
Stat 8053, Fall 2013: Recursive Partitioning

Source: Chu, Singfat (2001), Pricing the C’s of Diamond Stones, Journal of Statistics Education Volume 9, Number 2 (2001),
http://www.amstat.org/publications/jse/v9n2/datasets.chu.html. Data on diamond pricing

loc <- "http://www.stat.umn.edu/~sandy/courses/8053/Data/diamonds.txt"

str(diamonds <- read.table(url(loc), header=TRUE))

'data.frame': 308 obs. of 5 variables:
$ Price : int 823 765 803 803 705 725 967 1050 967 863 ...
$ Carats : num 0.18 0.18 0.18 0.18 0.18 0.18 0.19 0.19 0.19 0.19 ...
$ Cert : Factor w/ 3 levels "GIA","HRD","IGI": 3 3 3 3 3 3 3 3 3 3 ...
$ Clarity: Factor w/ 5 levels "IF","VS1","VS2",..: 4 5 1 1 5 1 5 1 1 4 ...
$ Color : Factor w/ 6 levels "D","E","F","G",..: 3 3 4 4 4 5 1 2 3 3 ...

I will do the fitting with 200 cases and use 108 for validation.

set.seed(10131985)

est.set <- sample(1:308, 200)

val.set <- (1:308)[-est.set]

Fit using rpart, which implements the methodology in L Breiman, J. Friedman, R. Olshen and C. Stone (1984) Classification
and Regression Trees, Wadsworth.

library(rpart)

r1 <- rpart(I(Price/1000) ~., diamonds, method = "anova", subset=est.set)

par(mfrow=c(1, 2), xpd = NA)

plot(r1, margin=.1)

text(r1, digits=3)

plot(r1, compress=TRUE, uniform=TRUE, branch=0.4, margin=.1)

text(r1, digits=3)
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The method = "anova", which is the default for a continuous response, specifies the criterion for the splitting based on within-
node residual sum of squares. The numbers printed at the terminal nodes are the predicted values (I divided Price by 1000 so
these would not be in scientific notation, and then used text(d1, digits=3) ). The variable Color appears to be relevant only
if Carats > 0.945 and thus the tree model “automatically” included an interaction. One version of tree-building is even called
automatic interaction detection.

Compare the fit of rpart to ols fitting:

m1 <- lm(I(Price/1000)~ Carats + Color + Cert + Clarity, diamonds, subset=est.set)

plot(predict(r1) ~ predict(m1), ylab="Tree based", xlab="ols based")

abline(0, 1, lwd=2)

or <- order(predict(m1))

library(mgcv)

lines(predict(m1)[or], predict(gam(predict(r1)[or] ~ s(predict(m1)[or]))), col="red", lwd=2)
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Tree-based methods predict the same value for all observations in a terminal node; this tree had only 6 nodes. ols can predict
different values for each observation. Observations in the node with fitted value 5.3, for example, have ols fitted values between
about 4 and 9.

Tree pruning

The more nodes, the more complex the tree, and the lower the within-node residual sum of squares. Let RSS(k) be the residual
sum of squares for the tree with k terminal nodes, for k = 1, 2, . . . , n, where nm is the tree with one node for each combination
of the predictors. There is a trade-off between complexity and error. The textbook, following Brieman et al., Sec 3.3, suggest
ranking trees according to their cost-complexity.

CC(k) = RSSk + λk

λ is like a smoothing parameter with large λ or CP = λ/RSS1 penalizing large trees and small λ penalizing small trees. Brieman
et al. suggest an algorithm that fixes λ, and then finds the tree that minimizes cost complexity. This turns out to be a step
function: For λ large enough, the tree with 1 node is selected. Eventually λ is small enough to prefer two nodes, and this stays
true until a λ decreases to make three nodes preferable, and so on.

