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Chapter 3

Matrices

3.1 Matrices

Definition 3.1 (Matrix) A matrix A is a rectangular array ofn x n real numbers
{ai; } written as

a1 Q2 - Aip

Q21 Q22 -+ Q2n
A=

Am1 Am2 - Amp

The array hasn rows andn columns.

If AandB are bothm x n matrices, thel' = A + B is anm x n matrix of real
numbers:;; = a;; + by;. If Aisanm x n matrix anda € ®', thenaAis anm x n
matrix with elementsva;;. Also,aA = Aa, anda(A + B) = aA + aB.

A matrix A can be used to define a functigh: R — R™.

Definition 3.2 (Linear function associated with a matrix) Given a vector: €

R"™ with coordinates a4, ..., a,) relative to a fixed basis, define= Az to be
the vector ink™ with coordinates given far=1,...,m,
ﬁi = Z aijozj = (Az, ZL‘) (31)
j=1

whereA; is the vector consisting of thih row of A. The vectorn: has coordinates

(ﬁla e 7ﬁm)
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42 CHAPTER 3. MATRICES

Theorem 3.1 For all =,y € R, scalarsa and 3, and any twon x m matrices
A, B, the function[(311) has the following two properties:

Alax + By) = aAx+ Ay (3.2)
(€A + (B)(x) = aAx+ By

In light of (22) we will call A a linear function, and ifm = n, A is alinear
transformation

Proof: Straightforward application of the definition.

Definition 3.3 A square matrix has the same number of rows and columns. It
transforms fromk™ — R", but is not necessarily onto.

Connection between matrices and linear transformationsin light of (1),
every square matrix corresponds to a linear transformditmn R"* — R". This
justifies using the same symbol for both a linear transfoionand for its corre-
sponding matrix. The matrix representation of a lineardgfanmation depends on
the basis.

Example In )3, consider the linear transformation defined as follows.tRer
canonical basige;, es, e},

1 0 1
A€1 = 2 A€2 = 1 Aeg = 0
3 1 -1

Relative to this basis, the matrix df is

1 0 1
A=121 0
31 -1

If we change to a different basis, say

1 1 1
xry = 1 , Tg = -1 , Ty = 1
1 0 -2

then the matrix4A changes. For this example, since= e; +e;+e3, 10 = €1 — €3
andzs = ey + e; — 2e3, We can compute

2
Al’l = A(61 + 69 + 63) = A€1 -+ Aeg + A@g = 3 = aq
3
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and this is the first column of relative to this basis. The full matrix is

21 -1
31 3
3 2 2

While the matrix representation of a linear transformatiepends on the basis
chosen, the two special linear transformatiorend/ are always identified with
the null matrix and the identity matrix, respectively.

Definition 3.4 (Matrix Multiplication) Given two matricesi : m x n and B :
n X p, the matrix productC = AB (in this order) is anm x p matrix with typical
elements

n
Cij = Z i
k=1

The matrix product is defined only when the number of colurhasexjuals the
number of rows oB3. The matrix product is connected fo{[3.1) using

Theorem 3.2 Supposed : m x nand B : n x p, andC = AB. ThenC' defines
a linear function with domaifi? and rangeR™. For anyx € R?, we have

Cx = (AB)r = A(Bux)

This theorem shows thatatrix multiplication is the same as function composi-
tion, soC'z is the same as applying the functidrto the vectorBz.

Definition 3.5 (Transpose of a matrix) The transposel’ of an x m matrix A =
(a;j) is anm x n array whose entries are given By, ).

Definition 3.6 (Rank of a matrix) Anm x n matrix A is a transformation from
R — R™. Therankp(A) of A is the dimension of the vector subspdegu =
Az, x € R*} C R™.

Theorem 3.3 The rank of4 is equal to the number of linearly independent columns
of A.

Theorem 3.4 p(A) = p(A’), or the number of linearly independent columnslof
is the same of the number of linearly independent rows.
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Definition 3.7 Then x n matrix A is nonsingular ifo(A) = n. If p(A) < n, then
Ais singular.

