squares estimator ofµ, then:

1. E(µ̂) = µ and E(y − µ̂) = 0,

2. ‖ y − µ ‖2 = ‖ µ̂− µ ‖2 + ‖ y − µ̂ ‖2.

3. E(‖ y − µ ‖2) = nσ2

4. E(‖ µ̂− µ ‖2) = pσ2

5. E(‖ y − µ̂ ‖2) = (n− p)σ2

Proof

1. µ̂ = Py ⇒ E(µ̂) = PE(y) = Pµ = µ.

2. Writey = Py +Qy, soy − µ = P (y − µ) +Qy sinceµ ∈ E . SinceP and
Q are orthogonal, (2) follows.

3. E(‖ y − µ ‖2) = E(y − µ)′(y − µ) = E(tr(y − µ)(y − µ)′) = tr(E(y −
µ)(y − µ)′) = nσ2.

4. Applying Theorem 4.9 withΣ = I, E(‖ µ̂− µ ‖2) = E(‖ P (y − µ) ‖2) =
E(y − µ)′P (y − µ) = 0 + σ2tr(P ) = pσ2.

5. E(‖ y − µ̂ ‖2) = (n− p)σ2 follows from 2, 3 and 4.

Theorem 4.11 ‖ y − µ̂ ‖2/(n− p) is an unbiased estimate ofσ2.

We call‖ y − µ̂ ‖2 theresidual sum of squares.
Example. Simple random sample. Suppose thaty is n× 1, Var(y) = σ2I and

E(y) = Jnβ, with β an unknown parameter, andJn is ann× 1 vector of all ones.
This says each coordinate ofy has the same expectation andE = R(Jn). The
matrix of the projection ontoR(Jn) is

PR(1) =
JnJn

′

Jn
′Jn

=
1

n
JnJn

′

and µ̂ = Py = (1/n)JnJn
′y = ȳJn, the sample mean timesJn. The vector of

residuals isQy = (I − P )y = y − ȳJn = (yi − ȳ), and ȳJn and(yi − ȳ) are



4.3. BEST ESTIMATORS 65

uncorrelated. In addition,‖ Qy ‖2 =
∑

(yi − ȳ)2 = (n − 1)s2; E(‖ Qy ‖2) =
σ2(dim(E⊥)) = (n− 1)σ2.

Example. General fixed effects model.The general coordinate-free fixed effect
linear model is specified by

Y = µ+ ε, E(ε) = 0, Var(ε) = σ2I, µ ∈ E (4.2)

where the estimation spaceE ⊂ ℜn. It follows immediately that̂µ = PY and
Var(µ̂) = σ2P . The residuals are given bye = Y − µ̂ = QY , with variance
Var(e) = σ2Q. The unbiased estimate ofσ2 is σ̂2 = QY/(n− dim(E)).

In practice, the spaceE in most problems is specified by selecting a particular
matrixX whose columns spanE , R(X) = E . Thus, anyµ ∈ E can be written as
µ = Xβ for somep× 1 vector of coordinatesβ. We now have that

E(y) = µ = Xβ

The coordinatesβ will be unique if the columns ofX form a basis forE ; other-
wise, they will not be unique; can you describe the set of all possibleβs? We can
use the results of the previous chapter to find explicit formulas forP andQ using
one of the orthogonal decompositions from the last chapter.For example, using
the QR-factorization,X = Q1R, P = Q1Q1

′ andQ = I − P .

4.3 Best Estimators

We next consider the question of best estimators of linear combinations of the
elements ofµ, (b, µ) = b′µ for b ∈ ℜn, a fixed vector. A general prescription for
a “best” estimator is quite difficult since any sensible notion of the best estimator
of b′µ will depend on the joint distribution of theyis as well as on the criterion of
interest. We will limit our search for a best estimator to theclass of linear unbiased
estimators, which of course vastly simplifies the problem, and allows a solution to
the problem that only depends on the first and second moment assumptions that
are part of the standard linear model.

Definition 4.7 (Linear unbiased estimators)An estimator ̂(b, µ) is linear iny if

̂(b, µ) = (c, y), y ∈ ℜn

A linear estimator(c, y) is unbiased for(b, µ) if E(c, y) = (b, µ) for all µ ∈ E .
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An unbiased estimator exists since E(b, y) = (b,E(y)) = (b, µ) for all µ ∈ E .
We cannot expect, however, that(b, y) will be the best estimator of(b, µ). Here
is an example. In the single sample case, we haveµ ∈ E = R(Jn). Suppose
b′ = (0, 0, 1, 0, . . . , ). Now b′y = y3 is unbiased forµ, but it is not very efficient
because it ignores all other elements ofy. For example,̄y has smaller variance, so
if the notion of “best” depends on variance,(b, y) will not be best.

Theorem 4.12 (c, y) is unbiased for(b, µ) if and only ifPc = Pb. (Recall theP
is the orthogonal projection onE .)

Proof. AssumePc = Pb. Then

E(c, y) = (c, µ) = (c, Pµ) = (Pc, µ) = (Pb, µ) = (b, Pµ) = (b, µ)

and so it is unbiased. Next, assume that E(c, y) = (b, µ) for all µ ∈ E . Then
(c, µ) = (b, µ) implies that(c− b, µ) = 0 and thusc− b ∈ E⊥. We then must have
thatP (c− b) = 0 and finallyPc = Pb.