A long series of trees can be summarized using

r2 <- update(r1, cp=0.001)

printcp(r2)

Regression tree:
rpart(formula = I(Price/1000) ~ ., data = diamonds, subset = est.set,

method = "anova", cp = 0.001)

Variables actually used in tree construction:
[1] Carats Color

Root node error: 2229/200 = 11

n= 200

CP nsplit rel error xerror xstd
1 0.6931 0 1.000 1.009 0.086
2 0.1346 1 0.307 0.344 0.039
3 0.0717 2 0.172 0.170 0.026
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4 0.0239 3 0.101 0.108 0.020
5 0.0237 4 0.077 0.101 0.020
6 0.0032 5 0.053 0.068 0.013
7 0.0030 6 0.050 0.064 0.013
8 0.0027 7 0.047 0.064 0.013
9 0.0016 8 0.044 0.062 0.013
10 0.0015 9 0.042 0.060 0.012
11 0.0010 10 0.041 0.059 0.012

The value of CP is the smallest value that produces a tree of a given number of nodes. The column nsplit = k − 1. The
rel.error is RSS(k)/RSS(1). Each of these trees is then examined using 10-fold cross-validation, in which the data are divided
into 10 equal segments; the tree is built using 9 of the 10 segments, and error is assessed on the tenth segment. This is repeated
leaving off each segment in turn and errors are then averaged and scaled to give xerror. The xstd is the variation between the
10 subsample estimates.

plotcp(r2, minline=TRUE, col="blue", lwd=2, lty=1) # draw line 1 SD above minimum rel.error
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The horizontal axis in the graph is really the size of the tree, nsplit+ 1, indicated across the top. The corresponding cp values
are shwon across the bottom. Solutions of at least 6 nodes seem useful.

Here are the pruned tree and the original tree:
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par(xpd = NA)

r3 <- prune(r2, cp=r2$cptable[7, 1])

post(r3, filename="") # Fancy summary plot

|
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n=128

1.4
n=58

4.5
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3.8
n=42

5.5
n=28

5
n=14

6
n=14

8.9
n=72

6.8
n=24

9.9
n=48

9.1
n=30

11
n=18

Endpoint = I(Price/1000)

How well does this work? Let’s compute in-sample and validation sample errors for the tree, for ols, and for stepwise
regression:
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get.error <- function(m, which){

with(diamonds, sqrt(sum(((Price[which]/1000) -

predict(m, diamonds[which, ]))^2)/length(which)))}

summary(m2 <- step(m1, trace=0))$coef

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.02858 0.2836 0.1008 9.198e-01
Carats 12.43507 0.1997 62.2662 6.791e-128
ColorE -1.00668 0.2616 -3.8475 1.631e-04
ColorF -1.67597 0.2512 -6.6710 2.729e-10
ColorG -1.89443 0.2533 -7.4799 2.719e-12
ColorH -2.48034 0.2545 -9.7446 1.948e-18
ColorI -2.93257 0.2622 -11.1849 1.295e-22
ClarityVS1 -1.33436 0.1793 -7.4430 3.376e-12
ClarityVS2 -1.67492 0.1935 -8.6543 2.144e-15
ClarityVVS1 -0.57052 0.1873 -3.0463 2.648e-03
ClarityVVS2 -1.11086 0.1796 -6.1867 3.722e-09

(ans <- data.frame(rpart=c(get.error(r1, est.set), c(get.error(r1,val.set))),

pruned=c(get.error(r3, est.set), c(get.error(r3,val.set))),

ols = c(get.error(m1, est.set), c(get.error(m1, val.set))),

ols.step= c(get.error(m2, est.set), c(get.error(m2, val.set))),

row.names=c("Estimation", "Validation")))

rpart pruned ols ols.step
Estimation 0.7691 0.7454 0.6627 0.6655
Validation 0.8811 0.8810 0.7861 0.7829

Recursive partitioning, at least in the simple-minded way done here, actually does considerably worse than ols or ols with
stepwise selection.
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Classification

For this example we use data collected on 98 patients diagnosed with Glaucoma and 98 patients without Glaucoma, an eye
disease. On each patient there are 62 variables measured, all of which are continuous. The data are in the TH.data package.

data(GlaucomaM, package="TH.data")

Squared error loss is not appropriate for classification. We let pik be the fraction of points in node i that fall in response category
k, so

∑
k pik = 1. A node will be pure if one of the pik = 1. The worst case for prediction occurs if all the pik for each i are all

equal.
By default rpart uses the Gini index to measure lack of fit. For node i,

Di = 1−
∑

p2ik

DI = 0 for a pure node, and Di = 1/2 for a binary response with pi1 = pi2. Large values of D =
∑
Di correspond to poor trees.