Definition 3.8 (Inverse) The inverse of a square matriX is a square matrix of
the same sized ! suchthatAA™! = A~1A =1,

Theorem 3.5 A~! exists and is unique if and only.f is nonsingular.
Definition 3.9 (Trace) trace(A) =tr(A) = X ay;.
From this definition, it is easy to show the following:

tr(A+ B) = tr(A)+1tr(B), trace isadditive
tr(ABC) = tr(BCA) =tr(CAB), trace iscyclic

and, if B is nonsingular,

tr(4) = tr(ABB™")
= tr(BAB™)
tr(B~'AB)

Definition 3.10 (Symmetric) A is symmetric ify;; = a;;, for all ¢, j.
Definition 3.11 (Diagonal) A is diagonal ifa;; = 0,7 # j.
Definition 3.12 (Determinant) The determinandet(A) is given by

det(A) = Z:(—l)f(le """ a1, A4y -
= Z:(—l)f(le """ 1@y e Qi
where the sum is over all permutatiofis, . . ., i,,) of (1,...,m), andf (i1, ..., im)
is the number of transpositions needed to chafige, ..., n) into (i1, ..., iy).
The determinant of a diagonal matrix is the product of itsgdiaal elements.

The determinant is a polynomial of degneéor ann x n matrix.

Theorem 3.6 If A is singular, thendet(A) = 0.
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3.2 Eigenvectors and Eigenvalues

Definition 3.13 (Eigenvectors and eigenvaluesin eigenvectoof a square ma-
trix A is any nonzero vector such thatAxz = Az, A € R. )\ is aneigenvalueof
A.

From the definition, ifr is an eigenvector ofl, thenAxz = Az = Az and
Ar — ANz = 0 (3.3)

Theorem 3.7 \is an eigenvalue ofl if and only if [3B) is satisfied. Equivalently,
A is an eigenvalue if it is a solution to

det(A—XI) = 0

This last equation provides a prescriptions for finding eigdues, as a solution to
det(A — AI) = 0. The determinant of an x n matrix is a polynomial of degree
n, showing that the number of eigenvalues mustb&he eigenvalues need not
be unique or nonzero.

In addition, for any nonzero scalarA(cx) = cAx = (cA)z, so thatex is also
an eigenvector with associated eigenvaldeTo resolve this particular source of
indeterminacy, we will always require that all eigenvestaill be normalized to
have unit length|| = || = 1. However, some indeterminacy in the eigenvectors
still remains, as shown in the next theorem.

Theorem 3.8 If x; andz, are eigenvectors with the same eigenvalue, then any
non-zero linear combination af; andz, is also an eigenvector with the same
eigenvalue.

Proof. If Ax; = A\ fori = 1,2, thenA(Ctl.Z'l + Oéz.fll'g) = mAx) + apAxy =
a1 AT + asAxe = My + agzs) as required.

According to Theorerii 3 8, the set of vectors correspondirtige same eigen-
value form a vector subspace. The dimension of this subsgsEtee as large as
themultiplicity of the eigenvalue, but the dimension of this subspace can be less.

For example, the matrix
1 2 3
A=[0 1 0
0 2 1
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hasdet(A—\I) = (1—\)3, soit has one eigenvalue equal to one with multiplicity
three. The equationdz = 1z have only solutions of the form = (a,0,0)
for any a, and so they form a vector subspace of dimension one, lesstliea
multiplicity of \.

We can always find an orthonormal basis for this subspacegsesigenvectors
corresponding to the fixed eigenvalue can be taken to begotia.

Eigenvalues can be real or complex. Butlifs symmetric, then the eigenval-
ues must be real.

Theorem 3.9 The eigenvalues of a real, symmetric matrix are real.

Proof. In the proof, we will allow both the eigenvalue and the eigator to be
complex. Suppose we have eigenveator iy with eigenvalue\; + \,i, SO
Az +iy) = (M + A2i)(x + 1y)
and thus
Az + Ayi = (Mx — Aay) + i(Ay + Aa)
Evaluating real and imaginary parts, we get:

Ar = ANz — gy (3.4)
Ay = My+ dox (3.5)

Multiply (B4)) on the left byy’ and [35) on the left by’. Sincex’ Ay = y'A'x,
we equate the right sides of these modified equations to get

MY'x — Noy'y = M2’y + \o2'x

and
Xo(Z'x 4+ y'y) =0
This last equation holds in general only\f = 0 and so the eigenvalue must be
real, from which it follows that the eigenvector is real adlwe
Here are some more properties of the eigenvalues and eigersef am x n
real symmetric matrix4, all of these are easily demonstrated with the spectral
theorem, to be proved shortly.