An immediate consequence of this theorem is:

Theorem 4.13 (c, y) is unbiased for(b, µ) if and only if

c = b+QEz for somez ∈ ℜn.

This follows from Theorem 4.12. The set of all linear unbiased estimators forms
a flat.

In the one sample case,Q = I − JnJn
′/n, soc is of the formb + (z − z̄Jn)

with b and any vectorz ∈ ℜn. For the special case ofn = 3 with b′ = (1, 0, 0),
here are some unbiased estimates:

1. If z = (0, 0, 0)′ thenc = b+Qz = b.

2. If z = (−2/3, 1/3, 1/3)′ thenc = b+Qz = (1/3, 1/3, 1/3)′.

3. If z = (−4,+4, 0′) thenc = b+Qz = (−3, 4, 0)′

4. If z = (z1, z2, z3)
′, thenc = (1 + z1 − z̄, z2 − z̄, z3 − z̄)′.

Among the class of linear unbiased estimates, the one with the smallest vari-
ance will be considered the best estimator.

Definition 4.8 (Best linear unbiased estimates)(c, y) is a best linear unbiased
estimate (BLUE) of (b, µ) if
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1. E(c, y) = (b, µ)

2. Var(c, y) ≤ Var(c′, y) for all c′ such thatPc′ = Pb.

Theorem 4.14 The uniqueBLUE of (b, µ) is (Pb, y).

In the single sample case we have been considering,Pb = JnJn
′b/n = b̄Jn and

(Pb, y) = (b̄Jn, y) = nb̄ȳ. In particular, ifb′Jn = Jn, then theBLUE is ȳ.
Proof. If (c, y) is an unbiased estimator of(b, µ), then we must have that

c = b+Qz for somez ∈ ℜn. We can now compute

c = b+Qz

= Pb+Qb+Qz

= Pb+Q(b+ z)

= Pb+Qw

wherew = b+ z ∈ ℜn. Now for an estimator to beBLUE, it must have minimum
variance, and for anyw, since(Py,Qy) = 0,

Var(c, y) = Var(Pb+Qw, y)

= Var(Pb, y) + Var(Qw, y)

≥ Var(Pb, y)

with equality whenw = 0.
The BLUE (Pb, y) of (b, µ) is often called theGauss-Markov estimateand

Theorem 4.14 is called theGauss-Markov theorem. Since Gauss and Markov
lived in different centuries, they did not collaborate.

As a special case of the Gauss-Markov theorem, suppose thatb ∈ E , soPb =
b. Then the uniqueBLUE is (Pb, y) = (b, y). For example, in the one-sample case,
we will haveb ∈ E if b = kJn for some nonzero constantk, and then theBLUE of
b′µ is justb′y = (k/n)ȳ.

By the symmetry of the projection matrixP , (Pb, y) = (b, Py) = (b, µ̂), so
we can compute theBLUE by replacingµ by µ̂. The variance of the Gauss-Markov
estimator is Var(Pb, y) = σ2‖ Pb ‖2 = σ2b′Pb = Var(b, µ̂).

4.3.1 The one-way layout

The one way layout is perhaps the simplest nontrivial example of a linear model,
and it deserves careful study because most other fixed effects linear models can
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often be best understood relative to the one way layout. One parameterization of
this model is

yij = βi + εij, i = 1, . . . , p; j = 1, . . . , ni

where theβi are fixed, unknown numbers, and theεij are random, such that
E(εij) = 0; Var(εij) = σ2 and Cov(εij, εi′j′) = 0 unlessi = i′ and j = j′.
A matrix representation of this problem is

y = Xβ + ε

whereε is ann× 1 vector,n =
∑
ni, and

y =




y11
...

ypnp




X =




1n1
0n1

· · · 0n1

0n2
1n2

· · · 0n2

...
...

...
...

0np
0np

· · · 1np




β =




β1
...
βp




It is often convenient to writeX = (X1, . . . , Xp), so thatXi is thei-th column of
X. With this parameterization the columns ofX are linearly independent, and in
fact are orthogonal, so they form an orthogonal basis for theestimation spaceE .
In general linear models, or in other parameterizations of this model, the columns
of the design matrixX are often linearly dependent.

Given the orthogonal basis, not an orthonormal basis because of scaling, we
can easily calculatêµ = Py by projecting on each column ofX separately. The
result is:

µ̂ =
p∑

i=1

(Xi, y)

‖ Xi ‖
2Xi =

p∑

i=1

ȳi+Xi =




Jn1
ȳ1+
...

Jnp
ȳp+




where we use the convention that putting a bar over a symbol implies averaging,
and replacing a subscript by a “+” implies adding: thus, for example,ȳ3+ is the
average(1/n3)

∑n3

j=1 y3j. Also,

QY = (I − P )Y = (yij − ȳi+) = residuals.
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Since E(‖ Qy ‖2) = dim(E⊥)σ2 = (n− p)σ2,

σ̂2 =
‖ Qy ‖2

n− p
=

1

n− p

p∑

i=1

ni∑

j=1

(yij − ȳi+)2

is an unbiased estimator ofσ2.
To obtain Var(µ̂) = σ2P , we must obtain an expression forP . By the orthog-

onality of theXi, we can write

P =
p∑

i=1

XiXi
′

Xi
′Xi

from which we can get an explicit expression forP as

P =




Pn1
· · · 0n1

...
. . .

