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Chapter 3

Matrices

3.1 Matrices

Definition 3.1 (Matrix) A matrixA is a rectangular array ofm×n real numbers
{aij} written as

A =













a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn













The array hasm rows andn columns.

If A andB are bothm × n matrices, thenC = A + B is anm × n matrix of real
numberscij = aij + bij . If A is anm×n matrix andα ∈ ℜ1, thenαA is anm×n
matrix with elementsαaij . Also,αA = Aα, andα(A + B) = αA + αB.

A matrix A can be used to define a functionA : ℜn → ℜm.

Definition 3.2 (Linear function associated with a matrix) Given a vectorx ∈
ℜn with coordinates(α1, . . . , αn) relative to a fixed basis, defineu = Ax to be
the vector inℜm with coordinates given fori = 1, . . . , m,

βi =
n
∑

j=1

aijαj = (Ai, x) (3.1)

whereAi is the vector consisting of theith row of A. The vectoru has coordinates
(β1, . . . , βm).
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42 CHAPTER 3. MATRICES

Theorem 3.1 For all x, y ∈ ℜn, scalarsα andβ, and any twon × m matrices
A, B, the function (3.1) has the following two properties:

A(αx + βy) = αAx + βAy (3.2)

(αA + βB)(x) = αAx + βBy

In light of (3.2) we will callA a linear function, and ifm = n, A is a linear
transformation.

Proof: Straightforward application of the definition.

Definition 3.3 A square matrix has the same number of rows and columns. It
transforms fromℜn → ℜn, but is not necessarily onto.

Connection between matrices and linear transformations.In light of (3.1),
every square matrix corresponds to a linear transformationfrom ℜn → ℜn. This
justifies using the same symbol for both a linear transformation and for its corre-
sponding matrix. The matrix representation of a linear transformation depends on
the basis.

Example. In ℜ3, consider the linear transformation defined as follows. Forthe
canonical basis{e1, e2, e3},

Ae1 =







1
2
3





 Ae2 =







0
1
1





 Ae3 =







1
0
−1







Relative to this basis, the matrix ofA is

A =







1 0 1
2 1 0
3 1 −1







If we change to a different basis, say

x1 =







1
1
1





 , x2 =







1
−1
0





 , x3 =







1
1
−2







then the matrixA changes. For this example, sincex1 = e1 +e2 +e3, x2 = e1−e2

andx3 = e1 + e2 − 2e3, we can compute

Ax1 = A(e1 + e2 + e3) = Ae1 + Ae2 + Ae3 =







2
3
3





 = a1
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and this is the first column ofA relative to this basis. The full matrix is






2 1 −1
3 1 3
3 2 2







While the matrix representation of a linear transformationdepends on the basis
chosen, the two special linear transformations0 andI are always identified with
the null matrix and the identity matrix, respectively.

Definition 3.4 (Matrix Multiplication) Given two matricesA : m × n andB :
n× p, the matrix productC = AB (in this order) is anm× p matrix with typical
elements

cij =
n
∑

k=1

aikbkj

The matrix product is defined only when the number of columns of A equals the
number of rows ofB. The matrix product is connected to (3.1) using

Theorem 3.2 SupposeA : m × n andB : n × p, andC = AB. ThenC defines
a linear function with domainℜp and rangeℜm. For anyx ∈ ℜp, we have

Cx = (AB)x = A(Bx)

This theorem shows thatmatrix multiplication is the same as function composi-
tion, soCx is the same as applying the functionA to the vectorBx.

Definition 3.5 (Transpose of a matrix) The transposeA′ of an×m matrixA =
(aij) is anm × n array whose entries are given by(aji).

Definition 3.6 (Rank of a matrix) An m × n matrixA is a transformation from
ℜn → ℜm. Therankρ(A) of A is the dimension of the vector subspace{u|u =
Ax, x ∈ ℜn} ⊂ ℜm.

Theorem 3.3 The rank ofA is equal to the number of linearly independent columns
of A.

Theorem 3.4 ρ(A) = ρ(A′), or the number of linearly independent columns ofA
is the same of the number of linearly independent rows.
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Definition 3.7 Then× n matrixA is nonsingular ifρ(A) = n. If ρ(A) < n, then
A is singular.

