Chapter 4

Linear Models

4.1 Random vectors and matrices

Definition 4.1 Ann x p matrix Z = (z;;) is arandom matrixf its elements are
random variables defined on some probability spacearAlom vectois a random
matrix with one column, which we will generally denote witloaer case letter
like z.
The expectation E) is defined element-wise:
Definition 4.2 E(Z) = [E(z;;)].
For vectorsp = 1, the variance Var) is defined as
Definition 4.3 Var(z) = (CoVz;, z;)) = £ = (0y;), ann x n symmetric matrix.
The following results are stated generally without anyrafieat formalism;

proofs are left as exercises. Lét B, C, a, b, ... be fixed with dimensions that
should be clear from contexk, y, andz are random. Then:

Theorem 4.1 E(AZB) = AE(Z)B
Theorem 4.2 Var(z) = 3, = E(z — Ez)(z — Ez)
Theorem 4.3 If zisn x 1 then Valz + ¢) = Var(z).
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Theorem 4.41f zisn x 1landBisn x p,letz = By, soyisp x 1. If E(y) = p
and Valy) = %, then

E(z) = BE(y) and Vafz) = BX B’

Definition 4.4 If y is ann x 1 random vector, and is ann x n symmetric matrix,
theny’ By is called aquadratic form

Theorem 4.5 If b; andb, arem x 1 vectors, then Vdb,, y) = Var(b,'y) = b;'>b;
and Co\((b1,y), (b2, y)) = Covb:'y, bo'y) = by'%ba.

Definition 4.5 (Uncorrelated) Letz; andz, bel x 1 andm x 1 random vectors.
Thenz; and z, are uncorrelatedf for all d; € R and alld, € R™,

COV(dllzl, d2/22) =0

Theorem 4.6 Suppose thay € R", E(y) = pand Vary) = X. Thenz; = Byy
andz, = B,y are uncorrelated if and only iB; ¥ By’ = 0.

Proof.

Cov(di'z1,dy' ) = CoW(dy' By, dy' Bay)
(di'B1)%(do' By)'
== dll(Blngl)dg

which is zero for alld;, d if and only if B1YX By’ = 0.

Theorem 4.7 Let P be an orthogonal projection onto some subspack'of@) =
I — P, and lety be a random-vector with Vaty) = 1. Then:

1. Var(Py) = 0*P? = o*P
2. VarQy) = 0*Q* = 0°Q
3. CoV Py, Qy) = 0 (becauseP) = 0).

Theorem 4.81f P,,i = 1,...,m are orthogonal projections such that= " P,
andy is a randomn-vector with Vaty) = o?I and Hy) = pu, then

1. EPy) = P
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2. Py and P,y are uncorrelated (by Theoren 2131,/#f =} P,, and P and
all the P, are projections, the®; P; = 0,1 # j).

3. Var(Py) = o*P;.

4 lylP=IZPyll’=| Pyl =Sy Py.

Theorem 4.9 Lety be a randonn-vector with BEy) = p, Var(y) = 3. Then:

E(y'My) = E(tr(y'My)) = tr(E(yy’'M))
= tr(X+pup )M = p'Mp+tr(XM)

In particular, if M is an orthogonal projection with = 0 andY = 21, then
tr(XM) =tr(M) = p(M), the dimension oRR (M),

E(y'My) = o*p(M)

4.2 Estimation

Lety € R" be a randomm x 1 vector with Ey) = p and Vafy) = ¢*I. The
standard linear model assumes thét a fixed vector that is in a@stimation space
& C R". The standard linear model requires only that the first twoneats of
y be specified. Normality is more that we need. The orthogom@ptementt -
will be called theerror space

For now, we will use the canonical inner product and norm:

(2’1, 2’2) = 2%
ly—m* = (y—m)(y—m) (4.1)

Definition 4.6 (Ordinary least squares) The ordinary least squares estimator (0ls)
f of . minimizes[{411) over ath € R".

We have seen before thaf{¥.1) is minimized by setfing: Pcy, which is
a random variable becaugeas random. The following theorem gives the basic
properties ofi.
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Theorem 4.10If y is a randomn-vector such that &) = p € &, Var(y) =
o?I, dim(€) = p, andji is the ordinary least squares estimator;gfthen:

1. E(p) =pand Hy — 1) =0,
2 ly—p P =N a=p P+l y—al”
3. Elly—p|*) = no?
4 Bl p—p|*) = po?
5. E(|ly—il*) = (n—p)o?
Proof
1. i =Py = E(it) = PE(y) = Pp = p.