...
0n1

· · · Pnp


 = diag(Pni

)

which is a block diagonal matrix withPni
= Jni

Jni

′/ni. EachPni
is itself an

orthogonal projection forR(Jni
) ⊂ ℜni (and tr(Pni

) = 1). Also,

‖ Py ‖2 =
∑

‖ Pni
yi ‖

2 =
p∑

i=1

niȳ
2
i+

whereyi is theni × 1 vector(yi1, . . . , yini
)′, and tr(P ) =

∑
tr(Pni

) = p. From
Theorem 4.1,

E(‖ Py ‖2) = tr(σ2P ) + µ′Pµ = pσ2 + µ′µ = pσ2 +
∑

niβ
2
i

These may not be the answers you expected or find useful. Why not? We
have definedR(X) to include the overall mean, and so the expected length of the
projection onto this space is larger than a multiple ofσ2 even if all theβi are equal.
We can correct for this by projecting on the part ofE orthogonal to the column of
ones.

The space spanned by the overall mean is justR(Jn) with P1 = JnJn
′/n, and

hence the projection on the part of the estimation space orthogonal to the overall
mean isP ∗ = (I − P1)P = P − P1P . We must have thatPP1 = P1, and so by
direct multiplicationP ∗ is an orthogonal projection, and

P1Py = P1




Jn1
ȳ1+
...

Jnp
ȳp+


 = (

p∑

i=1

niȳi+/n)Jn =




ȳ++
...

ȳ++
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and the regression sum of squares is

‖ P ∗y ‖2 = ‖ Py ‖2 + ‖ PP1y ‖2 − 2(Py, PP1y)

= ‖ Py ‖2 − ‖ PP1y ‖2

=
p∑

i=1

niȳ
2
i+ − nȳ2

++

=
p∑

i=1

ni(ȳi+ − ȳ++)2

which is the usual answer for the projection. The expected length is

E(‖ P ∗y ‖2) = (p− 1)σ2 +
∑

ni(βi − β̄)2

whereβ̄ =
∑
niβi/n is the weighted mean of theβs. When all theβi are equal,

this last sum of squares is zero, and E(‖ P ∗y ‖2) = (p− 1)σ2.
The quantity(c, µ) is just some linear combination of the elements ofµ, or,

for the one way layout, any linear combination of the group means. If we want
to estimate (c, µ), then theBLUE estimator is(Pc, y) = (c, µ̂). For example, if
c′ = (1, 0, 0, . . . , 0), then(c, µ̂) = ȳ1+ and Var((c, µ̂)) = σ2c′Pc = σ2/n1.

4.4 Coordinates

The estimation spaceE can be viewed as the range space of ann×p matrixX, so
any vectorµ ∈ E can be written asµ =

∑
βjXj, where theXj are the columns of

X. If X is of full rank, then the columns ofX form a basis and theβj are unique;
otherwise, a subset of the columns forms a basis and theβj are not unique. The
vector(β1, . . . , βp) provides thecoordinatesof µ relative toX. Our goal now is
to discusŝβ and its relationship tôµ.

1. Sinceµ̂ ∈ E , we can writêµ =
∑
β̂iXi = Xβ̂ for some set̂βi. If theXi are

linearly dependent, thêβi are not unique.

2. Qy = (I − P )y = y − Py = y − µ̂ ∈ E⊥. This is a just an expression for
the residuals.This computation does not depend in any way on coordinates,
only on the definition ofE .

3. (y − µ̂) ⊥ Xi, for all i. Equivalently, this says that the residuals are or-
thogonal to all columns ofX, (y − µ̂, Xi) = 0, even if theXi are linearly
dependent. This is also independent of coordinates.
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4. SincePXi = Xi, we have that(y,Xi) = (y, PXi) = (Py,Xi) = (µ̂, Xi).

5. Using the default inner product, this last result can be written asXi
′y =

Xi
′µ̂.

6. If we substitute from point 1 for̂µ, we findXi
′y = Xi

′Xβ̂.

7. Finally rewriting 6 for alli simultaneously,

X ′y = (X ′X)β̂ (4.3)

Equations (4.3) are called thenormal equations. Their solutionβ̂ gives the coor-
dinates ofµ̂ relative to the columns ofX. If the columns ofX are linearly inde-
pendent, the normal equations are consistent becauseX ′y ∈ R(X ′) = R(X ′X),
and a unique solution exists. The solution is found by multiplying both sides of
the normal equations by(X ′X)−1 to get

β̂ = (X ′X)−1X ′y (4.4)

although this formula should almost never be used for computations because in-
verting a matrix can be highly inaccurate. IfX = Q1R is the QR-factorization of
X, then we get

β̂ = ((Q1R)′(Q1R))−1(Q1R)′y = (R′R)−1R′Q′

1y = R−1Q1
′Y

which can be solved by first computing thep×1 vectorz = Q1
′Y , and then using

backsolving forβ̂ to solveRβ̂ = z.
If theXs are not linearly independent but lie in a space of dimensionq, then

the least squares estimates ofβ are not unique. We first find one solution, and
then will get the set of all possible solutions. Recall that,by definition, ifA− is a
generalized inverse of a matrixA, andAA−y = y for all y. Hence, the vector

β̂0 = (X ′X)−X ′Y

must be a solution since(X ′X)β̂0 = (X ′X)(X ′X)−X ′Y = X ′Y . To get the set
of all solutions, we can let the generalized inverse vary over the set of all possible
generalized inverses. Equivalently, consider all vectorsof the formβ̂0 + z. If this
is to be a solution, we must have that

X ′Y = (X ′X)(β̂0 + z) = X ′Y + (X ′X)z
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so we must have
(X ′X)z = 0

andz can be any vector in the null space ofX ′X. The set of all possible solutions
is a flat specified by

β̂0 + N(X ′X) = β̂0 + R(X ′)⊥

The set of all least squares solutions forms a flat inℜp of dimensionp− q, where
q is the dimension of the column space ofX.