® det(A) = ?:1 /\z

e If A is nonsingular, then the eigenvalues/hare all nonzeroX; # 0,i =
1,...,n)and the eigenvalues of ! are\; !, ... A\ L.
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e The eigenvalues ofl’ are the same as the eigenvaluesdpfsince( =
det(A — M) only if 0 = det(A" — AI).
o tr(A) =Y\, and t{A”) = S M. If Ais nonsingular, tA=!) = S A

Definition 3.14 (Block Diagonal Matrix) A block diagonal matrix has nonzero
diagonal blocks and zero off-diagonal blocks.

If Ais block diagonal, then is an eigenvalue ofl if it is an eigenvalue of one of
the blocks.

Definition 3.15 (Orthogonal Matrix) Ann x n matrixI" is orthogonal ifl"'T" =
'™ =1.

Theorem 3.10 The product of two orthogonal matrices is orthogonal.

Proof. If I'; andI’y are orthogonal matrices, theR, ') (I'1['y)" = [ T[Ty =
1.

3.3 Matrix Decompositions

Working with matrices both in theoretical results and in ruital computations
is generally made easier by decomposing the matrix into dymtoof matrices,
each of which is relatively easy to work with, and has someigpstructure of
interest. We pursue several decompositions in this section

3.3.1 Spectral Decomposition

The spectral decomposition allows the representationysgmmetric matrix in
terms of an orthogonal matrix and a diagonal matrix of eigames. We begin
with a theorem that shows that how to introduce zeroes inyorargetric matrix.

Theorem 3.11 Let A by a symmetric matrix and suppose that it has an eigenvalue
A,. Then there exists an orthogonal matfixsuch that:

van [ A O
rar- (% )

whereC' is an (n — 1) x (n — 1) symmetric matrix such that iX is another
eigenvalue of4, then)\ is also an eigenvalue @f.
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Proof. Let x,, be a normalized (unit length) eigenvector correspondiniy,tand
extendz,, so that{z,,u,...,u, 1} is an orthonormal basis foR". LetU =
{Ul, - 7un—1}- Then

AT = ( T ) Az, U) =

g (
_ nxn nxn/U
a U’ (A\x,) UAU

M T /\xn’U>

x, Ax, 1, AU
U’Axn U AU

MU'z, U AU

- (% o)

If \ is an eigenvalue ofl, then we can find a corresponding eigenvectonf

A = \,, meaning that the eigenvectdy, has multiplicity greater than one, we
take z to be orthogonal ta;,, as can be justified using Theoréml3.8. In either
case, by definitiondz = Az, or (A — A\l)z =0, or

0=TT"(A— ATz = D(IVAD — AI)(I"z) = (IVAT — AI)(I"2)

Sincel” AT is symmetric, we get thatis an eigenvalue di’ A" with eigenvector
[z as required.

If we continue the process of the last theorem, now workinghenmatrix
(U'AU) rather than4A we get:

Theorem 3.12 (Spectral theorem)Let A be a real symmetrig x n matrix. Then
there exists an orthogonal matrixand a diagonal matriX) such thatd = I'DI".
An alternative statement of the spectral theorem is:

A= Z AiYiYi'
=1
with ~; thei-th column ofl", and \; the i-th nonzero diagonal element &f, and

m is the number of nonzero diagonal element®of

An immediate consequence of the spectral theorem is thatatenns ofl’
are the normalized eigenvectorsdfnd the diagonals dp are the eigenvalues of
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A, sinceA = I'DI” implies thatAI' = I' D, and the columns df are normalized
eigenvectors and the diagonals/ofare the eigenvalues.