Other choices of error measures are available in rpart but I haven’t been able to figure out how to get them with the terrible
documentation that is available.

par(mfrow=c(1, 2), xpd=NA)

set.seed(123456)

const <- sample(1:170, 125)

g1 <- rpart(Class ~ . , GlaucomaM, subset=const)

xtabs(~ predict(g1, type="class") + GlaucomaM$Class[const])

GlaucomaM$Class[const]
predict(g1, type = "class") glaucoma normal

glaucoma 48 8
normal 6 63

plot(g1, margin=.2)

text(g1)

g2 <- update(g1, cp = 0.00001)

printcp(g2)

Classification tree:
rpart(formula = Class ~ ., data = GlaucomaM, subset = const,

cp = 1e-05)
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Variables actually used in tree construction:
[1] hic vari vars

Root node error: 54/125 = 0.43

n= 125

CP nsplit rel error xerror xstd
1 0.62963 0 1.00 1.00 0.103
2 0.09259 1 0.37 0.48 0.084
3 0.01852 2 0.28 0.46 0.083
4 0.00001 3 0.26 0.54 0.087

plotcp(g2, lty=1, col="blue")

|vari< 0.0655

hic>=0.2355 vars< 0.0655

glaucoma normal  
glaucoma normal  
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A summary of fit for a classification problem is to count correct and incorrect classifications. We do this for the construction
and for the validation sets.

show <- function(tt){

print(tt)
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cat(paste("Misclassification rate =",round(1-sum(diag(tt))/sum(tt), 2),"\n"))

invisible()}

show(with(GlaucomaM, table(actual=Class[const],

predicted=predict(g1, type="class"))))

predicted
actual glaucoma normal

glaucoma 48 6
normal 8 63

Misclassification rate = 0.11

show(with(GlaucomaM, table(actual=Class[-const],

predicted=predict(g1, newdata=GlaucomaM[-const,], type="class"))))

predicted
actual glaucoma normal

glaucoma 37 7
normal 6 21

Misclassification rate = 0.18

For comparison, let’s do the same thing with logistic regression.

m1 <- glm(Class ~., binomial, GlaucomaM, subset=const)

show(with(GlaucomaM, table(actual=Class[const],

predicted=ifelse(predict(m1) <= 0, 0 ,1))))

predicted
actual 0 1

glaucoma 54 0
normal 0 71

Misclassification rate = 0

show(with(GlaucomaM, table(actual=Class[-const],

predicted=ifelse(predict(m1, newdata=GlaucomaM[-const,]) <= 0, 0, 1))))
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predicted
actual 0 1

glaucoma 34 10
normal 12 15

Misclassification rate = 0.31

m2 <- update(m1, ~ hic + phcg + tms + varg)

show(with(GlaucomaM, table(actual=Class[-const],

predicted=ifelse(predict(m2, newdata=GlaucomaM[-const,]) <= 0, 0, 1))))

predicted
actual 0 1

glaucoma 35 9
normal 4 23

Misclassification rate = 0.18

Bagging

Recursive partitioning solutions are rather fragile because only one split is considered at a time. Thus, small perturbations in
the data are likely to lead to completely different solutions. One possible way to deal with this problem is to recompute the
tree based on slightly perturbed data, and then average over the perturbations. Leo Brieman proposed this idea, and called it
bootstrap aggregation, or bagging.

Here is the general idea. We start with data D = {(x1, y1), . . . , (xn, yn)} from which we can estimate a function f̂(x) that can
return predictions at the point x. For example, f̂(x) can be from regression tree, an additive model or almost any other fitting
procedure. Suppose that Db is a bootstrap sample of size n from D, and f̂ b(x) is the corresponding prediction. Brieman’s idea
was to replace f̂(x) by E(f̂ b(x)), the average over all possible bootstrap samples, as a more stable prediction. In practice this is
estimated by

f̂bag =
1

B

B∑
b=1

f̂ b(x)

the average of B bootstrap samples.
The cost of bagging is that there is no longer a simple tree representation of the result, as predictions are now done by

averaging B trees which can have different complexities, number of nodes, and so on.
Bagging is implemented in the package ipred.
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library(ipred)

b1 <- bagging(Class ~. , GlaucomaM, subset=const, nbagg=100)

show(with(GlaucomaM, table(actual=Class[const],predicted=predict(b1))))

predicted
actual glaucoma normal

glaucoma 42 12
normal 11 60

Misclassification rate = 0.18

show(with(GlaucomaM, table(actual=Class[-const],

predicted=predict(b1, newdata=GlaucomaM[-const,]))))

predicted
actual glaucoma normal

glaucoma 36 8
normal 3 24

Misclassification rate = 0.15

Bagging presents a considerable improvement over fitting a single tree.