Definition 4.9 A vectorβ̂ is an ordinary least squares (OLS) estimate ofβ if

Xβ̂ = µ̂ = Py

Any solution of the normal equations is an ordinary least squares estimator ofβ.

We now turn to moments of̂β. In the full rank case,ρ(X) = p, and β̂ =
(X ′X)−1X ′y is unique. We can then compute

E(β̂) = E[(X ′X)−1X ′y] = (X ′X)−1X ′Xβ = β

and

Var(β̂) = Var((X ′X)−1X ′y)

= (X ′X)−1X ′Var(y)X(X ′X)−1

= σ2(X ′X)−1 (4.5)

In the less than full rank case the coordinatesβ are not unique, and so the moments
will depend on the particular way we choose to resolve the linear dependence.
Using the Moore-Penrose inverse,

β̂ = (X ′X)+X ′y

where(X ′X)+ = ΓD+Γ′, andΓDΓ′ is the spectral decomposition ofX ′X, D
is a diagonal matrix of nonnegative numbers, andD+ is a diagonal matrix whose
nonzero elements are the inverses of the nonzero elements ofD. We can find the
expectation of this particular̂β,

E(β̂) = E((X ′X)+X ′y) = (X ′X)+X ′Xβ

= ΓD+Γ′ΓDΓ′β

= ΓD+DΓ′β
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= Γ

(
I 0
0 0

)
Γ′β

= Γ1Γ1
′β

= (I − Γ2Γ2
′)β

= β − Γ2Γ2
′β

whereΓ = (Γ1,Γ2), andΓ1 is the columns corresponding to the nonzero diagonals
of D. In general, then, the ordinary least squares estimator is not unbiased, and
the bias is given by

Bias= β − E(β̂) = Γ2Γ2
′β

Γ2 is an orthonormal basis for N(X ′X).
We next turn to estimation of a linear combination(c, β) = c′β of the elements

of β. The natural estimator is the same linear combination of theelements of̂β,
so ˆc′β = c′β̂. Since the columns ofΓ are a basis forℜp, anyp-vectorc can be
written uniquely asc = Γ1d1 + Γ2d2. Then,

E(c′β̂) = (Γ1d1 + Γ2d2)
′Γ1Γ1

′β

= d1
′Γ1

′β

= (c′ − d2
′Γ2

′)β

= c′β − d2
′Γ2

′β

and the bias for the linear combination is

Bias= d2
′Γ2

′β (4.6)

The bias will be zero when (4.6) is zero, and this can happen for all β only if d2

= 0. This says thatc must be a linear combination of only the columns ofΓ1, and
these columns form an orthonormal basis forR(X ′X), so to get unbiasedness we
must havec ∈ R(X ′X) = R(X ′).

Next, we turn to variances, still in the general parametric case withX less than
full rank. For the ols estimate based on the Moore-Penrose generalized inverse,
compute

Var(β̂) = σ2(X ′X)+X ′X(X ′X)+

= σ2(X ′X)+

= σ2

(
Γ

(
∆−1 0
0 0

)
Γ′

)

= σ2

(
(Γ1,Γ2)

(
∆−1 0
0 0

)
(Γ1,Γ2)

′

)
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This variance covariance matrix is singular in general. This means that for some
linear combinationsc′β̂, we will have Var(c′β̂) = 0. Now for any linear combina-
tion, again writec = Γ1d1 + Γ2d2, and we find

Var(c′β̂) = σ2c′Γ1∆
−1Γ1

′c

= σ2d1
′∆−1d1

and this will be zero ifd1 = 0, or equivalently ifc = Γ2d2, orc ∈ R(Γ2) = N(X)!
As a simple example, consider the two sample case, with the matrix X given

by

X =




1 1 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1




son = 6, E = R(X), ρ(E) = 2. The matrixX ′X is, using R,

> XTX
[,1] [,2] [,3]

[1,] 6 3 3
[2,] 3 3 0
[3,] 3 0 3

The spectral decomposition of this matrix can be obtained using svd in R:

> S <- svd(XTX) # spectral decomposition of XTX
> print(S,digits=3)
$d
[1] 9.00e+00 3.00e+00 1.21e-32

$u
[,1] [,2] [,3]

[1,] -0.816 -5.48e-17 -0.577
[2,] -0.408 -7.07e-01 0.577
[3,] -0.408 7.07e-01 0.577

$v
[,1] [,2] [,3]
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[1,] -0.816 -2.83e-17 0.577
[2,] -0.408 -7.07e-01 -0.577
[3,] -0.408 7.07e-01 -0.577
> Gamma1 <- S$u[,c(1,2)]
> Gamma2 <- S$u[,3]