2. Writey = Py + Qy, soy — u = P(y — u) + Qy sincep € €. SinceP and
Q are orthogonal, (2) follows.

3. E(ly—nul®) = Ely — w)'(y — p) = E(tr(y — p)(y — p)’) = tr(E(y —
1)y — p)') = no.

4. Applying TheoreniZ19 with. = I, E(|| i — i ||°) = E(|| Py — p) ||?) =
E(y — )Py — 1) = 0+ o*tr(P) = po®.

5. K|y — i ||*) = (n — p)o? follows from 2, 3 and 4.
Theorem 4.11 || y — /i ||?/(n — p) is an unbiased estimate of.

We call|| y — i ||* theresidual sum of squares

Example. Simple random sampfuppose thajisn x 1, Var(y) = ¢*I and
E(y) = J,5, with 8 an unknown parameter, anfg is ann x 1 vector of all ones.
This says each coordinate gfhas the same expectation afid= R(.J,). The
matrix of the projection ont®(.J,,) is

Ty 1
PR(l) = T] = EJan/

andip = Py = (1/n)J,J,,)'y = yJ,, the sample mean times,. The vector of
residuals iy = (I — P)y = y — yJ, = (yv; — y), andyJ, and(y; — y) are
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uncorrelated. In addition] Qy ||> = (v — )2 = (n — 1)s% E(|| Qy |I*) =
o?(dim(E1)) = (n — 1)o2.

Example. General fixed effects modéte general coordinate-free fixed effect
linear model is specified by

Y =pu+e, E(€) =0, Varle) =o’l, u€ & (4.2)

where the estimation spaé¢e C R". It follows immediately thay = PY and
Var(ii) = o*P. The residuals are given by= Y — i = QY with variance
Var(e) = 02@Q. The unbiased estimate of is % = QY/(n — dim(&)).

In practice, the spacgin most problems is specified by selecting a particular
matrix X whose columns spaf, R(X) = £. Thus, anyu € £ can be written as
w = X for somep x 1 vector of coordinates. We now have that

E(y) =pn=Xg3

The coordinateg will be unique if the columns oX form a basis fo€; other-
wise, they will not be unique; can you describe the set of adigibless? We can
use the results of the previous chapter to find explicit fdemdor P and(@ using
one of the orthogonal decompositions from the last chapter.example, using
the QR-factorizationX = Q1 R, P = Q:Q,' andQ = I — P.

4.3 Best Estimators

We next consider the question of best estimators of linearbioations of the
elements ofy, (b, u) = b'p for b € R, a fixed vector. A general prescription for
a “best” estimator is quite difficult since any sensible aotof the best estimator
of &' u will depend on the joint distribution of thes as well as on the criterion of
interest. We will limit our search for a best estimator toctess of linear unbiased
estimators, which of course vastly simplifies the problendl allows a solution to
the problem that only depends on the first and second momsuairgions that
are part of the standard linear model.

Definition 4.7 (Linear unbiased estimators) An estimator(lﬂb) is linear iny if

(b, ) = (c,y),y € R"

A linear estimator(c, y) is unbiased foKb, i) if E(c,y) = (b, ) forall € .
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An unbiased estimator exists sinc&ky) = (b, E(y)) = (b, u) forall p € £.
We cannot expect, however, that y) will be the best estimator ab, ). Here
is an example. In the single sample case, we have &€ = R(J,). Suppose
b =(0,0,1,0,...,). Nowb'y = ys is unbiased foy, but it is not very efficient
because it ignores all other elementg/oFor exampley has smaller variance, so
if the notion of “best” depends on variancé, y) will not be best.

Theorem 4.12 (¢, y) is unbiased foKb, i) if and only if Pc = Pb. (Recall theP
is the orthogonal projection oé.)

Proof. AssumePc = Pb. Then

E(va) = (Cmu) = (C,P,u): (Pcnu): (anu) = (b,P,u) = (bnu)

and so it is unbiased. Next, assume théat,lr) = (b, ) for all p € €. Then
(¢, 1) = (b, ) implies that(c — b, 1) = 0 and thus: — b € £+. We then must have
that P(c — b) = 0 and finally Pc = Pb.

An immediate consequence of this theorem is:

Theorem 4.13 (¢, y) is unbiased fo(b, 1) if and only if
¢ = b+ Qgz for some: € R".

This follows from Theoreri4.12. The set of all linear unbthsstimators forms
a flat.

In the one sample cas@, = I — J,,J,’/n, soc is of the formb + (z — z.J,,)
with b and any vector € R". For the special case af = 3 with ¥ = (1,0,0),
here are some unbiased estimates:

1. If 2=(0,0,0) thenc =b+ Qz = b.
If 2= (—2/3,1/3,1/3) thenc = b+ Qz = (1/3,1/3,1/3)".
3. Ifz=(—4,+4,0") thenc = b+ Qz = (—3,4,0)

4. If z = (21,20, 23), thenc = (1 + 21 — 2,20 — 2,23 — 2)'.

Among the class of linear unbiased estimates, the one watlsitallest vari-
ance will be considered the best estimator.

Definition 4.8 (Best linear unbiased estimates)c, y) is a best linear unbiased
estimate LUE) of (b, ) if
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1. Elc,y) = (b, p)
2. Var(c,y) < Var(c,y) for all ¢ such thatPc’ = Pb.

Theorem 4.14 The uniquesLUE of (b, i) is (Pb, y).

In the single sample case we have been considefings J,J,'b/n = bJ, and
(Pb,y) = (bJ,,y) = nby. In particular, ift’.J, = J,, then theBLUE is 7.