Proof of spectral theoremrlhe proof uses induction on the order4f If n = 1,
the result holds trivially, and fat = 2, Theorenl:3111 is equivalent to the spectral
theorem. Consider genenal By Theoreni 3111, there is a matiiy such that

A O
! n
FnAFn—<O C)

whereC'isn—1 xn — 1. According to the induction argument, there are matrices
anl anan,1 W|th C = Fn,an,lrn,ll. Let

1 0
ren (1)

Then it is easily shown that is orthogonal and” A" = D, a diagonal matrix.

Geometrically, the theorem says that any symmetric transfton can be
accomplished by rotating, weighting, and rotating backm8additional conse-
guences are as follows.

Theorem 3.13 The rank of a symmetric matrix is the number of nonzero eigen-
values.

Proof. The result follows since multiplication by a nonsingulaatnx does not
alter the rank of a matrix (from a homework problem).

Suppose of the eigenvalues ofi are zero. Then the columns bfcorre-
sponding to these eigenvalues are an orthonormal basiq for &d the columns
of I' corresponding to nonzero eigenvalues are an orthonorrse flaR (A).

Definition 3.16 A symmetric matri is positive definite it’ Az > 0 for all x #
0 € k™. Itis positive semidefinite if Ax > 0.

This definition corresponds to the definition given for lingansformations, given
R™and the usual inner product.

Theorem 3.14 The eigenvalues of a positive definite matrix are all posjtand
of a positive semi-definite matrix are all nonnegative.

Proof. A is positive definite if and only i’ Az > 0 orifand only if «'T"AT'z > 0,
which holds if and only ify/’Ay > 0 forall y = T'x.
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Theorem 3.15If A is positive semi-definite, then there exiBtsn x n such that
B is positive semi-definite A) = p(B) and A = BB'.

Proof. For any diagonal matrig' with nonnegative elements, wri¢'/? to be the
diagonal matrix with elementg/?), soC*/2C'/2 = C. Then

13

A = TATY = TAY2AY2T — TAYV2I'TAY?TY = BB,

Theorem 3.16 If A is positive definite andl = TAI, thenA~! = AT,
Theorem 3.17If Z ism x n, thenZ'Z and ZZ' are positive semi-definite.

Suppose thatd = T'AI”, with the diagonal elements of ordered so that
A1 < A\ < - < \,. LetI have corresponding columis, . .., v,). Then, for
all vectorszin®™ such that| = || = 1, application of the spectral theorem shows
that

mljn(x’Ax) = )\

mgx(x’Ax) = A\
Ifthe \; = - - - = )4, then the minimum is achieved for any vectoRiy,, . . ., 7).
If \,—; =--- = \,, then the maximum is achieved for any= R(\,_;, ..., \,).

3.3.2 Singular Value Decomposition

We now extend the spectral theorem to general p matrices.

Theorem 3.18 (The singular value decomposition)et A be ann x p matrix.
There there exist orthogonal matricEsand V' such that:

carr [ A0
v (30)

whereA = diag(¢y, . . ., 0,) are thesingular valuesf A.
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This is not standard notation in the numerical analysisditee;> = diag(oy, ..., 0,)
is commonly used in place ak, but this would be confusing in most statistical
applications that reserve ando for variances or standard deviations.

Before proving the singular value decomposition, we cagrssdme of its im-
plications, since they may make the proof clearer. The asidt can be rewritten

as
A0 Uy
— I
- %AU1/+‘/Y20U2/.

where 0 is a matrix of zeroes of appropriate dimension. THes,range of
A, R(A) = {z]z = Az = VIAU/z, x € R*} = R(V}), and the columns of
V1 span the same space as the columnd.ofSinceV is an orthonormal basis,
the columns ofl; provide an orthonormal basis f@&(A). In other wordsthe
columns of/; provide an orthonormal basis for the column spacelof

Similarly, R(A") = R(U,). the columns of/; provide an orthonormal basis
for the row space ofi, which is the same as the column spacelof

The null space K4) = {z|Az = 0} = R(V;) = (R(V1))+, so the remaining
columns ofV are an orthonormal basis for the null spacedofA similar result
usingU is found for A’.

