
Stat 8053, Fall 2013: Smoothing (Faraway 11)

Kernel smoothing

Kernel smoothing is essentially weighted local averaging. It balances bias and variability using a smoothing parameter that essentially
controls how many points get high weight in the averaging.

library(alr4)

# kernel regression

par(pch=20, lwd=2) # use filled circles and fat lines

oldpar <- par(mfrow=c(1,3)) # set array of plots

with(oldfaith, { # draw plots, add lines

plot(Interval ~ Duration, main="bandwidth=5")

lines(ksmooth(Duration, Interval, "normal", 5))

plot(Interval ~ Duration, main="bandwidth=20")

lines(ksmooth(Duration, Interval, "normal", 20))

plot(Interval ~ Duration, main="bandwidth=40")

lines(ksmooth(Duration, Interval, "normal", 40))

})

par(oldpar)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

100 150 200 250 300

50
60

70
80

90

bandwidth=5

Duration

In
te

rv
al

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

100 150 200 250 300

50
60

70
80

90

bandwidth=20

Duration

In
te

rv
al

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

100 150 200 250 300
50

60
70

80
90

bandwidth=40

Duration

In
te

rv
al

1



I used with to specify that all the functions inside the brackets refer to data in the oldfaith data frame. plot draws the plots, and
lines draws the lines, with ksmooth determining the coordinates of the lines. "normal" is the name of the kernel function, and the last
argument is the smoothing parameter.

The function hcv in the sm package uses a brute-force method with leave-one-out cross validation to get a smoothing parameter, and
optionally draws a figure.

library(sm)

system.time(with(oldfaith, hcv(Duration, Interval)))

user system elapsed
0.42 0.02 0.43

with(oldfaith, hcv(Duration, Interval, display="lines"))

[1] 26.92

10 20 30 40

90
00

11
00

0
13

00
0

15
00

0

h

C
V

Newer (and recommended) code in sm computes cross-validation much more efficiently. While the above plot can’t be drawn, nearly the
same solution is obtained:

system.time(with(oldfaith, print(h.select(Duration, Interval, method="cv"))))

[1] 23.91
user system elapsed
0.04 0.00 0.03

2



with(oldfaith, sm.regression(Duration, Interval, method="cv"))

100 150 200 250 300
50

60
70

80
90

Duration

In
te

rv
al

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

Unlike most of R, sm functions have some limited interactive capability if you install the rpanel package and its dependencies,

install.packages("rpanel", dependencies=TRUE)

For a more interesting graph, which you should try, add the panel argument for interative capability:

library(rpanel)

with(oldfaith, sm.regression(Duration, Interval, method="cv", panel=TRUE))

This gives a graph with slidebars to see the effects of various choices of the smoothing parameter.

loess (also known as lowess)

Loess uses local regression rather than local averaging. The default in R is to fit using local quadratic polynomials with a nearest neighbor
rule, that is “give the closest f × 100% of the data positive weight” rather than a fixed bandwidth rule “give positive weight to all cases
within h of the point of interest”.

(m1 <- loess(Interval ~ Duration, oldfaith))

3



Call:
loess(formula = Interval ~ Duration, data = oldfaith)

Number of Observations: 270
Equivalent Number of Parameters: 3.97
Residual Standard Error: 5.74

with(oldfaith, {

plot(Interval ~ Duration, main="loess, default is f=.75, deg=2", type="n")

grid(lty=1)

points(Duration, Interval)

lines(spline(Duration, fitted(m1)),lty=1)

lines(spline(Duration, fitted(update(m1, span=.15))),lty=2, lwd=2)

lines(spline(Duration, fitted(update(m1, span=.95))),lty=3, lwd=3)

lines(spline(Duration, fitted(update(m1, degree=1))),lty=4, lwd=2, col="red")

})

legend("topleft", c("Default", "f=.15", "f=.95", "deg=1"), lty=1:4, inset=0.02,

col=c("black", "black", "black", "red"), lwd=c(1, 2, 3, 2))

100 150 200 250 300

50
60

70
80

90
loess, default is f=.75, deg=2

Duration

In
te

rv
al

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

Default
f=.15
f=.95
deg=1

loess has a predict method:

predict(m1, newdata=data.frame(Duration=50*(1:8)))

1 2 3 4 5 6 7 8
NA 52.23 59.78 72.43 79.79 82.83 NA NA

The NAs are returned because loess doesn’t extrapolate. The spline function used above interpolated between observed values of
Duration using a cubic spline. It also reordered the data according to the values of Duration.