Proof. If (¢,y) is an unbiased estimator @b, ;.), then we must have that
¢ = b+ Qz for somez € R". We can now compute

c = b+Qz
= Pb+Qb+Qz
= Pb+Q(b+2)
= Pb+ Quw

wherew = b+ z € . Now for an estimator to bBLUE, it must have minimum
variance, and for any, since(Py, Qy) = 0,

Var(c,y) = Var(Pb+ Qu,y)
= Var(Pb,y) + Var(Qw, y)
> Var(Pb,y)

with equality whenw = 0.

The BLUE (Pb,y) of (b, ) is often called theGauss-Markov estimatand
Theorem 414 is called th&auss-Markov theoremSince Gauss and Markov
lived in different centuries, they did not collaborate.

As a special case of the Gauss-Markov theorem, supposk ¢hé&t so Pb =
b. Then the uniqueLUE is (Pb, y) = (b, y). For example, in the one-sample case,
we will haveb € € if b = k.J,, for some nonzero constahtand then th&LUE of
bpisjustt’y = (k/n)y.

By the symmetry of the projection matrik, (Pb,y) = (b, Py) = (b, i), SO
we can compute theL UE by replacingu by /i. The variance of the Gauss-Markov
estimator is VafPb, y) = o|| Pb ||* = 020/ Pb = Var(b, j1).

4.3.1 The one-way layout

The one way layout is perhaps the simplest nontrivial exaroph linear model,
and it deserves careful study because most other fixed tiaear models can
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often be best understood relative to the one way layout. @nenpeterization of
this model is

Yij :61'_'_52‘3'7 = 1,...,]); j = 1,...,ni
where theg; are fixed, unknown numbers, and thg are random, such that
E(s;;) = 0; Var(e;;) = o* and CoVe;j,e) = 0 unlessi = ¢ andj = j'.
A matrix representation of this problem is

y=XpB+e¢

wheres is ann x 1 vector,n = . n;, and

Y11
Yy = :
Ypny
1n1 Om Ce Om
On 1n . On
X = cT -
Onp On,, o 1n,,
B
=1 :
By
It is often convenient to writ& = (X, ..., X,,), so thatX; is thei-th column of

X. With this parameterization the columns.gfare linearly independent, and in
fact are orthogonal, so they form an orthogonal basis foe#ignation spacé.
In general linear models, or in other parameterizationsisfrnodel, the columns
of the design matrixXX" are often linearly dependent.

Given the orthogonal basis, not an orthonormal basis becafuscaling, we
can easily calculate = Py by projecting on each column of separately. The

resultis:
Jn1ﬂ1+

p
Z X Z yz-l-X .
=1 X || i=1 J i

npyp-i-
where we use the convention that putting a bar over a symhuiesaveraging,
and replacing a subscript by a “+” implies adding: thus, fearaple,ys. is the

averagg1/n3) 372, ys3;. Also,
QY = (I — P)Y = (yi; — yix) = residuals
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Since E|| Qy |I*) = dim(€*)o” = (n — p)o?,

. 1
o _1Qul” _ Zzyw G )?

n—p n plljl

is an unbiased estimator of.
To obtain Vatji) = o2 P, we must obtain an expression fBr By the orthog-
onality of theX;, we can write

X; X/

P-3 TN

from which we can get an explicit expression féras

P, - 0y,
p=| + - i | =dayPh,)
Oy, o+ P,
which is a block diagonal matrix wit#,, = J,.J,,'/n;. EachP,, is itself an

orthogonal projection foR (./,,,) C R™ (and tr(P ) =1). Also,

2 2 _
Py " =321 Py " = Zmy,ﬂ
i=1

wherey; is then,; x 1 vector (y;i, ..., Yi,), and t(P) = > tr(P,,) = p. From
Theoreni4n,

E(| Py [I) = tr(oc®P) + 4/ Pu = po® + p'pp = po® + 3 nif3;

These may not be the answers you expected or find useful. Wity e
have defined? (.X) to include the overall mean, and so the expected length of the
projection onto this space is larger than a multiplebéven if all thes; are equal.

We can correct for this by projecting on the par€oérthogonal to the column of
ones.

The space spanned by the overall mean isR(st, ) with P, = J,,J,,'/n, and
hence the projection on the part of the estimation spacegotial to the overall
mean isP* = (I — P,)P = P — P, P. We must have thaPP, = Py, and so by
direct multiplicationP* is an orthogonal projection, and

Ini Y1t P (T
P Py=P : = (Z Niliy /1) In =
Ty Up+ - Y+
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and the regression sum of squares is

1Py > = | Pyl’+ | PPy ||* —2(Py, PPy)
= || Pyl*~| PPy

p
= > nilh —nyiy
=1
2 2
= Z ni(Yir — Yst)
=1
which is the usual answer for the projection. The expectegtleis

E(| Py ") = (p — D)o’ + Y na(B; — B)?

where3 = 3" n;3;/n is the weighted mean of thés. When all the3; are equal,
this last sum of squares is zero, and By ||*) = (p — 1)02.