Proof of singular value decompositiom’ A is p x p and positive semi-definite.
We can apply the spectral theorem to write

I A D 0 /
AA_F<O 0>r

or

0 0

Now, letv;, i = 1,...,q < p be the columns of corresponding to nonzery,

and letl’ = (I'},Ty), with Ty = (v, ...7,). DefineV; = Ay;/vVAi € R",i =
1,2,...,q. The{V;} are orthonormal, and can be extended to an orthonormal
basis forR™ if n > p. Denote this orthonormal basis by= (17, V3). Then:

v/ VI/AT, Vi'AT,
/ _ J—
‘“ﬂ_<vy>mniﬁ_<w%n Vy' ATy |

r%%r:(D 0). (3.6)

Consider each of the four submatrices separately.
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1. By construction}; = ATy D2, soV4’ATl'y = D~'2I'//A’AT", = D~'/?D =
D2,

2. Since by equatioi(3.6),

NN
P | VA Ty)

(Do
~loo
[ TYAAT, T /A'AT,
= | Iy A’Ar;, Ty A’Ar,

"AAT = (

Then by equatiofi(31 6), we must had&, = 0, andV;’ AT’y = V5’ AT’y = 0.

3. Finally, V4 is orthogonal td; = ATy D~ Y? andV,y'V; = Vi’ AT D12 =0
soVy'AI'; = 0.

SettingA = D~/2, andI’ = U, and substituting the results into the statement of
the theorem proves the result.

In the proof,U; is any orthonormal basis for the space spanned by the eigen-
vectors with nonzero eigenvalues 4fA. OnceU; is chosen); is determined.
V5 andUs, are any orthonormal basis completions and are thus orthwaldrasis
for N(A) and N (A’), respectively. Also, the spectral theorem gives the deaamp
sition of A’ = V'AU.

Definition 3.17 (Singular value factorization) The singular value factorization
of A = VAU, whereV; isn x ¢, Aisp x pandU; isp x ¢q. If A has full
column rank, then the spectral factorizationWisAU’. The columns of/; are
the left singular vectors (eigenvectors4f’) and the columns df’ are the right
singular vectors (eigenvectors df A).

ReferenceMandel (1982) American Statisticianl5-24, discusses the use of
the singular value decomposition in regression analysis.

3.3.3 QR Factorization

The next factorization expresses any p matrix A as a function of an orthogonal
matrix () and an upper triangular matrix.
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Theorem 3.19 (QR factorization) Let A have linearly independent columns. Then,
up to sign changes4 can be written uniquely in the for\d = @, R, where@,
has orthonormal columns anfd is upper triangular.

Proof (Homework problem)

Definition 3.18 (QR decomposition with column reordering) Supposel = (A, A,)
isann x p rankr < p matrix, so thatd, isn x r rankr. Any A can be put in this
form by reordering the columns so that the firsire linearly independent. Then
the @ R decomposition ofl is given by:

a-@e(y o)

where(Q) is any basis for NA).

Reference Ansley, C. F. (1985), “Quick Proofs of some regression teets
via the QR algorithm” American Statistician39, 55-59. (A copy of this article
can be obtained from www.jstor.org.)

3.3.4 Projections
Since matrices are linear transformations,
Definition 3.19 P is a projection (matrix) if? = P2.
Theorem 3.20If P is a projection such thaP = P’, then
1. The eigenvalues of Pare O or 1
2. p(P) =tr(P)
3. Pis an orthogonal projection o/ and alongM/+.

Proof. If X is an eigenvalue of’, then for somer # 0, Pz = \v = P%r =
APz = Nz = Pr = AxorA(1—2)) =0and\ = 0 or1. Part 2 follows
immediately sincék (P) = number of nonzero eigenvalues £Ar). The proof of
part 3 is similar to the proof for transformations given el

Theorem 3.21 Symmetric projection matrices are positive semi-definite.
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Proof. Immediate, since all the eigenvalues are either zero or drfee only
projection that is positive definite, and has all its eigéumea equal to one, is the
identity projection,/.

Theorem 3.22 Let X by ann x p matrix of rankp. ThenP = X (X'X)~'X’is the
orthogonal projection o (X) (alongR(X)1). If Xisnx 1, thenP = za'/(2'z).