Definition 3.8 (Inverse) The inverse of a square matrixA is a square matrix of
the same sizeA−1 such thatAA−1 = A−1A = I.

Theorem 3.5 A−1 exists and is unique if and only ifA is nonsingular.

Definition 3.9 (Trace) trace(A) = tr(A) =
∑

aii.

From this definition, it is easy to show the following:

tr(A + B) = tr(A) + tr(B), trace isadditive

tr(ABC) = tr(BCA) = tr(CAB), trace iscyclic

and, ifB is nonsingular,

tr(A) = tr(ABB−1)

= tr(BAB−1)

= tr(B−1AB)

Definition 3.10 (Symmetric) A is symmetric ifaij = aji, for all i, j.

Definition 3.11 (Diagonal) A is diagonal ifaij = 0, i 6= j.

Definition 3.12 (Determinant) The determinantdet(A) is given by

det(A) =
∑

(−1)f(i1,...,im)a1i1a2i2 , . . . , amim

=
∑

(−1)f(i1,...,im)ai11ai22, . . . , aimm

where the sum is over all permutations(i1, . . . , im) of (1, . . . , m), andf(i1, . . . , im)
is the number of transpositions needed to change(1, 2, . . . , n) into (i1, . . . , im).
The determinant of a diagonal matrix is the product of its diagonal elements.

The determinant is a polynomial of degreen for ann × n matrix.

Theorem 3.6 If A is singular, thendet(A) = 0.
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3.2 Eigenvectors and Eigenvalues

Definition 3.13 (Eigenvectors and eigenvalues)An eigenvectorof a square ma-
trix A is any nonzero vectorx such thatAx = λx, λ ∈ ℜ. λ is aneigenvalueof
A.

From the definition, ifx is an eigenvector ofA, thenAx = λx = λIx and

Ax − λIx = 0 (3.3)

Theorem 3.7 λ is an eigenvalue ofA if and only if (3.3) is satisfied. Equivalently,
λ is an eigenvalue if it is a solution to

det(A − λI) = 0

This last equation provides a prescriptions for finding eigenvalues, as a solution to
det(A − λI) = 0. The determinant of ann × n matrix is a polynomial of degree
n, showing that the number of eigenvalues must ben. The eigenvalues need not
be unique or nonzero.

In addition, for any nonzero scalarc, A(cx) = cAx = (cλ)x, so thatcx is also
an eigenvector with associated eigenvaluecλ. To resolve this particular source of
indeterminacy, we will always require that all eigenvectors will be normalized to
have unit length,‖ x ‖ = 1. However, some indeterminacy in the eigenvectors
still remains, as shown in the next theorem.

Theorem 3.8 If x1 andx2 are eigenvectors with the same eigenvalue, then any
non-zero linear combination ofx1 andx2 is also an eigenvector with the same
eigenvalue.

Proof. If Axi = λxi for i = 1, 2, thenA(α1x1 + α2x2) = α1Ax1 + α2Ax2 =
α1λx1 + α2λx2 = λ(α1x1 + α2x2) as required.

According to Theorem 3.8, the set of vectors corresponding to the same eigen-
value form a vector subspace. The dimension of this subspacecan be as large as
themultiplicityof the eigenvalueλ, but the dimension of this subspace can be less.
For example, the matrix

A =







1 2 3
0 1 0
0 2 1






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hasdet(A−λI) = (1−λ)3, so it has one eigenvalue equal to one with multiplicity
three. The equationsAx = 1x have only solutions of the formx = (a, 0, 0)′

for any a, and so they form a vector subspace of dimension one, less than the
multiplicity of λ.

We can always find an orthonormal basis for this subspace, so the eigenvectors
corresponding to the fixed eigenvalue can be taken to be orthogonal.

Eigenvalues can be real or complex. But ifA is symmetric, then the eigenval-
ues must be real.

Theorem 3.9 The eigenvalues of a real, symmetric matrix are real.