The quantity(c, 1) is just some linear combination of the elements:pbr,
for the one way layout, any linear combination of the grou@nse If we want
to estimated, i), then theBLUE estimator is(Pc,y) = (c, 1). For example, if
d =(1,0,0,...,0), then(c, i) = 714+ and Val(c, 1)) = o*c' Pc = % /n;.

4.4 Coordinates

The estimation spacgcan be viewed as the range space ofianp matrix X, so

any vectoru € £ can be written ag = - 3,.X;, where theX, are the columns of
X. If X is of full rank, then the columns of form a basis and thg; are unique;
otherwise, a subset of the columns forms a basis and tlaee not unique. The
vector(f, ..., 3,) provides thecoordinatesof . relative to.X. Our goal now is

to discuss? and its relationship tg.

1. Sinceji € £, we can writgi = 3 3;X; = X 3 for some sef;. If the X; are
linearly dependent, the; are not unique.

2.Qy=(I—-Py=y— Py=y—je &L Thisis ajustan expression for
the residualsThis computation does not depend in any way on coordinates,
only on the definition of .

3. y — ) L X, foralli. Equivalently, this says that the residuals are or-
thogonal to all columns ok, (y — i, X;) = 0, even if theX; are linearly
dependent. This is also independent of coordinates.
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4. SincePX; = X;, we have thaty, X;) = (y, PX;) = (Py, X;) = (i1, X;).

5. Using the default inner product, this last result can bigtew as X,y =
X/ .

6. If we substitute from poirifl1 fof, we find X;'y = X,/ X 3.

7. Finally rewriting® for alli simultaneously,

~

X'y = (X'X)5 (4.3)

Equations[[Z13) are called t®rmal equationsTheir solution3 gives the coor-
dinates ofi: relative to the columns aX'. If the columns ofX are linearly inde-
pendent, the normal equations are consistent becitse R(X') = R(X'X),
and a unique solution exists. The solution is found by miyltig both sides of
the normal equations byX’ X)~! to get

B=(X'X)"'X"y (4.4)

although this formula should almost never be used for coatjurts because in-
verting a matrix can be highly inaccurate Xf = Q1 R is the QR-factorization of
X, then we get

B=((QR)(QR) ™ Q:R)y = (RR)'RQy=R'Q'Y

which can be solved by first computing the 1 vectorz = @'Y, and then using
backsolving for3 to solveRf = z.

If the X's are not linearly independent but lie in a space of dimengitinen
the least squares estimatesare not unique. We first find one solution, and
then will get the set of all possible solutions. Recall tihgtdefinition, if A~ is a
generalized inverse of a matrix andAA~y = y for all y. Hence, the vector

Go=(X'X)"X'Y

must be a solution singgX’X )3, = (X'X)(X'X)~X'Y = X'Y. To get the set
of all solutions, we can let the generalized inverse vary tve set of all possible
generalized inverses. Equivalently, consider all veatbtse formg, + z. If this
is to be a solution, we must have that

XY =(X'X)(Bo+2) = XY + (X'X)z
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S0 we must have
(X'X)z=0

andz can be any vector in the null spaceXfX. The set of all possible solutions
is a flat specified by )
Fo +N(X'X) = fy + R(X')*

The set of all least squares solutions forms a flatirof dimensiornp — ¢, where
q is the dimension of the column spaceof

Definition 4.9 A vector is an ordinary least square®(s) estimate of3 if
XB3=j=Py
Any solution of the normal equations is an ordinary leastssqa estimator off.

We now turn to moments of. In the full rank casep(X) = p, and =
(X'X)~' X’y is unique. We can then compute

E(8) = E[(X'X)"'X"y] = (X'X) ' X' X3 =3

and

A

Var(f) = Var((X'X)'X'y)
= (X'X)"'X'Var(y) X (X'X)™
= (X'X)" (4.5)

In the less than full rank case the coordinaiese not unique, and so the moments
will depend on the particular way we choose to resolve thealirdependence.
Using the Moore-Penrose inverse,

B = (X'X)* X'y

where(X'X )" = I'D*T”, andI'DI" is the spectral decomposition &f' X, D
is a diagonal matrix of nonnegative numbers, @dndis a diagonal matrix whose
nonzero elements are the inverses of the nonzero elemems\&e can find the
expectation of this particula?,

E(B) = E(X'X)*X'y) = (X'X)"X'X0
— TDT'IDI'B
I'DYDT'3
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L
0rys
= (I -TIY)s
= 5 - F2F2/ﬁ
wherel’ = (I'1, I'5), andl'; is the columns corresponding to the nonzero diagonals

of D. In general, then, the ordinary least squares estimatastisimbiased, and
the bias is given by
Bias=  — E(f) = [l
I'y is an orthonormal basis for(X'X).
We next turn to estimation of a linear combinatieng) = ¢/ of the elements
of 3. The natural estimator is the same linear combination ottaments of3,
sod3 = 3. Since the columns df are a basis folR?, any p-vectorc can be

written uniquely ag: = I'1d; + I'2d,. Then,
E(/3) = ([1dy+ Tady)TiT/3
= dllrllﬁ
= (d=d)/TY)B
= dB—dTYp
and the bias for the linear combination is
Bias= dglrg/ﬁ (46)

The bias will be zero wheri_{4.6) is zero, and this can happealf@ only if d,
= 0. This says that must be a linear combination of only the columnd'ef and
these columns form an orthonormal basisTR(X’ X ), so to get unbiasedness we
must have: € R(X'X) = R(X’).