We can compute the Moore Penrose g-inverse as

> XTXMP <- Gamma1 %* % diag( 1/S$d[c(1,2)]) % * % t(Gamma1)
> XTXMP # Moore-Penrose G-inverse, and Var(\betahat)/\sig maˆ2

[,1] [,2] [,3]
[1,] 0.07407407 0.03703704 0.03703704
[2,] 0.03703704 0.18518519 -0.14814815
[3,] 0.03703704 -0.14814815 0.18518519

The Moore-Penrose inverse is singular since it has only two nonzero eigenvalues.
Let c1′ = (0, 1,−1). Apart fromσ2, the variance ofc1′β̂ is

> C <- c(0,1,-1)
> t(C) % * % XTXMP %* % C
[1,] 0.6666667

If c2′ = (1,−1,−1),

> C <- c(1,-1,-1)
> t(C) % * % XTXMP %* % C
[1,] -2.775558e-17

which is zero to rounding error. The conditionΓ2
′c1 = 0 shows thatc1 is in the

column space ofΓ1, while Γ1
′c2 = 0 shows thatc2 is in the column space ofΓ2.

4.5 Estimability

The results in the last section suggest that some linear combinations ofβ in the
less than full rank case will not be estimable.

Definition 4.10 (Estimability) The linear parametric functionc′β is anestimable
function if there exists a vectora ∈ ℜn such that

E(a′y) = c′β for anyβ.
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If X is of full column rank then all linear combinations ofβ are estimable, since
β̂ is unique; that is, takea′ = c′(X ′X)−1X ′. The following is the more general
result:

Theorem 4.15 c′β is estimable if and only ifc ∈ R(X ′). That is, we must have
c = X ′λ for someλ ∈ ℜn.

Proof. Supposec′β is estimable. Then there exists ana ∈ ℜn such that

E(a′y) = c′β for all β

But
E(a′y) = a′Xβ = c′β for all β.

Thus (c′ − a′X)β = 0 for all β and thereforec = X ′a. Hence,c is a linear
combination of the columns ofX ′ (or of the rows ofX), c ∈ R(X ′).

Now supposec ∈ R(X ′). Then for someλ,

c′β = λ′Xβ = λ′E(y) = E(λ′y),

soλ′y is an unbiased estimator ofc′β for all β, and thusc′β is estimable.
The next theorem shows how to get best estimators for estimable functions.

Theorem 4.16 (Gauss-Markov Theorem, coordinate version)If c′β is an es-
timable function, thenc′β̂ is the uniqueBLUE of c′β.

Proof. Sincec′β is estimable, we can find aλ such thatc = X ′λ and thusc′β =
λ′Xβ = λ′µ. This shows thatc′β is estimable if this linear combination of the
elements ofβ is equivalent to a linear combinationλ′µ of the elements of the
mean vector. This is the fundamental connection between thecoordinate-free and
coordinate version.

By Theorem 4.14,λ′µ̂ = λ′Py is theBLUE of λ′µ. Further,λ′Py = λ′Xβ̂
is invariant under the choice of̂β (why?). Thus we immediately have thatλ′µ̂ =
λ′Xβ̂ = c′β̂ is BLUE, and for each fixedλ it is unique.

Can there be more than oneλ? The set of all solutions toX ′λ = c is given by:

λ = (X ′)+c+ (I − P )z for z ∈ ℜn

= (X ′)+c+ (I −X ′(X ′)+)z for z ∈ ℜn
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so the set ofλs forms a flat. However, since(X ′)+ = (X+)′,

λ′Xβ̂ = [c′X+ + z′(I − P )]Xβ̂ = c′X+Xβ̂ + z′(I − P )Xβ̂

= c′β̂

sincec ∈ R(X ′) (required for estimability) andX+X is the orthogonal projection
operator forR(X ′), and(I−P )X = 0. So, althoughλ is not unique, the resulting
estimatorc′β̂ is unique.

Theorem 4.17 Linear combinations of estimable functions are estimable.The
BLUE of a linear combination of estimable functions is the same linear combina-
tion of theBLUEs of the individual functions.

Proof Let ci′β be estimable functions,i = 1, 2, . . . , k with BLUEs ci′β̂. Setψ =∑k
=1 aici

′β, for theai fixed scalars. Then:

ψ = a′




ci
′β
...

ck
′β


 = a′




ci
′

...
ck

′


 β = d′β

Thusd′β is theBLUE of ψ if d ∈ R(X ′). But d =
∑
aici, and eachci ∈ R(X ′),

soψ is estimable.

4.5.1 One Way Anova

We return to one-way anova, now given by

yij = µ+ αi + εij

i = 1, . . . , p; j = 1, . . . , n, without imposing the “usual constraints” of
∑
αi = 0,

and also without dropping one of the columns ofX to achieve full rank. The
model is over-parameterized, since there arep + 1 parameters, but the estimation
spaceE has dimensionp. Let y = (y11, y12, . . . , ypn)

′, β ′ = (µ, α1, . . . , αp)
′, and

X = (Jn, X1, . . . , Xp), where each vectorXj has elements one for observations in
groupj, and 0 elsewhere. The linear model isY = Xβ + ε, and sinceJn =

∑
Xi,

the model is not of full rank.
First, we find the set of all ordinary least squares estimates. The first step is to

find any one estimate, which we will call̂β0. This can be done in several ways,
for example by finding the Moore-Penrose inverse ofX ′X, but for this problem
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there is a simpler way: simply set the first coordinateµ̂0 of β̂0 to be equal to zero.
This reduces us to the full rank case discussed in Section 4.3.1. It then follows
immediately that̂αi = ȳi+, and thus

β̂0 =




0
ȳ1+

...
ȳp+




is a least squares estimate. Any solution is of the formβ̂0 + z, wherez is in the
null space ofX ′X, soz is a solution to

0 = X ′Xz =




np n · · · n
n n · · · 0
...