Proof. First, (X'X)~! exists (why?). Since
(X(X'X)1X)? = X(X'X) ' X'X(X' X)X = X (X' X)X/

and (X (X'X)'X"Y = X(X'X)"'X', P is idempotent and symmetric, $0is
a projection on some space. We need only show thatifR(X ), thenPz = z,
andifz € (R(X))*, thenPz = 0. If z € R(X), we can writez = Xa for some
vectora # 0 becauseX is of full rank, and so the columns &f form a basis for
R(X). ThenPz = X(X'X)"'X'Xa = Xa = z as required. It € (R(X))*,
write = = Zb, where the columns df are an orthonormal basis f6R(A))*, and
thusPz = PZb = 0 becauseX’Z = 0 by construction.

Theorem 3.23 DefineP = X (X'X)~'X’ as above. The® = Q,Q,' = V,V//,
where@, andV; are as defined in th@ R and SV factorizations, respectively.

Theorem 3.24 p,;, thei-th diagonal element of an orthogonal projection matrix
P,is bounded) < p;; < 1. If 1 € R(X), thenl/n < p; < 1. If the number of

rows of X exactly equal ta; is ¢, thenl/n < p; < 1/c.

Proof
1. Forally,y' Py < y'y. Sety = ¢;, thei-th standard basis vector.

2. SupposeX = (1 X;). Get an orthonormal basis foY starting with 1:
X* = (1/y/n,X§),andPx = P+ P}. SinceP, = 11’/1'1 has all elements
equal to 1/np;; > 1/n.

3. pii = Y PijPji = szzj (by symmetry). But, ifz; = x;+,p7. = p3, SO
> py; > cpy, from whichp;; < 1/c.

i1
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Theorem 3.25 SupposeX = (X, X3), where each ofX; and X, are of full
column rank, but not orthogonal. Then, |Bf be the projection on the columns
of X; (= X;(X,;/X;)"*X}’), and P, be the projection on the columns &f (=
X(X'X)7'X'). LetX; = (I — P3_;)X;, j=1,2. Then:

P12:P1+P2*andP12:P2+Pl*
where

Pro= XXX XS
= (I =P )X/ (X;(I - Ps_j)X;)"' X;/(I — Ps_;)

This result tells how to compute the projectionldralong N if M andN are
not orthogonal. The proof is by direct multiplication.

As a final comment about projection matrices, the centraailgf interest is
the subspac@/. The projection matrix does not depend on the basis selected f
the space-itis coordinate free. The projection can be computedistawith any
convenient basis.

3.3.5 Generalized Inverses

Orthogonal projections are easily constructed both thmaiey and numerically
by finding an orthonormal basis f@& (X ), for example using the singular value
decomposition or the QR factorization. We have also seerheoilen3.22 that
projections can be computed whé&nis of full column rank and s’ X is invert-
ible.

A different approach to getting projections wh&nis not of full column rank
is through the use ajeneralized inversesr g-inverses Although this approach
does not seem to have much to offer from the point of view of tuurse, it is
worth some study if only because it is widely used in otheragghes to linear
models.

Definition 3.20 (Generalized inverse)Supposel is ann x p rankg matrix with
q < p < n. Then a generalized inverse™ of A is a matrix that satisfies

AA Ty =y (3.7)

forall y € ?", and soA~ must be @ x n matrix.
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The matrixA can be viewed as a linear function that transforms a vecter
R? to a vectory € R". The linear functiorA~ maps in the other direction, from
R — RP. Since for anyr € R?, Az € R", substitute intol(3]7) to get

AA™(Az) = Az
AATAy = Az
AATA = A (3.8)

This last result is often given as the definition of a geneegliinverse.
Multiplying (88) on the left byA~, gives(A~A)(A~A) = A~ A, which can
be summarized by the following theorem.

Theorem 3.26 A~ A is a projection, but not necessarily an orthogonal projenti

We will now construct a generalized inverse. We start withgmgular value
decomposition oA = V; AU,’, and substitute intd{3.8):

AAA = A
(MAUY)A=(VIAUY) = ViAUY

This equation will be satisfied if we set
A" =U AV

and so we have producedyeneralized inverse.

The generalized inverse is not unique. As a homework probyem should
produce a generalized inverse starting with@he factorizationA = Q| R;.

The next definition gives a specific generalized inverseshasfies additional
properties.