4



Smoothing Splines

Smoothing splines are estimate the the regression function f(x) to minimize a penalized MSE:

1

n

n∑
i=1

(yi − f(xi))
2 + λ

∫
[f ′′(x)]2dx

where λ ≥ 0 is a smoothing parameter. Assuming all values of xi are unique and ordered, we draw a (curved) line between xi to xi+1,
where the curvature is controlled by a balance between small error at the data, which would require f̂(xi) = yi, and smoothness of the
function, so the function doesn’t fluctuate wildly between observed xi.

print(sm2 <- with(oldfaith, smooth.spline(Duration, Interval)))

Smoothing Parameter spar= 0.9068 lambda= 0.009558 (12 iterations)
Equivalent Degrees of Freedom (Df): 5.12
Penalized Criterion: 4496
GCV: 33.5

with(oldfaith, {

plot(Interval ~ Duration, main="Smoothing Splines")

lines(sm2, lty=1, lwd=2)

lines(update(sm2, spar=.1), lty=2, lwd=2)

lines(update(sm2, spar=2.5), lty=3, lwd=2)

})

legend("topleft", c("Default", "spar=.1", "spar=2.5"), lwd=2, lty=1:3, inset=0.02)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

100 150 200 250 300

50
60

70
80

90

Smoothing Splines

Duration

In
te

rv
al

Default
spar=.1
spar=2.5

5



Regression splines

Regression splines approximate f(x) as a linear combination of basis functions with unknown weights. A simple expression of the idea is
approximating f(x) as a sum of powers of x. For this example, begin by standardizing Duration to have mean zero and range from −1
to +1.

mid <- with(oldfaith, (min(Duration) + max(Duration))/2)

StdD <- with(oldfaith, (Duration - mid)/max(Duration - mid))

x <- seq(-1, 1, length=201)

I’m going to draw two plots. The left-plot is just the polynomial basis functions on the interval (−1, 1). The right plot of of Interval

against the standardized Duration, showing the quartic regression fit. Also shown on this plot are the five components of the quartic fit,
β̂0 × 1, β̂1x, . . . , β̂4x

4; the quartic fit is just the sum of these curves.

par(mfrow=c(1, 2))

plot(x, x, type="l", lty=2, xlab="Std. X", ylab="y",

main="Polynomial basis", ylim=c(-1, 1), xlim=c(-1, 1.4))

abline(h=0, lty=1)

lines(x,x^2, lty=3)

lines(x,x^3, lty=4)

lines(x,x^4, lty=5)

legend("bottomright", paste("Degree", 0:4), lty=1:5, cex=0.8, inset=0.02)

lm1 <- lm(Interval ~ poly(StdD, 4, raw=TRUE), oldfaith)

plot(Interval ~ StdD, oldfaith, main="Quartic fit",

ylim=c(-20, 100), xlim=c(-1, 1.4))

lines(sort(StdD), predict(lm1, newdata=data.frame(StdD=sort(StdD))))

b <- coef(lm1)

#plot(x,b[2]*x,type="l",lty=2,xlab="Std. X",ylab="y",main="Polynomial basis",

# ylim=c(-25,75))

lines(x,b[2]*x,lty=2)

abline(h=b[1],lty=1)

lines(x,b[3]*x^2, lty=3)

lines(x,b[4]*x^3, lty=4)

lines(x,b[5]*x^4, lty=5)

legend("bottomright", paste("Degree",0:4),lty=1:5, cex=.8)

6



−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Polynomial basis

Std. X

y

Degree 0
Degree 1
Degree 2
Degree 3
Degree 4

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●● ●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
20

0
20

40
60

80
10

0

Quartic fit

StdD

In
te

rv
al

Degree 0
Degree 1
Degree 2
Degree 3
Degree 4

The polynomial basis functions are defined on the whole interval (−1, 1) and so they may not be very useful for modeling local features
in a function. Other basis functions can be defined so that they are zero or nearly zero except for a neighborhood of (−1, 1). For example,
the B-splines are nonlinear functions of the range of x; the number of knots (or the number of splines) and (3) the placement of the
knots. The default behavior of the bs function is to select the knots to be equally spaced over the range of x.

library(splines)

matplot(x, bs(x, df=6), type="l", ylab="", col=1, lwd=2)

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

This first argument to bs is the value of the predictor, which is used to determine the range. The second default argument is the
degrees of freedom. The result of the call to bs is a matrix with rows equal to the length of x and df columns. We will only work with

7



df to control the values of the splines. One could also work with the number of internal knots, a function of the df, and use non-equally
spaced knots, which is the default in bs.

bspline.predictors <- bs(StdD, 6)

print(bspline.predictors[1:5,], digits=3)

1 2 3 4 5 6
[1,] 0.00606 0.1736 0.58185 0.238505 0.000 0.00000
[2,] 0.65368 0.0733 0.00205 0.000000 0.000 0.00000
[3,] 0.02806 0.3000 0.54331 0.128617 0.000 0.00000
[4,] 0.47906 0.4396 0.08117 0.000129 0.000 0.00000
[5,] 0.00000 0.0000 0.08846 0.642349 0.268 0.00137

sm1 <- lm(Interval ~ bs(Duration, 6),oldfaith)

plot(Interval ~ Duration, oldfaith, main="Regression splines")

or <- order(oldfaith$Duration)

lines(predict(sm1)[or]~Duration[or], oldfaith)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

100 150 200 250 300

50
60

70
80

90
Regression splines

Duration

In
te

rv
al

8



Here is another example, that uses the Orthodont data frame from the nlme package. The data consist of measures of distance between
teeth as a function of age for a number of boys and girls.