... · · ·
...

n 0 · · · n



z

Solution to these equations is anyz such thatz = k(1,−1, . . . ,−1)′ for somek,
soβ̂ must be of the form

β̂ =




0
ȳ1+

...
ȳp+




+ k




1
−1
...

−1




Settingk = ȳ++, the grand mean, gives the “usual estimates” obtained when
constraining

∑
α̂i = 0.

We turn now to estimability. Forc′β to be estimable in general, we must have
thatc ∈ R(X ′), or c must be a linear combination of the rows ofX, so it is of the
form:

c = c1




1
1
0
...
0




+ c2




1
0
1
...
0




+ · · ·+ cp




1
0
0
...
1




=




∑
ci
c1
c2
...
cp




Soc′β = (
∑
ci)µ+c1α1+· · ·+cpαp. Thus, we can conclude that, in this particular

parameterization of the one way model:
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• µ is not estimable.

• αi is not estimable.

• µ+ αi is estimable.

•
∑
diαi is estimable if

∑
di = 0.

What are the estimates? We can pick any solution to the normalequations and
form c′β̂, and the answer is always the same.

4.6 Solutions with Linear Restrictions

So far we have shown that if the model has less than full rank, the estimate ofβ can
be biased in general, and that only certain linear combinations ofβ are estimable.
Those linear combinations correspond to linear combinations of the elements of
the mean vectorµ. This suggests several sensible approaches to the problem of
estimation with rank deficient models.

One possibility is to choose anŷβ and proceed with the characterizations and
use of estimable functions. This is potentially complex, especially in unbalanced
models with many factors. The book by Searle (1971), for example, exemplifies
this approach.

As an alternative, one can consider redefining the problem asfollows. Given
a fixed linear modelY = Xβ + ε with X less than full rank, find an appropriate
basis forE = R(X). If that basis is given by{z1, . . . , zr}, and the matrix whose
columns are thezi is Z, then fit the full rank modelY = Zγ + ε. All estimable
functions in the original formulation are of course still estimable. This of course
corresponds exactly the coordinate-free approach that is at the heart of these notes.

In the one-way anova example, we can simply delete the columnof 1s to
produce a full rank model. R, JMP and Arc setα1 = 0 to get a full rank model,
but Splus and SAS use a different method, at least by default.

Occasionally, theβs may have some real meaning and we don’t wish to re-
move columns fromX. In this case we might produce a unique full rank solution
by placing restrictions onβ of the form

di
′β = 0

The restricted normal equations are then

X ′Xβ̃ = X ′y
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di
′β̃ = 0, i = 1, 2, . . . , t ≥ p− r

To choose thedi, it makes sense to require that the estimable functions in the
original problem be the same as those in the constrained problem. We know that
c′β is estimable if and only ifc ∈ R(X ′), so this is equivalent todi 6∈ R(X ′).
Otherwise, we would be restricting estimable functions.

For a general statement, let∆′ = (d1, . . . , dt), t ≥ p − r be the matrix speci-
fying the restrictions. Then:

Theorem 4.18 The system:

(
X ′X
∆

)
β =

(
X ′y
0

)

has a unique solution̂β if and only if:

1. ρ

[(
X
∆

)]
= p

2. R(X ′) ∩ R(∆′) = 0. This says that all functions of the forma′∆β are not
estimable.

The unique solution can be computed as

β̂ = (X ′X + ∆′∆)−1X ′µ̂ (4.7)

whereµ̂ = Py is the projection on the estimation space.

Proof. Only an informal justification is given. Part 1 guarantees the uniqueness
of a solution. The set of solutions to the unrestricted normal equations is given by
β̂0 + N(X ′X) for someβ0. If we can we ensure that the solution to the restricted
normal equations, which is now unique, is an element of this flat, we are done.
As long as the rows of∆ lie in the space N(X ′X), then a restriction is placed
onN(X ′X) but not onR(X ′). Thus, Part (1) ensures uniqueness, and Part (2)
ensures that the resulting estimate is an element of the original flat.

The estimable functions given restrictions are the same as those in the original
problem.
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4.6.1 More one way anova

For the one way anova model withp levels andni observations in leveli, the
“usual constraint” is of the form

∑
aiαi = 0. Most typically, one takes all the

ai = 1, which comes from writing:

yij = µi + εij

= µ̄+ (µi − µ̄) + εij

= µ+ αi + εij

Now µ̂ = Py = (ȳ1+Jn1
, . . . , ȳp+Jnp

)′, and sinceX = (J,X1, . . . , Xp),

X ′µ̂ =




y++

y1+
...
yp+




X ′X =




∑
ni n1 · · · np

n1 n1 · · · 0
...

. . .
np 0 · · · np




If we impose the usual constraint
∑
αi = 0, we get

∆′∆ =




0
1
1
...
1




(0, 1, · · · , 1)

and

X ′X + ∆′∆ =




∑
ni n1 · · · np

n1 n1 + 1 · · · 1
...