Proof. In the proof, we will allow both the eigenvalue and the eigenvector to be
complex. Suppose we have eigenvectorx + iy with eigenvalueλ1 + λ2i, so

A(x + iy) = (λ1 + λ2i)(x + iy)

and thus
Ax + Ayi = (λ1x − λ2y) + i(λ1y + λ2x)

Evaluating real and imaginary parts, we get:

Ax = λ1x − λ2y (3.4)

Ay = λ1y + λ2x (3.5)

Multiply (3.4) on the left byy′ and (3.5) on the left byx′. Sincex′Ay = y′A′x,
we equate the right sides of these modified equations to get

λ1y
′x − λ2y

′y = λ1x
′y + λ2x

′x

and
λ2(x

′x + y′y) = 0

This last equation holds in general only ifλ2 = 0 and so the eigenvalue must be
real, from which it follows that the eigenvector is real as well.

Here are some more properties of the eigenvalues and eigenvectors of ann×n
real symmetric matrixA, all of these are easily demonstrated with the spectral
theorem, to be proved shortly.

• det(A) =
∏n

i=1 λi.

• If A is nonsingular, then the eigenvalues ofA are all nonzero (λi 6= 0, i =
1, . . . , n) and the eigenvalues ofA−1 areλ−1

1 , . . . , λ−1
n .
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• The eigenvalues ofA′ are the same as the eigenvalues ofA, since0 =
det(A − λI) only if 0 = det(A′ − λI).

• tr(A) =
∑

λi, and tr(Ar) =
∑

λr
i . If A is nonsingular, tr(A−1) =

∑

λ−1
i .

Definition 3.14 (Block Diagonal Matrix) A block diagonal matrix has nonzero
diagonal blocks and zero off-diagonal blocks.

If A is block diagonal, thenλ is an eigenvalue ofA if it is an eigenvalue of one of
the blocks.

Definition 3.15 (Orthogonal Matrix) Ann × n matrixΓ is orthogonal ifΓ′Γ =
ΓΓ′ = I.

Theorem 3.10 The product of two orthogonal matrices is orthogonal.

Proof. If Γ1 andΓ2 are orthogonal matrices, then(Γ1Γ2)(Γ1Γ2)
′ = Γ1Γ2Γ2

′Γ1
′ =

I.

3.3 Matrix Decompositions

Working with matrices both in theoretical results and in numerical computations
is generally made easier by decomposing the matrix into a product of matrices,
each of which is relatively easy to work with, and has some special structure of
interest. We pursue several decompositions in this section.

3.3.1 Spectral Decomposition

The spectral decomposition allows the representation of any symmetric matrix in
terms of an orthogonal matrix and a diagonal matrix of eigenvalues. We begin
with a theorem that shows that how to introduce zeroes into a symmetric matrix.

Theorem 3.11 LetA by a symmetric matrix and suppose that it has an eigenvalue
λn. Then there exists an orthogonal matrixΓ such that:

Γ′AΓ =

(

λn 0′

0 C

)

whereC is an (n − 1) × (n − 1) symmetric matrix such that ifλ is another
eigenvalue ofA, thenλ is also an eigenvalue ofC.
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Proof. Let xn be a normalized (unit length) eigenvector corresponding toλn and
extendxn so that{xn, u1, . . . , un−1} is an orthonormal basis forℜn. Let U =
{u1, . . . , un−1}. Then

Γ′AΓ =

(

xn
′

U ′

)

A(xn U) =

(

xn
′Axn xn

′AU
U ′Axn U ′AU

)

=

(

xn
′(λnxn) λnxn

′U
U ′(λxn) U ′AU

)

=

(

λnxn
′xn λxn

′U
λnU ′xn U ′AU

)

=

(

λn 0
0 U ′AU

)

If λ is an eigenvalue ofA, then we can find a corresponding eigenvectorz. If
λ = λn, meaning that the eigenvectorλn has multiplicity greater than one, we
takez to be orthogonal toxn, as can be justified using Theorem 3.8. In either
case, by definition,Az = λz, or (A − λI)z = 0, or

0 = ΓΓ′(A − λI)ΓΓ′z = Γ(Γ′AΓ − λI)(Γ′z) = (Γ′AΓ − λI)(Γ′z)

SinceΓ′AΓ is symmetric, we get thatλ is an eigenvalue ofΓ′AΓ with eigenvector
Γ′z as required.