Next, we turn to variances, still in the general parametigeowithX less than
full rank. For the ols estimate based on the Moore-Penroserghkzed inverse,
compute

A

Var(f) = oX(X'X)TX'X(X'X)*
— 02(X/X)+

(% )

= o <(r1,r2) ( AO_I 8)(&,5)’)
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This variance covariance matrix is singular in general.sTheans that for some
linear combinations’3, we will have Va(c'3) = 0. Now for any linear combina-
tion, again writec = I'1d; + I'yds, and we find

Var(df) = o2¢T1A™'TYe
= O'2d1,A_1d1
and this will be zero ifl; = 0, or equivalently ifc = I'yds, orc € R(I'y) = N(X)!

As a simple example, consider the two sample case, with thexma given
by

110
110
110
X = 1 01
1 01
1 01

son =6, = R(X), p(€) = 2. The matrixX’ X is, using R,

> XTX
[1] [2] [,3]
1] 6 3 3
2] 3 3 0
B3] 3 0 3

The spectral decomposition of this matrix can be obtain@ts/d in R:

> S <- svd(XTX) # spectral decomposition of XTX
> print(S,digits=3)

$d

[1] 9.00e+00 3.00e+00 1.21e-32

$u

[,1] 2] [3]
[1,] -0.816 -5.48e-17 -0.577
[2,] -0.408 -7.07e-01 0.577
[3,] -0.408 7.07e-01 0.577

$v
[,1] 2] [3]
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[1] -0.816 -2.83e-17 0.577
[2,] -0.408 -7.07e-01 -0.577
[3,] -0.408 7.07e-01 -0.577
> Gammal <- S$u[,c(1,2)]
> Gamma2 <- S$ul,3]

We can compute the Moore Penrose g-inverse as

> XTXMP <- Gammal #86 diag( 1/S$d[c(1,2)]) % *% t(Gammal)

> XTXMP # Moore-Penrose G-inverse, and Var(\betahat)/\sig ma’2
[,1] [.2] [.3]

[1,] 0.07407407 0.03703704 0.03703704

[2,] 0.03703704 0.18518519 -0.14814815

[3,] 0.03703704 -0.14814815 0.18518519

The Moore-Penrose inverse is singular since it has only twzero eigenvalues.
Letc,” = (0,1, —1). Apart froma?, the variance of,’j3 is

> C <- ¢(0,1,-1)
> t(C) % *% XTXMP 986 C
[1,] 0.6666667

If ¢’ = (1, -1, 1),

> C <- ¢(1,-1,-1)
> t(C) % *% XTXMP #86 C
[1,] -2.775558e-17

which is zero to rounding error. The conditibh’c; = 0 shows that;, is in the
column space of', whileI';’¢;, = 0 shows that; is in the column space dfs.

4.5 Estimability

The results in the last section suggest that some linear ic@titns of 5 in the
less than full rank case will not be estimable.

Definition 4.10 (Estimability) The linear parametric functiod 3 is anestimable
functionif there exists a vectar € R" such that

E(a'y) = ¢ for any .
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If X is of full column rank then all linear combinations gfare estimable, since
3 is unique; that is, take’ = ¢/(X’X)~'X’. The following is the more general
result:

Theorem 4.15 ¢ is estimable if and only if € R(X’). That is, we must have
c = X'\ for some\ € R".

Proof. Suppose’ is estimable. Then there existsar R" such that
E(a'y) = ¢ forall 5

But
E(d'y) =d' X3 = forall 5.

Thus (¢ — o’ X)B = 0 for all g and thereforez = X’a. Hence,c is a linear
combination of the columns of’ (or of the rows ofX), ¢ € R(X’).
Now suppose € R(X’). Then for some\,

dp=NX3=NE(y) =ENy),

so\'y is an unbiased estimator df? for all 5, and thus/( is estimable.
The next theorem shows how to get best estimators for esténfitctions.

Theorem 4.16 (Gauss-Markov Theorem, coordinate version)f ¢/ is an es-
timable function, ther' 3 is the uniquesLUE of /(.

Proof. Sincec 3 is estimable, we can find &such that = X'\ and thus/g =
NX(G = Nu. This shows that/3 is estimable if this linear combination of the
elements of5 is equivalent to a linear combinatioxi of the elements of the
mean vector. This is the fundamental connection betweecabelinate-free and
coordinate version.

By Theoren[ZI4)\ 1 = XN Py is theBLUE of X'u. Further, NPy = NXJ3
is invariant under the choice of (why?). Thus we immediately have thef =
NX 3 = ¢3is BLUE, and for each fixed it is unique.