Definition 3.21 (Moore-Penrose Generalized Inversep Moore-Penrose gener-
alized inversef A is anm x n matrix A* such that:

1. (AATY = AAT,

2. (ATA) = AT A.

3. AATA = A(soA" is ag-inverse ofd)

4, ATAAT = AT (soAis a g-inverse ofA™)
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From the definition, it is immediate thatA* and A* A are orthogonal projection
matrices.

Theorem 3.27 Every matrixA has a Moore-Penrose generalized inverse.

Proof. It is easy to show directly that the generalized inverse mwelyced above
based on the singular value decomposition satisfies thesktioms.

Theorem 3.28 The Moore-Penrose generalized inverse is unique.

Proof. Homework.

The following are examples of Moore Penrose G-inverses.

1
2

10.

© © N o 0 &

If Ais an orthogonal projectiom™ = A.
If Ais nonsingularA® = A~L.

If A = diag(a;), thenA™ has diagonal elementgq; if a; # 0, and equal
to O if a; = 0.

If p(A:m xn)=m,thenAt = A'(AA)~",
If p(A:m xn)=n,thenAt = (A A)A".
p(A) = p(AT)

For anyA, (A1) = (A")*.

If Ais symmetric, them™ is symmetric.
(A)F =4

For nonsingular matriceSAB)~! = B~'A~!, but if they are not nonsin-
gular,(AB)" # BT A*. Here is an example:

(1) o-(2)

mm+:(%)+:uwm»

bi,ba) (1 0 by
B+A+:<17 2 _
B4\ 0 0 b%+b§’0

In two important cases, the equality will hold:

and
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(@) ForanyA, (A/A)T = AT(A")*T.
(b) If p(Ayuxn) = nandp(Byx,) = n, then(AB)T = BTAT.

Theorem 3.29 P = X X' is the orthogonal projection o (X).

Proof. We have shown previously th&tis an orthogonal projection, so we need
only show that it projects ofR(X). First, sincePz = XXz = Xz*is a
linear combination of the columns of, we must have thaR(P) C R(X).
We need only show thai(X) = p(P). SinceP is an orthogonal projection,
p(P) =tr(P) = tr(XXT) = tr(ViDU,/ViD~Uy’) = tr(I,) = r = number of
nonzero singular values of = p(X).

There are lots of generalized inverses. The next theoremvsshow to get
from one to another.

Theorem 3.30 Let X~ be any two generalized inverse ofar p matrix X. Then
there exists ap x n matrix C' such that

X=X +C—-X XCXX"~ (3.9)

is also a generalized inverse &f. In addition, for any generalized inverse*,
there is aC so that [3D) is satisfied.

Proof. SinceA™ is a generalized inverse,
XX 4+0-X"XCXX )X =XX"X4+XCX -XXXCXX X=X

and soX* = X~ 4+ C 4+ X~ XCXX"™ is a generalized inverse. Now suppose
that Z is any generalized inverse of, and defineC’ = Z — X~. SinceZ is a
generalized inversey ZX = X, and

X 4C—-XXCXX = X —(Z-X)-X X(B-X)XX"~
— Z-X XZXX +X XX XX~
Z—- XXX +X XX~
= Z

and so we have produced acorresponding to the generalized invefse
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3.4 Solutions to systems of linear equations

Consider the matrix equatioX,,.,5,x1 = ynx1. FOr a givenX andY does
there exist a solutiop to these equations? Is it unique? If not unique, can we
characterize all possible solutions?

1. If n = p andX is nonsingular, the unique solutionfs= X ~1y.

2. If y € R(X), y can be expressed as a linear combination of the columns
of X. If X is of full column rank, then the columns of form a basis for
R(X), and the solutior? is just the coordinates of relative to this basis.
For any g-inverseX—, we haveX Xy = y for all y € R(X), and so a

solution is given by
=Xy (3.10)

If R(X) < p, then the solution is not unique. H, is any solution, for
example the solution given bf(3]10), therrifs such thatX> = 0, then
Bo + z is also a solution. By definitioX z = 0 if any only if z € N(X).
The set of solutions is given by(N') + /3, which is a flat.

3. If y € R(X), then there is no exact solution. This is the usual situation
in linear models, and leads to the estimation problem dssulisn the next
chapter.
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