If we continue the process of the last theorem, now working onthe matrix
(U ′AU) rather thanA we get:

Theorem 3.12 (Spectral theorem)LetA be a real symmetricn×n matrix. Then
there exists an orthogonal matrixΓ and a diagonal matrixD such thatA = ΓDΓ′.
An alternative statement of the spectral theorem is:

A =
m
∑

i=1

λiγiγi
′

with γi the i-th column ofΓ, andλi the i-th nonzero diagonal element ofD, and
m is the number of nonzero diagonal elements ofD.

An immediate consequence of the spectral theorem is that thecolumns ofΓ
are the normalized eigenvectors ofA and the diagonals ofD are the eigenvalues of
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A, sinceA = ΓDΓ′ implies thatAΓ = ΓD, and the columns ofΓ are normalized
eigenvectors and the diagonals ofD are the eigenvalues.
Proof of spectral theorem. The proof uses induction on the order ofA. If n = 1,
the result holds trivially, and forn = 2, Theorem 3.11 is equivalent to the spectral
theorem. Consider generaln. By Theorem 3.11, there is a matrixΓn such that

ΓnAΓn
′ =

(

λn 0
0 C

)

whereC is n−1×n−1. According to the induction argument, there are matrices
Γn−1 andDn−1 with C = Γn−1Dn−1Γn−1

′. Let

Γ = Γn

(

1 0
0 Γn−1

)

Then it is easily shown thatΓ is orthogonal andΓ′AΓ = D, a diagonal matrix.
Geometrically, the theorem says that any symmetric transformation can be

accomplished by rotating, weighting, and rotating back. Some additional conse-
quences are as follows.

Theorem 3.13 The rank of a symmetric matrix is the number of nonzero eigen-
values.

Proof. The result follows since multiplication by a nonsingular matrix does not
alter the rank of a matrix (from a homework problem).

Supposeν of the eigenvalues ofA are zero. Then the columns ofΓ corre-
sponding to these eigenvalues are an orthonormal basis for N(A) and the columns
of Γ corresponding to nonzero eigenvalues are an orthonormal basis forR(A).

Definition 3.16 A symmetric matrixA is positive definite ifx′Ax > 0 for all x 6=
0 ∈ ℜn. It is positive semidefinite ifx′Ax ≥ 0.

This definition corresponds to the definition given for linear transformations, given
ℜnand the usual inner product.

Theorem 3.14 The eigenvalues of a positive definite matrix are all positive, and
of a positive semi-definite matrix are all nonnegative.

Proof. A is positive definite if and only ifx′Ax > 0 or if and only ifx′Γ′ΛΓx > 0,
which holds if and only ify′Λy > 0 for all y = Γx.
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Theorem 3.15 If A is positive semi-definite, then there existsB: n × n such that
B is positive semi-definite,ρ(A) = ρ(B) andA = BB′.

Proof. For any diagonal matrixC with nonnegative elements, writeC1/2 to be the
diagonal matrix with elements(c1/2

ii ), soC1/2C1/2 = C. Then

A = ΓΛΓ′ = ΓΛ1/2Λ1/2Γ′ = ΓΛ1/2Γ′ΓΛ1/2Γ′ = BB′.

Theorem 3.16 If A is positive definite andA = ΓΛΓ′, thenA−1 = ΓΛ−1Γ′.

Theorem 3.17 If Z is m × n, thenZ ′Z andZZ ′ are positive semi-definite.

Suppose thatA = ΓΛΓ′, with the diagonal elements ofΛ ordered so that
λ1 ≤ λ2 ≤ · · · ≤ λn. Let Γ have corresponding columns(γ1, . . . , γn). Then, for
all vectorsxinℜn such that‖ x ‖ = 1, application of the spectral theorem shows
that

min
x

(x′Ax) = λ1

max
x

(x′Ax) = λn

If theλ1 = · · · = λk, then the minimum is achieved for any vector inR(γ1, . . . , γk).
If λn−j = · · · = λn, then the maximum is achieved for anyx ∈ R(λn−j , . . . , λn).