data(Orthodont, package="nlme") # get data from nlme package, don't load package

library(lattice)

print(xyplot(distance~age|Sex, data=Orthodont, group=Subject, type=c("g","l")))

age

di
st

an
ce

20

25

30

8 9 10 11 12 13 14

Male

8 9 10 11 12 13 14

Female

Although the individual growth curves look fairly linear, we will use splines to fit as a function of age. Since the time series are so
short, only 7 observations per subject, we can only set df to 3, which is the smallest value possible.

library(lme4)

m1 <- lmer(distance ~ Sex*bs(age, 3) + (1 + bs(age, 3)|Subject), data=Orthodont, REML=FALSE)

m2 <- lmer(distance ~ Sex + bs(age, 3) + (1 + bs(age, 3)|Subject), data=Orthodont, REML=FALSE)

anova(m1, m2)

Data: Orthodont
Models:
m2: distance ~ Sex + bs(age, 3) + (1 + bs(age, 3) | Subject)

9



m1: distance ~ Sex * bs(age, 3) + (1 + bs(age, 3) | Subject)
Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

m2 16 457 500 -212
m1 19 455 505 -208 8.13 3 0.043

AIC(m1, m2)

df AIC
m1 19 454.5
m2 16 456.6

Anova(m1)

Analysis of Deviance Table (Type II Wald chisquare tests)

Response: distance
Chisq Df Pr(>Chisq)

Sex 8.34 1 0.0039
bs(age, 3) 127.80 3 <2e-16
Sex:bs(age, 3) 9.49 3 0.0234

We fit mixed-models with the same random effects, separate intercepts and coefficients for the splines, for each subject. In m1 each SEX

has its own intercept and age effects; in m2 the age effects are common for the two sexes. The anova produces a likelihood ratio test to
compare the two models (I suppressed REML fitting for this test), and the AIC reinforces the improvement gained by fitting separate age
effects for each sex. I’ve also shown a Wald test of the hypothesis of no Sex:age interaction using the Anova command in car. The lme4

doesn’t provide such tests.
The effects package in R allows drawing a plot that summarizes the Sex:bs(age, 3) effect. Unfortunately there is a bug in effects

that I introduced this summer, so to draw the effects plot you need to install the working version of effects:

detach(package:effects) # you can't update a package that is in use

install.packages("effects", repos="http://r-force.r-project.org")

library(effects) # loads the new version

plot(effect("Sex:bs(age, 3)", m1, xlevels=list(age=20)), multiline=TRUE,

key.args=list(x=.02, y=.98), grid=TRUE)

10



Sex*age effect plot

age

di
st

an
ce

22

23

24

25

26

27

 8  9 10 11 12 13 14

Sex
Male
Female

Writing y for the response distance and x for age, f for the dummy variable for Sex, and bj(x) for the j b-spline basis function, we
have fit ̂E(y|x, f) = β̂0 + βff + β̂1b1(x) + β̂2b2(x) + β̂3b3(x) + β̂4b1(x)f + β̂5b2(x)f + β̂6b3(x)f

Of interest in growth curves is the derivative of the fitted curve, giving the rate of change at each age:

d ̂E(y|x, f)

dx
= β̂1b

′
1(x) + β̂2b

′
2(x) + β̂3b

′
3(x) + β̂4b

′
1(x)f + β̂5b

′
2(x)f + β̂6b

′
3(x)f

where the primes indicate differentiation. If we can compute the derivatives of the b-spines we can get the rate function without much
work. It turns out that bs contained code that computed the derivatives of the b-splines but did not return them; they were computed
for a different purpose. I modified the function to return the derivatives, in a function I call mybs.

# look at the derivative:

source("http://www.stat.umn.edu/~sandy/courses/8053/Data/mybs.R")

To get the first derivative, set up the derivative of the splines for the original data, and then evaluate them at the points that will be used
for plotting. The bs, and hence mybs, have a predict method that evaluates the splines (or their derivatives) at arbitrary points.

11



deriv1 <- with(Orthodont, mybs(age, 3, deriv=1))

ages <- seq(8, 14, length=100)

dmale <- predict(deriv1, ages) %*% fixef(m1)[3:5]

dfemale <- predict(deriv1, ages)[, c(1, 2, 3, 1, 2, 3)] %*% fixef(m1)[3:8]

plot(ages, dmale, type="l", lwd=2, col="blue", ylim=c(min(dmale, dfemale),

max(dmale, dfemale)), xlab="Age", ylab="Deriv. of Fit distance",

main="Derivative of fitted distance")

lines(ages, dfemale, type="l", lwd=2, col="red", lty=2)

legend("topleft", inset=.01, c("Male", "female"), lty=c(1,2),

lwd=2, col=c("blue", "red"))

8 9 10 11 12 13 14

0.
2

0.
4

0.
6

0.
8

1.
0

Derivative of fitted distance

Age

D
er

iv
. o

f F
it 

di
st

an
ce

Male
female

Although not included here, standard errors of the fitted derivatives would be of interest, as would be the estimation of age at maximum
growth rate for boys. How would you test that the growth rate for girls is constant?

12