Random Forests

Random forests are an elaboration of bagging due to Breiman in which each tree is grown using an algorithm that is more
complicated that simply using recursive partitioning. The package randomForest is used for the fitting and includes some
interesting summary graphs. Slightly paraphrased from http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.

htm#overview, each tree is grown as follows:

1. The training sample consists of N observations. Create a “bootstrap” sample of size N by sampling with replacement from
the N observations. This will divide the data into the cases included in the bootstrap sample and a random number of
observations that are “out of bootstrap” samples.

2. If there are M input variables, a number m << M is specified [and fixed]. At each node, m variables are selected at
random out of the M and the best split on these m is used to split the node.

3. Each tree is grown to the largest extent possible. There is no pruning.
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For each tree grown, lack of fit is measured either using the usual within-sample error, or else it is based on the “out of bootstrap”
error. By default 500 trees are grown. The final solution is a combination of the 500 trees.

library(randomForest)

b2 <- randomForest(Class ~., GlaucomaM, subset=const)

show(with(GlaucomaM, table(actual=Class[const], predicted=predict(b2))))

predicted
actual glaucoma normal

glaucoma 45 9
normal 5 66

Misclassification rate = 0.11

show(with(GlaucomaM, table(actual=Class[-const],

predicted=predict(b2, newdata=GlaucomaM[-const, ]))))

predicted
actual glaucoma normal

glaucoma 34 10
normal 2 25

Misclassification rate = 0.17

Variable importance

Consider predictor ` and a particular node. Let I(v(t) = `) be an indicator function whose value is 1 if the t-th node in the tree
is a split on variable `, and equal to zero otherwise. Let î2t be the decrease in risk (generally squared error loss, but any loss
function you like) for including node v(t). Then the importance of variable ` in the tree is

I2` =
J−1∑
i=1

î2t I(v(t) = `)

where J is the number of nodes in the tree. For many trees, average I over all the trees. Large values of I2` correspond to
important variables.

varImpPlot(b2,type=2)
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For this example there are perhaps 13 predictors with some “importance”, with the top 4 much more important

Visualizing Variable Importance: Partial Dependence Plots

Suppose that Xk is a variable of interest, and X\k is the vector of remaining predictors. Consider the problem of display of the
dependence of the response on Xk that is implied by the model. If the true mean function is additive

ET (Y |Xk, X\k) = h1(Xk) + h2(X\k) (1)

then a plot of ĥ1(Xk) versus Xk, as is done in the mgcv package is the appropriate plot. This of course assumes that we have
an estimated the function h1, but in methods that average over models like random forests, bagging or other model aggregation
methods, we may not have an explicit estimate for h1. If the true mean function is not additive,

ET (Y |Xk, X\k) = h1(Xk) + h2(X\k) + h12(xk, x\k) (2)

then the idea that there is an “effect” due to X1 alone is in doubt, and conditioning on the value of x\k may be required to get
a summary graph. We are used to these ideas in the interaction graphs that are commonly used with factorial models. Similar
graphs are implemented in the effects package in R, but not (yet) for tree models.

Partial Response Plot

If (1) holds, then:

E(Y |Xk) = E(ET (Y |Xk, X\k)|Xk)

= E(h1(Xk) + h2(X\k)|Xk)

= h1(Xk) + E(h2(X\k)|Xk)

Friedman, (2001 Annals of Stats, 29, 1189–1232) suggested the the right side of this last equation can be estimated by a sum,

1

n

n∑
i=1

Ê(Y |Xk, X\k = xi,\k) (3)

where the xi,\k are the rows of X\k, and n is the sample size. If more information is available, one could average over observations
from the conditional distribution of X\k|Xk. The plot with Xk on the horizontal axis and (3) on the vertical axis is called a
partial response plot.
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importanceOrder <- order(-b2$importance)

names <- rownames(b2$importance)[importanceOrder][1:9]

par(mfrow=c(3, 3), xpd=NA)

for (name in names)

partialPlot(b2, GlaucomaM, eval(name), main=name, xlab=name)
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