3.3.2 Singular Value Decomposition

We now extend the spectral theorem to generaln × p matrices.

Theorem 3.18 (The singular value decomposition)Let A be ann × p matrix.
There there exist orthogonal matricesU andV such that:

V ′AU =

(

∆ 0
0 0

)

where∆ = diag(δ1, . . . , δp) are thesingular valuesof A.
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This is not standard notation in the numerical analysis literature;Σ = diag(σ1, . . . , σp)
is commonly used in place of∆, but this would be confusing in most statistical
applications that reserveΣ andσ for variances or standard deviations.

Before proving the singular value decomposition, we consider some of its im-
plications, since they may make the proof clearer. The basicresult can be rewritten
as

A = V DU ′ = (V1 V2)

(

∆ 0
0 0

)(

U1
′

U2
′

)

= V1∆U1
′ + V20U2

′.

where 0 is a matrix of zeroes of appropriate dimension. Thus,the range of
A,R(A) = {z|z = Ax = V1∆U1

′x, x ∈ ℜn} = R(V1), and the columns of
V1 span the same space as the columns ofA. SinceV is an orthonormal basis,
the columns ofV1 provide an orthonormal basis forR(A). In other words,the
columns ofV1 provide an orthonormal basis for the column space ofA.

Similarly, R(A′) = R(U1). the columns ofU1 provide an orthonormal basis
for the row space ofA, which is the same as the column space ofA′.

The null space N(A) = {z|Az = 0} = R(V2) = (R(V1))
⊥, so the remaining

columns ofV are an orthonormal basis for the null space ofA. A similar result
usingU is found forA′.

Proof of singular value decomposition.A′A is p × p and positive semi-definite.
We can apply the spectral theorem to write

A′A = Γ

(

D 0
0 0

)

Γ′

or

Γ′A′AΓ =

(

D 0
0 0

)

. (3.6)

Now, letγi, i = 1, . . . , q ≤ p be the columns ofΓ corresponding to nonzeroλi,
and letΓ = (Γ1, Γ2), with Γ1 = (γ1, . . . γq). DefineVi = Aγi/

√
λi ∈ ℜn, i =

1, 2, . . . , q. The {Vi} are orthonormal, and can be extended to an orthonormal
basis forℜn if n > p. Denote this orthonormal basis byV = (V1, V2). Then:

V ′AΓ =

(

V1
′

V2
′

)

A(Γ1, Γ2) =

(

V1
′AΓ1 V1

′AΓ2

V2
′AΓ1 V2

′AΓ2

)

.

Consider each of the four submatrices separately.
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1. By construction,V1 = AΓ1D
−1/2, soV1

′AΓ1 = D−1/2Γ1
′A′AΓ1 = D−1/2D =

D1/2.

2. Since by equation (3.6),

Γ′A′AΓ =

(

Γ1
′

Γ2
′

)

A′A(Γ1 Γ2)

=

(

D 0
0 0

)

=

(

Γ1
′A′AΓ1 Γ1

′A′AΓ2

Γ2
′A′AΓ1 Γ2

′A′AΓ2

)

Then by equation(3.6), we must haveAΓ2 = 0, andV1
′AΓ2 = V2

′AΓ2 = 0.

3. Finally,V2 is orthogonal toV1 = AΓ1D
−1/2 andV2

′V1 = V2
′AΓ1D

−1/2 = 0
soV2

′AΓ1 = 0.

Setting∆ = D−1/2, andΓ = U , and substituting the results into the statement of
the theorem proves the result.

In the proof,U1 is any orthonormal basis for the space spanned by the eigen-
vectors with nonzero eigenvalues ofA′A. OnceU1 is chosen,V1 is determined.
V2 andU2 are any orthonormal basis completions and are thus orthonormal basis
for N(A) andN(A′), respectively. Also, the spectral theorem gives the decompo-
sition ofA′ = V ′∆U .