Can there be more than on@ The set of all solutions t&’\ = ¢ is given by:

A= (X))e+ (I —P)zforze R
(X)te+ (I — X'(X)')zforz € "
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so the set of\s forms a flat. However, sindeX’)™ = (X 1)/,

NXB=[XT+2(I-P)X3 = ¢X*X3+2(—-P)Xj3
_ B

sincec € R(X’) (required for estimability) and * X is the orthogonal projection
operator forR(X'), and(I — P) X = 0. So, although\ is not unique, the resulting
estimator 3 is unique.

Theorem 4.17 Linear combinations of estimable functions are estimablbe
BLUE of a linear combination of estimable functions is the samedr combina-
tion of theBLUES of the individual functions.

Proof Let ¢/ 3 be estimable functions,= 1,2, ...,k with BLUES ¢;/3. Sety) =
Z’;l a;c;' 3, for theq; fixed scalars. Then:

ci' B ci’
v=d| : |=da| : |B=dB

'8 c'

Thusd'( is theBLUE of ¢ if d € R(X'). Butd = 3 a,¢;, and each; € R(X'),
S0 is estimable.

4.5.1 One Way Anova

We return to one-way anova, now given by
Yig = P+ ;i + &

i=1,...,p; j =1,...,n,withoutimposing the “usual constraints” ®f o;; = 0,
and also without dropping one of the columnsXfto achieve full rank. The
model is over-parameterized, since therejatel parameters, but the estimation
spacef has dimensiop. Lety = (v11, Y12, -- -, Ypn)'s 8 = (4, 1, ..., ,)’, @and
X = (Jn, X1,...,X,), where each vectoX; has elements one for observations in
groupj, and 0 elsewhere. The linear modeYis= X + ¢, and since/,, = Y X,
the model is not of full rank.

First, we find the set of all ordinary least squares estimdates first step is to
find any one estimate, which we will ca,. This can be done in several ways,
for example by finding the Moore-Penrose inverseXof, but for this problem
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there is a simpler way: simply set the first coordinat®f 3, to be equal to zero.
This reduces us to the full rank case discussed in Seciiafii. 4l8then follows
immediately thaty;, = y;,, and thus

0
A Y1+
gp+

is a least squares estimate. Any solution is of the fogm- z, wherez is in the
null space ofX’ X, soz is a solution to

np n o« .. n
n n o« .. 0
0=X'Xz= o ]z
n 0 - n
Solution to these equations is ampuch that: = k(1, —1,..., —1)' for somek,
so /3 must be of the form
0 1
. y —1
=" k|
Up+ —1

Settingk = y,., the grand mean, gives the “usual estimates” obtained when
constraining_ &; = 0.

We turn now to estimability. Fat' 5 to be estimable in general, we must have
thatc € R(X’), orc must be a linear combination of the rows.Xf so it is of the
form:

1 1 1 26

1 0 0 C1
c=C 0 +CZ 1 + "+Cp 0 = Co

0 0 1 p

Sod B = (3 ¢)p+crar+- - -+cp0p. Thus, we can conclude that, in this particular
parameterization of the one way model:
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e /i is not estimable.

e «; IS not estimable.

e 11+ «y is estimable.

e > d;a; is estimable ify d; = 0.

What are the estimates? We can pick any solution to the ncemations and
form ¢ 3, and the answer is always the same.

4.6 Solutions with Linear Restrictions

So far we have shown that if the model has less than full réngke stimate off can

be biased in general, and that only certain linear comtnatof; are estimable.
Those linear combinations correspond to linear combinataf the elements of
the mean vector. This suggests several sensible approaches to the prolflem o
estimation with rank deficient models.

One possibility is to choose amyand proceed with the characterizations and
use of estimable functions. This is potentially complexyezsally in unbalanced
models with many factors. The book by Searle (1971), for edarexemplifies
this approach.

As an alternative, one can consider redefining the problefallasvs. Given
a fixed linear modeY = X3 + ¢ with X less than full rank, find an appropriate
basis for€ = R(X). If that basis is given byz, ..., z.}, and the matrix whose
columns are the; is Z, then fit the full rank modeY = Z~ + <. All estimable
functions in the original formulation are of course stiltissable. This of course
corresponds exactly the coordinate-free approach thathe &ieart of these notes.

In the one-way anova example, we can simply delete the coloiris to
produce a full rank model. R, JMP and Arc sgt= 0 to get a full rank model,
but Splus and SAS use a different method, at least by default.

Occasionally, thegs may have some real meaning and we don’t wish to re-
move columns fromX. In this case we might produce a unique full rank solution
by placing restrictions op¥ of the form

d'=0
The restricted normal equations are then

X'X3=X"y
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d/8=0,i=1,2,....t>p—r

To choose thel;, it makes sense to require that the estimable functionsan th
original problem be the same as those in the constrainedggnotWe know that
d [ is estimable if and only it: € R(X’), so this is equivalent td; ¢ R(X’).
Otherwise, we would be restricting estimable functions.

For a general statement, &t = (d;,...,d;),t > p — r be the matrix speci-
fying the restrictions. Then:

Theorem 4.18 The system:

()= (%)

has a unique solutiog if and only if:

()]

2. R(X') N R(A") = 0. This says that all functions of the forsm\ 3 are not
estimable.

The unique solution can be computed as
B=(X'X+NA)'X} (4.7)
whereji = Py is the projection on the estimation space.