. . .
np 1 · · · np + 1




In thebalancedcase,n1 = · · · = np = n, this matrix can we written in partitioned
form as

X ′X + ∆′∆ =

(
np nJp

′

nJp nI + JpJp
′

)
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The inverse of this matrix in the balanced case can be computed for generaln and
p using two results concerning patterned matrices. First, if

B =

(
B11 B12

B21 B22

)

B11 andB22 are all full rank square matrices, then

B−1 =

(
(B11 −B12B

−1
22 B21)

−1 −B−1
11 B12(B22 − B21B

−1
11 B12)

−1

−B−1
22 B21(B11 − B12B

−1
22 B21)

−1 (B22 − B21B
−1
11 B12)

−1

)

Also, provided thata+ (p− 1)b 6= 0,

((a− b)I + bJpJp
′)−1 =

1

a− b

(
I −

b

a + (p− 1)b
JpJp

′

)

These two results can be used to show that, in the balanced case,

(X ′X + ∆′∆)−1 =
1

np2

(
n+ p −nJp

′

−nJp p2I + (n− p)JpJp
′

)

from which we can compute the restricted least squares solution can be found by
substitutinĝµ0 for Xβ̂ in (4.7)

ˆ̃
β ′ =




ȳ++

ȳ1+ − ȳ++
...

ȳp+ − ȳ++




the “usual” estimates that are presented in elementary textbooks.
In the generalni case the algebra is less pleasant, and we find

ˆ̃
β ′ =




∑
niȳi+/

∑
ni

ȳ1+ −
∑
niȳi+/

∑
ni

...
ȳp+ −

∑
niȳi+/

∑
ni




This may not be the answer you expected. The restricted estimate of the parameter
µ̄ is the average of the group averages, weighted by sample size. The definition of
thepopulation characteristic̄µ thus depends on thesampling design, namely on
theni, and this seems rather undesirable.
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The alternative is to use a different set of constraints, namely that
∑
niαi = 0.

Given these constraints, one can show that

ˆ̃
β′ =




ȳ++

ȳ1+ − ȳ++
...

ȳp+ − ȳ++




Now the estimates are more appealing, but theconstraintsdepend on the sampling
design. This is also unattractive.

What is the solution to this problem?Only consider summaries that are es-
timable functions, that is, only consider linear combinations of E(y) = µ, and give
up using parameters on expecting parameters to be interpretable. In the one-way
design, for example, the group means E(yij) are always estimable, as are con-
trasts among them. These are the quantities that should be used to summarize the
analysis.

4.7 Generalized Least Squares

We now consider estimation in the expanded class:

E(Y ) = µ ∈ E ; Var(e) = σ2Σ (4.8)

whereΣ is known and positive definite. Perhaps the easiest way to handle this
problem is to transform it to the Var(y) = σ2I case. Using the spectral decompo-
sition:

Σ = ΓDΓ′

ΓD1/2D1/2Γ′

ΓD1/2Γ′ΓD1/2Γ′

Σ1/2Σ1/2 (4.9)

SoΣ1/2 is a symmetric square root ofΣ. Definez = (Σ1/2)−1y = Σ−1/2y. Then
E(z) = Σ−1/2E(y) = Σ−1/2µ and Var(z) = σ2Σ−1/2ΣΣ−1/2 = σ2I. We can then
use ordinary least squares onz by projecting on the space in whichΣ−1/2µ lives,
and get an estimate ofΣ−1/2µ. We can then back-transform (multiply byΣ1/2) to
get an estimate ofµ.
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Let’s look first at a parametric version. If we have a full rankparameterization,
Y = Xβ + ε , with Var(ε) = σ2Σ , then, ifz = Σ−1/2y and

Σ−1/2y = z = Σ−1/2Xβ + Σ−1/2ε = Wβ + ε∗

and
β̂ = (W ′W )−1W ′z = (X ′Σ−1X)−1X ′Σ−1Y

E(β̂) = (X ′Σ−1X)−1X ′Σ−1Xβ = β

Var(β̂) = σ2(X ′Σ−1X)−1

σ̂2 =
‖ z − µ̂z ‖

2

n− p
=

(y − µ̂)′Σ−1(y − µ̂)

n− p

The matrix of the projection isΣ−1/2X(X ′Σ−1X)−1X ′Σ−1/2, which is symmet-
ric, and hence is an orthogonal projection. Now all computations have been done
in the z coordinates, so in particularXβ̂ estimatesµz = Σ−1/2µ. Since linear
combinations of Gauss-Markov estimates are Gauss-Markov,it follows immedi-
ately that

µ̂ = Σ1/2µ̂z

4.7.1 A direct solution via inner products

An alternative approach to the generalized least squares problem is tochange the
inner product. Suppose we have a random vectory with meanµ and covariance
matrix Σ. Then for any fixed vectorsa andb, using the standard inner product
(a, b) = a′b we find

Cov((a, y), (b, y)) = Cov(
∑

aixi,
∑

bixi)

=
∑∑

aibjCov(yi, yj)

= Σaibiσij

= (a,Σb)

SupposeA is somen × n symmetric full rank matrix (or linear transformation.
We can define a new inner product(•, •)A by

(a, b)A = (a, Ab) = a′Ab
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In this new inner product, we have

Cov((a, y)A, (b, y)A) = Cov((a, Ax), (b, Ax))

= Cov((Aa, y), (Ab, y))

= (Aa,ΣAb)

= (a, AΣAb)

= (a,ΣAb)A

We are free to choose any positive definite symmetricA we like, in particular if
we setA = Σ−1, then

Cov((a, y)Σ−1, (b, y)Σ−1) = (a, b)Σ−1

so virtually all of the results we have obtained for linear models assuming the
identity covariance matrix (so(a, b) = a′b) hold when Var(y) = Σ if we change
the inner product to(a, b)Σ−1 .