Definition 3.17 (Singular value factorization) The singular value factorization
of A = V1∆U1

′, whereV1 is n × q, ∆ is p × p and U1 is p × q. If A has full
column rank, then the spectral factorization isV1∆U ′. The columns ofV1 are
the left singular vectors (eigenvectors ofAA′) and the columns ofU are the right
singular vectors (eigenvectors ofA′A).

Reference. Mandel (1982),American Statistician, 15-24, discusses the use of
the singular value decomposition in regression analysis.

3.3.3 QR Factorization

The next factorization expresses anyn×p matrixA as a function of an orthogonal
matrixQ and an upper triangular matrixR.
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Theorem 3.19 (QR factorization) LetA have linearly independent columns. Then,
up to sign changes,A can be written uniquely in the formA = Q1R, whereQ1

has orthonormal columns andR is upper triangular.

Proof (Homework problem)

Definition 3.18 (QR decomposition with column reordering) SupposeA = (A1, A2)
is ann× p rankr ≤ p matrix, so thatA1 is n× r rankr. AnyA can be put in this
form by reordering the columns so that the firstr are linearly independent. Then
theQR decomposition ofA is given by:

A = (Q1 Q2)

(

R 0
0 0

)

whereQ2 is any basis for N(A).

Reference. Ansley, C. F. (1985), “Quick Proofs of some regression theorems
via the QR algorithm”,American Statistician, 39, 55-59. (A copy of this article
can be obtained from www.jstor.org.)

3.3.4 Projections

Since matrices are linear transformations,

Definition 3.19 P is a projection (matrix) ifP = P 2.

Theorem 3.20 If P is a projection such thatP = P ′, then

1. The eigenvalues of P are 0 or 1

2. ρ(P ) = tr(P )

3. P is an orthogonal projection onM and alongM⊥.

Proof. If λ is an eigenvalue ofP , then for somex 6= 0, Px = λx ⇒ P 2x =
λPx = λ2x = Px = λx or λ(1 − λ) = 0 andλ = 0 or 1. Part 2 follows
immediately sinceR(P ) = number of nonzero eigenvalues = tr(P ). The proof of
part 3 is similar to the proof for transformations given earlier.

Theorem 3.21 Symmetric projection matrices are positive semi-definite.
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Proof. Immediate, since all the eigenvalues are either zero or one. The only
projection that is positive definite, and has all its eigenvalues equal to one, is the
identity projection,I.

Theorem 3.22 LetX by ann×p matrix of rankp. ThenP = X(X ′X)−1X ′ is the
orthogonal projection onR(X) (alongR(X)⊥). If X isn×1, thenP = xx′/(x′x).

Proof. First,(X ′X)−1 exists (why?). Since

(X(X ′X)−1X ′)2 = X(X ′X)−1X ′X(X ′X)−1X ′ = X(X ′X)−1X ′

and(X(X ′X)−1X ′)′ = X(X ′X)−1X ′, P is idempotent and symmetric, soP is
a projection on some space. We need only show that ifz ∈ R(X), thenPz = z,
and if z ∈ (R(X))⊥, thenPz = 0. If z ∈ R(X), we can writez = Xa for some
vectora 6= 0 becauseX is of full rank, and so the columns ofX form a basis for
R(X). ThenPz = X(X ′X)−1X ′Xa = Xa = z as required. Ifz ∈ (R(X))⊥,
write z = Zb, where the columns ofZ are an orthonormal basis for(R(A))⊥, and
thusPz = PZb = 0 becauseX ′Z = 0 by construction.

Theorem 3.23 DefineP = X(X ′X)−1X ′ as above. ThenP = Q1Q1
′ = V1V1

′,
whereQ1 andV1 are as defined in theQR andSV factorizations, respectively.

Theorem 3.24 pii, thei-th diagonal element of an orthogonal projection matrix
P , is bounded,0 ≤ pii ≤ 1. If 1 ∈ R(X), then1/n ≤ pii ≤ 1. If the number of
rows ofX exactly equal toxi is c, then1/n ≤ pii ≤ 1/c.