Proof. Only an informal justification is given. Part 1 guarantdesuniqueness
of a solution. The set of solutions to the unrestricted nbegaations is given by
3o + N(X'X) for somef,. If we can we ensure that the solution to the restricted
normal equations, which is now unique, is an element of this e are done.
As long as the rows of\ lie in the space NX'X), then a restriction is placed
on N(X'X) but not onR(X’). Thus, Part (1) ensures uniqueness, and Part (2)
ensures that the resulting estimate is an element of thaalifiat.

The estimable functions given restrictions are the samleas®tin the original
problem.



4.6. SOLUTIONS WITH LINEAR RESTRICTIONS 81

4.6.1 More one way anova

For the one way anova model wighlevels andn; observations in level, the
“usual constraint” is of the forn}" a;o; = 0. Most typically, one takes all the
a; = 1, which comes from writing:

Yij = it Eij
= [+ (i — 1)+
= ,U‘l‘Oéi—F&'j

Now it = Py = (Ji+Jnss - - -, UpsJn,)s @and sinceX = (J, Xy,..., X,),

Y++

X'f = y1'+

Y+
Snpong oo ony
XX = ng ng - 0
n, 0 - n,

If we impose the usual constraifta; = 0, we get

and
Sneoom eom
n1 ny + 1 .- 1
X'X+ANA= , _
ny 1 coeony+ 1
In thebalancedcasen, = - - - = n, = n, this matrix can we written in partitioned
form as

/ In | TP nJy'
XX+AA—<an n1+JpJp/>
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The inverse of this matrix in the balanced case can be compotgenerak and
p using two results concerning patterned matrices. First, if

Bll BlZ
B =
< By B )
B11 and By, are all full rank square matrices, then

B! — (Bi1 — Bi2Byy Boy) ™! —Bi)' Bia(Baz — By Byy' Bra) ™!
—32_21321(311 - 31232_21321)_1 (B — 32131_11312)_1

Also, provided that: + (p — 1)b # 0,

1 b
A N~ — J—— - /
((a=b)I+0bJ,J,) p— ( Py 1)bJpJp>

These two results can be used to show that, in the balanced cas

_ 1 n+p —nJ,
X'X+NA)=— g
( " ) np? ( —nJ, pI+(n—p)JyJy )

from which we can compute the restricted least squaresisplaan be found by
substitutingi, for X5 in (@.1)

Yyt
5, | Y Y
Upt+ = Ytvt

the “usual” estimates that are presented in elementarigdeks.
In the generah; case the algebra is less pleasant, and we find

SN/ 2N
kY Uiy — 2 NTiv/ 2N
- :
Upt — 2 Niir/ o1

This may not be the answer you expected. The restricted &&tiofthe parameter
i is the average of the group averages, weighted by sampleTsiealefinition of
the population characteristig: thus depends on theampling designnamely on
then;, and this seems rather undesirable.
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The alternative is to use a different set of constraints,etathat" n;a; = 0.
Given these constraints, one can show that

Uit
5, | Y Y
Upt — Yt

Now the estimates are more appealing, butitestraintsdepend on the sampling
design. This is also unattractive.

What is the solution to this problem®nly consider summaries that are es-
timable functionsthat is, only consider linear combinations dff = 1, and give
up using parameters on expecting parameters to be inteppeetin the one-way
design, for example, the group meangk) are always estimable, as are con-
trasts among them. These are the quantities that shouldedg@summarize the
analysis.

4.7 Generalized Least Squares
We now consider estimation in the expanded class:
E(Y) = i € & Var(e) = 0*% (4.8)

whereX is known and positive definite. Perhaps the easiest way tdl@dhis
problem is to transform it to the Vay) = oI case. Using the spectral decompo-
sition:
¥ = I'DIY
T DY2 /21y
' DV2r'T DY
$/25t/2 (4.9)

SoX!/2? is a symmetric square root &f. Definez = (X1/2)~!y = ¥=1/2y. Then

E(z) = S7Y2E(y) = =2 and Valz) = 02X "1/28%~12 = 52[. We can then
use ordinary least squares oly projecting on the space in whickr /2, lives,

and get an estimate af /2;,. We can then back-transform (multiply B3//?) to

get an estimate qf.
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Let’s look first at a parametric version. If we have a full rgggcameterization,
Y = X3+ ¢, with Var(e) = 0%, then, ifz = ¥~/2y and

STy =2 =3"1PXB+ 0 Pe = WB+ €

and
B=WW)""Wz= (X2 'X)'X'2 Y

E(S) = (X'S'X)' X' ' X3 =0
Var(3) = o*(X'5 7' X) !