Consider the inner product space given by(ℜn, (•, •)Σ−1), and E(Y ) = µ ∈ E
and Var(Y ) = σ2Σ. Let PΣ be the projection onE in this inner product space,
and letQΣ be the projection on the orthogonal complement of this space, soy =
PΣy +QΣy.

Theorem 4.19PΣ = X(X ′Σ−1X)−1X ′Σ−1.

Proof. We will prove thatPΣ is an orthogonal projection (it is symmetric and
idempotent) and that it projects on the range space ofX.

Idempotency: PΣPΣ = X(X ′Σ−1X)−1X ′Σ−1X(X ′Σ−1X)−1X ′Σ−1 = PΣ.
Symmetry: (PΣx, y)Σ−1 = x′PΣ

′Σ−1y = x′Σ−1X(X ′Σ−1X)−1X ′Σ−1y =
(x, PΣy)Σ−1.

Range: R(PΣ) ⊂ R(X) sincePΣ = X(X ′Σ−1X)−1X ′Σ−1 = XC for some
matrixC, and the column space ofXC must be contained in the column space of
X. But dim(E) = p anddim(R(PΣ)) = tr(PΣ) = tr(X(X ′Σ−1X)−1X ′Σ−1) =
tr((X ′Σ−1X)−1X ′Σ−1X) = tr(Ip) = p. Since the dimensions match, we must
haveR(PΣ) = E .

We have the usual relationships:

y = PΣy +QΣY = µ̂+ (y − µ̂)

‖ y ‖2
Σ = ‖ PΣy ‖2 + ‖ QΣy ‖2

Σ−1

‖ QΣy ‖
2
Σ−1 = [QΣy,QΣy] = (y − µ̂)′Σ−1(y − µ̂)

σ̂2 =
(y − µ̂)′Σ−1(y − µ̂)

n− p
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4.8 Equivalence of OLS and Generalized Least Squares

The ordinary least squares and generalized least squares estimators are, in general,
different. Are there circumstances (other than the trivialΣ = I) when they are the
same?

Theorem 4.20 The ordinary least squares estimateβ̂ = OLS and the Generalized
least Squares estimatẽβ = (X ′Σ−1X)−1X ′Σ−1y are the same if and only if:

R(Σ−1X) = R(X)

Proof. Assumeβ̂ = β̃. Then for ally ∈ ℜn:

(X ′X)−1X ′y = (X ′Σ−1X)−1X ′Σ−1y

implies
(X ′X)−1X ′ = (X ′Σ−1X)−1X ′Σ−1

Taking transposes, we find

X(X ′X)−1 = Σ−1/2X(X ′Σ−1X)−1

and thusR(Σ−1/2X) = R(X) because(X ′X) and(X ′Σ−1X) are nonsingular
and hence serve only to transform from one basis to another.

Next, suppose thatR(X) = R(Σ−1/2X). The columns ofX form a basis
for R(X) and the columns ofΣ−1X form a basis forR(X). We know that there
exists a nonsingular matrixA that takes us from one basis to another basis, so
Σ−1X = XA for somep× p matrixA > 0. Thus:

(X ′Σ−1X)−1X ′Σ−1y = (A′X ′X)−1A′X ′y

= (X ′X)−1A−TA′X ′y

= (X ′X)−1X ′y

Corollary 4.21 R(Σ−1X) = R(X) = R(ΣX), so Σ need not be inverted to
apply the theory.

Proof.

R(X) = {w|ΣΣ−1Xz = w, z ∈ ℜp}

= {w|Σz1 = w, z1 ∈ R(Σ−1X)}

= {w|Σz1, z1 ∈ R(X)}

= R(ΣX)
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To use this equivalence theorem (due to W. Kruskal), we usually characterize
theΣs for a givenX for which β̂ = β̃. If X is completely arbitrary, then only
Σ = σ2I works.

For example, ifJn ∈ R(X), then anyΣ of the form:

Σ = σ2(1 − ρ)I − σ2ρJnJn
′

with −1/(n− 1) < ρ < 1 will work. This is the model for intra-class correlation.
To apply the theorem, we write,

ΣX = σ2(1 − ρ)X + σ2ρJnJn
′X

so fori > 1, thei-th column ofΣX is

(ΣX)i = σ2(1 − ρ)Xi + σ2ρJnai

with ai = Jn
′Xi. Thus, thei-th column ofΣX is a linear combination of the

i-th column ofx and the column of 1s. For the first column ofΣX, we compute
a1 = n and

(ΣX)1 = σ2(1 − ρ)X1 + nσ2ρ1 = σ2(1 + ρ(n− 1))1

soR(ΣX) = R(X) as required, provided1 + ρ(n− 1) 6= 0 or ρ > −1/(n− 1).