Proof

1. For ally, y′Py ≤ y′y. Sety = ei, thei-th standard basis vector.

2. SupposeX = (1 X0). Get an orthonormal basis forX starting with 1:
X∗ = (1/

√
n, X∗

0 ), andPx = P1+P ∗

0 . SinceP1 = 11′/1′1 has all elements
equal to 1/n,pii ≥ 1/n.

3. pii =
∑

pijpji =
∑

p2
ij (by symmetry). But, ifxi = xi∗ , p

2
ii∗ = p2

ii, so
∑

p2
ij ≥ cp2

ii, from whichpii ≤ 1/c.
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Theorem 3.25 SupposeX = (X1, X2), where each ofX1 and X2 are of full
column rank, but not orthogonal. Then, letPj be the projection on the columns
of Xj (= Xj(Xj

′Xj)
−1Xj

′), andP12 be the projection on the columns ofX (=
X(X ′X)−1X ′). LetX∗

j = (I − P3−j)Xj, j = 1, 2. Then:

P12 = P1 + P ∗

2 andP12 = P2 + P ∗

1

where

P ∗

j = X∗

j (X∗T
j Xj)

−1X∗

j

= (I − P3−j)Xj
′(Xj(I − P3−j)Xj)

−1Xj
′(I − P3−j)

This result tells how to compute the projection onM alongN if M andN are
not orthogonal. The proof is by direct multiplication.

As a final comment about projection matrices, the central object of interest is
the subspaceM . The projection matrix does not depend on the basis selected for
the space—it is coordinate free. The projection can be computed starting with any
convenient basis.

3.3.5 Generalized Inverses

Orthogonal projections are easily constructed both theoretically and numerically
by finding an orthonormal basis forR(X), for example using the singular value
decomposition or the QR factorization. We have also seen in Theorem 3.22 that
projections can be computed whenX is of full column rank and soX ′X is invert-
ible.

A different approach to getting projections whenX is not of full column rank
is through the use ofgeneralized inversesor g-inverses. Although this approach
does not seem to have much to offer from the point of view of this course, it is
worth some study if only because it is widely used in other approaches to linear
models.

Definition 3.20 (Generalized inverse)SupposeA is ann× p rankq matrix with
q ≤ p ≤ n. Then a generalized inverseA− of A is a matrix that satisfies

AA−y = y (3.7)

for all y ∈ ℜn, and soA− must be ap × n matrix.
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The matrixA can be viewed as a linear function that transforms a vectorx ∈
ℜp to a vectory ∈ ℜn. The linear functionA− maps in the other direction, from
ℜn → ℜp. Since for anyx ∈ ℜp, Ax ∈ ℜn, substitute into (3.7) to get

AA−(Ax) = Ax

AA−Ay = Ax

AA−A = A (3.8)

This last result is often given as the definition of a generalized inverse.
Multiplying (3.8) on the left byA−, gives(A−A)(A−A) = A−A, which can

be summarized by the following theorem.

Theorem 3.26 A−A is a projection, but not necessarily an orthogonal projection.

We will now construct a generalized inverse. We start with the singular value
decomposition ofA = V1∆U1

′, and substitute into (3.8):

AA−A = A

(V1∆U1
′)A−(V1∆U1

′) = V1∆U1
′

This equation will be satisfied if we set

A− = U1∆
−1V1

′

and so we have produceda generalized inverse.
The generalized inverse is not unique. As a homework problem, you should

produce a generalized inverse starting with theQR factorizationA = Q1R1.
The next definition gives a specific generalized inverse thatsatisfies additional

properties.

Definition 3.21 (Moore-Penrose Generalized Inverse)AMoore-Penrose gener-
alized inverseof A is anm × n matrixA+ such that:

1. (AA+)′ = AA+.

2. (A+A)′ = A+A.

3. AA+A = A (soA+ is a g-inverse ofA)

4. A+AA+ = A+ (soA is a g-inverse ofA+)
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From the definition, it is immediate thatAA+ andA+A are orthogonal projection
matrices.

Theorem 3.27 Every matrixA has a Moore-Penrose generalized inverse.

Proof. It is easy to show directly that the generalized inverse we produced above
based on the singular value decomposition satisfies these conditions.