A 2 A~ _ ~
so_llz=p " _ (=) (y — i)

n—p n—p
The matrix of the projection i£~/2X (X'Y~1X)~1X'Y~1/2, which is symmet-
ric, and hence is an orthogonal projection. Now all comporasthave been done
in the z coordinates, so in particulaX 3 estimates:, = X~~'/2;. Since linear
combinations of Gauss-Markov estimates are Gauss-Maitkimllows immedi-
ately that

jr =,

4.7.1 A direct solution via inner products

An alternative approach to the generalized least squacdsgmn is tochange the
inner product Suppose we have a random veggarith meany and covariance
matrix . Then for any fixed vectorg andb, using the standard inner product
(a,b) = a’bwe find

Cov((a,y),(b,y)) = COV(Z a;x;, Z bix;)
= Z Z a;b;Cov(yi, y;)

= Eaibiaij

(a, Xb)

Supposed is somen x n symmetric full rank matrix (or linear transformation.
We can define a new inner prodyet e) 4, by

(a,0)4 = (a, Ab) = a’ Ab
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In this new inner product, we have

Cov((a,y)a, (b,y)a) = CoV(a,Ax), (b, Az))
= Cov((Aa,y), (Ad,y))
= (Aa,XAD)

(a, ALAD)
(a,XAb) 4

We are free to choose any positive definite symmetriee like, in particular if
we setd = Y71, then

COU(((L, y)Z*» (bv y)Efl) = (CL, 6)2*1
so virtually all of the results we have obtained for lineardels assuming the
identity covariance matrix (s@z, b) = a’b) hold when Vafy) = ¥ if we change
the inner product t¢a, b)s-:.

Consider the inner product space givenly, (e, e)x-1),and BY) =y € £
and VafY) = o2X. Let Py be the projection o0& in this inner product space,
and letQy, be the projection on the orthogonal complement of this spexe =
Pry + Qsy.

Theorem 4.19 Py, = X (X'271X)~1X'yL,

Proof. We will prove thatPs, is an orthogonal projection (it is symmetric and
idempotent) and that it projects on the range spackg.of

Idempotency PPy = X (X'S71 X)) IS I X (XS X)L X'S! = Py,

Symmetry (Pex,y)s—1 = 2/ P'YS7ly = /Y71 X(X'S7IX)7IXS 1y =
(z, Psy)s-1.

Range R(Ps) C R(X) sincePy = X (X'Y71X)7'X'S~1 = X for some
matrix C', and the column space &fC' must be contained in the column space of
X. Butdim(€) = p anddim(R(Ps)) = tr(Pg) = tr( X (X'S71X)"1X'271) =
tr((X'S1X) "1 X'271X) = tr({,) = p. Since the dimensions match, we must
haveR(Ps) = €.

We have the usual relationships:

y=Pey+QsY =i+ (y— 1)
Iy 1% =1 Py I+ 1l Qsy 15
I Qv 13- = [Qsy, Quyl = (y — 1)'S(y — 1)
N e DRVl )
n—p
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4.8 Equivalence of OLS and Generalized Least Squares

The ordinary least squares and generalized least squéireatess are, in general,
different. Are there circumstances (other than the tri¥iat 7) when they are the
same?

Theorem 4.20 The ordinary least squares estimate= oLs and the Generalized
least Squares estimate= (X’Y 1 X)~1X'¥~1y are the same if and only if:

R(ET'X) = R(X)
Proof Assume3 = 3. Then for ally € R™:
(X'X)' Xy = (X'S71X) XSy
implies
(X'X)'X' = (X'2 X)) xe !
Taking transposes, we find
X(X'X) " =2 PX (X X))

and thusR (X~Y/2X) = R(X) becausg X'X) and (X'~"'X) are nonsingular
and hence serve only to transform from one basis to another.

Next, suppose thaR(X) = R(X~Y2X). The columns ofX form a basis
for R(X) and the columns aE~' X form a basis fofR (X). We know that there
exists a nonsingular matrid that takes us from one basis to another basis, so
Y 71X = X Afor somep x p matrix A > 0. Thus:

(X/E—lX)—lX/E—ly — (A/X/X)—IA/X/y
— (X/X)—IA—TA/X/y
(X' X)Xy
Corollary 4.21 R(X7'X) = R(X) = R(XX), soX need not be inverted to
apply the theory.
Proof.

R(X) = {wEX'Xz=w,z¢c R}
= {wz =w,z € R(E'X)}
{w|Ez1,21 € R(X)}
= R(IX)
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To use this equivalence theorem (due to W. Kruskal), we lisuharacterize
the s for a givenX for which 3 = 3. If X is completely arbitrary, then only
¥ = 0% works.

For example, it/,, € R(X), then anyX of the form:

Y =0*(1—p) —o?pJ,J,

with —1/(n — 1) < p < 1 willwork. This is the model for intra-class correlation.
To apply the theorem, we write,

YX =0%(1—p)X +o?pJJ/ X
so for: > 1, thei-th column of2 X is
(2X); = o*(1 — p)X; + o*pJha;

with a; = J,’X;. Thus, thei-th column of XX is a linear combination of the
i-th column ofz and the column of 1s. For the first columnX¥, we compute
a; = n and

(2X); = *(1 — p) X, +no’pl = o*(1 + p(n — 1))1

SOR(XX) = R(X) as required, providet+ p(n — 1) #00rp > —1/(n — 1).