Theorem 3.28 The Moore-Penrose generalized inverse is unique.

Proof. Homework.

The following are examples of Moore Penrose G-inverses.

1. If A is an orthogonal projection,A+ = A.

2. If A is nonsingular,A+ = A−1.

3. If A = diag(ai), thenA+ has diagonal elements1/ai if ai 6= 0, and equal
to 0 if ai = 0.

4. If ρ(A : m × n) = m, thenA+ = A′(AA′)−1.

5. If ρ(A : m × n) = n, thenA+ = (A′A)−1A′.

6. ρ(A) = ρ(A+)

7. For anyA, (A+)′ = (A′)+.

8. If A is symmetric, thenA+ is symmetric.

9. (A+)+ = A

10. For nonsingular matrices,(AB)−1 = B−1A−1, but if they are not nonsin-
gular,(AB)+ 6= B+A+. Here is an example:

A =

(

1 0
0 0

)

B =

(

b1

b2

)

and

(AB)+ =

(

b1

0

)+

= (1/b1, 0)

B+A+ =
(b1, b2)

b2
1 + b2

2

(

1 0
0 0

)

=

(

b1

b2
1 + b2

2

, 0

)

In two important cases, the equality will hold:
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(a) For anyA, (A′A)+ = A+(A′)+.

(b) If ρ(Am×n) = n andρ(Bn×r) = n, then(AB)+ = B+A+.

.

Theorem 3.29 P = XX+ is the orthogonal projection onR(X).

Proof. We have shown previously thatP is an orthogonal projection, so we need
only show that it projects onR(X). First, sincePz = XX+z = Xz∗ is a
linear combination of the columns ofX, we must have thatR(P ) ⊂ R(X).
We need only show thatρ(X) = ρ(P ). SinceP is an orthogonal projection,
ρ(P ) = tr(P ) = tr(XX+) = tr(V1DU1

′V1D
−1U1

′) = tr(Ir) = r = number of
nonzero singular values ofX = ρ(X).

There are lots of generalized inverses. The next theorem shows how to get
from one to another.

Theorem 3.30 LetX− be any two generalized inverse of ann×p matrixX. Then
there exists anp × n matrixC such that

X∗ = X− + C − X−XCXX− (3.9)

is also a generalized inverse ofX. In addition, for any generalized inverseX∗,
there is aC so that (3.9) is satisfied.

Proof. SinceA− is a generalized inverse,

X(X− + C − X−XCXX−)X = XX−X + XCX − XX−XCXX−X = X

and soX∗ = X− + C + X−XCXX− is a generalized inverse. Now suppose
thatZ is any generalized inverse ofX, and defineC = Z − X−. SinceZ is a
generalized inverse,XZX = X, and

X− + C − X−XCXX− = X− − (Z − X−) − X−X(B − X−)XX−

= Z − X−XZXX− + X−XX−XX−

= Z − X−XX− + X−XX−

= Z

and so we have produced aC corresponding to the generalized inverseZ.
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3.4 Solutions to systems of linear equations

Consider the matrix equationXn×pβp×1 = yn×1. For a givenX and Y does
there exist a solutionβ to these equations? Is it unique? If not unique, can we
characterize all possible solutions?

1. If n = p andX is nonsingular, the unique solution isβ = X−1y.

2. If y ∈ R(X), y can be expressed as a linear combination of the columns
of X. If X is of full column rank, then the columns ofX form a basis for
R(X), and the solutionβ is just the coordinates ofy relative to this basis.
For any g-inverseX−, we haveXX−y = y for all y ∈ R(X), and so a
solution is given by

β = X−y (3.10)

If R(X) < p, then the solution is not unique. Ifβ0 is any solution, for
example the solution given by (3.10), then ifz is such thatXz = 0, then
β0 + z is also a solution. By definitionXz = 0 if any only if z ∈ N(X).
The set of solutions is given by N(X) + β0, which is a flat.

3. If y 6∈ R(X), then there is no exact solution. This is the usual situation
in linear models, and leads to the estimation problem discussed in the next
chapter.
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