Duncan’s occupational-prestige regression was introduced in Chapter 1 of [?]. The least-squares regression of `prestige` on `income` and `education` produces the following results:

```r
library(car)
mod.ls <- lm(prestige ~ income + education, data=Duncan)
summary(mod.ls)
```

Call:
`lm(formula = prestige ~ income + education, data = Duncan)`

Residuals:
```
  Min 1Q Median 3Q Max
-29.54 -6.42 0.65 6.61 34.64
```

Coefficients:
```
            Estimate Std. Error t value  Pr(>|t|)
(Intercept) -6.0647     4.2719  -1.42  0.16
income       0.5987     0.1197   5.00 1.1e-05
education    0.5458     0.0983   5.56 1.7e-06
```

Residual standard error: 13.4 on 42 degrees of freedom
Multiple R-squared: 0.828, Adjusted R-squared: 0.82
F-statistic: 101 on 2 and 42 DF, p-value: <2e-16

Two observations, ministers and railroad conductors, serve to decrease the `income` coefficient substantially and to increase the `education` coefficient, as we may verify by omitting these two observations from the regression:

```r
mod.ls.2 <- update(mod.ls, subset=-c(6,16))
compareCoefs(mod.ls, mod.ls.2)
```

Call:
```
1: "lm(formula = prestige ~ income + education, data = Duncan)"
2: c("lm(formula = prestige ~ income + education, data = Duncan, subset = -c(6, "
 " 16))")
```

```
            Est. 1        SE 1        Est. 2        SE 2
(Intercept) -6.0647     4.2719  -6.4090     3.6526
income       0.5987     0.1197   0.8674     0.1220
education    0.5458     0.0983   0.3322     0.0987
```
Alternatively, let us compute the Huber M-estimator for Duncan’s regression model, using the \texttt{rlm} (robust linear model) function in the \texttt{MASS} library:

```r
library(MASS)
mod.huber <- rlm(prestige ~ income + education, data=Duncan)
summary(mod.huber)
```

Call: \texttt{rlm(formula = prestige \sim income + education, data = Duncan)}

Residuals:

```
    Min 1Q Median 3Q Max
-30.12 -6.89  1.29  4.59 38.60
```

Coefficients:

```
           Value  Std. Error t value
(Intercept)  -7.111  3.881   -1.832
income   0.701 0.109    6.452
education 0.485  0.089    5.438
```

Residual standard error: 9.89 on 42 degrees of freedom

The \texttt{summary} method for \texttt{rlm} objects prints the correlations among the coefficients; to suppress this output, specify \texttt{correlation=FALSE}.

```r
compareCoefs(mod.ls, mod.ls.2, mod.huber)
```

```
Call:
1: "lm(formula = prestige \sim income + education, data = Duncan)"
2: c("lm(formula = prestige \sim income + education, data = Duncan, subset = -c(6, ","
    "16))")
3: "rlm(formula = prestige \sim income + education, data = Duncan)"

          Est. 1    SE 1    Est. 2    SE 2    Est. 3    SE 3
(Intercept) -6.0647 4.2719 -6.4090 3.6526 -7.1107 3.8813
income  0.5987 0.1197  0.8674 0.1220  0.7014 0.1087
education 0.5458 0.0983  0.3322 0.0987  0.4854 0.0893
```

The Huber regression coefficients are between those produced by the least-squares fit to the full data set and by the least-squares fit eliminating the occupations minister and conductor.

It is instructive to extract and plot (in Figure ??) the final weights used in the robust fit. The \texttt{showLabels} function from \texttt{car} is used to label all observations with weights less than 0.9.
Ministers and conductors are among the observations that receive the smallest weight.

L_1 Regression

We start by assuming a model like this:

$$y_i = x_i^T \beta + e_i$$ \hspace{1cm} (1)
where the e are random variables. We will estimate β by solving the minimization problem

$$
\hat{\beta} = \arg \min \frac{1}{n} \sum_{i=1}^{n} |y_i - x_i'\beta| = \frac{1}{n} \sum_{i=1}^{n} \rho_{0.5}(y_i - x_i'\beta)
$$

(2)

where the objective function $\rho_{\tau}(u)$ is called in this instance a **check function**,

$$
\rho_{\tau}(u) = u \times (\tau - I(u < 0))
$$

(3)

where I is the indicator function (more on check functions later). If the e are iid from a double exponential distribution, then $\hat{\beta}$ will be the corresponding mle for β. In general, however, we will be estimating the median at $x_i'\beta$, so one can think of this as median regression.

Example We begin with a simple simulated example with n_1 “good” observations and n_2 “bad” ones.

```r
set.seed(10131986)
library(MASS)
library(quantreg)
l1.data <- function(n1=100,n2=20){
  data <- mvrnorm(n=n1,mu=c(0, 0),
                   Sigma=matrix(c(1, .9, .9, 1), ncol=2))
  # generate 20 'bad' observations
  data <- rbind(data, mvrnorm(n=n2, 
                            mu=c(1.5, -1.5), Sigma=.2*diag(c(1, 1)))))
  data <- data.frame(data)
  names(data) <- c("X", "Y")
  ind <- c(rep(1, n1),rep(2, n2))
  plot(Y ~ X, data, pch=c(3, 20)[ind],
      col=c("black", "red")[ind], main=paste("N1 =",n1," N2 =", n2))
  summary(r1 <- rq(Y ~ X, data=data, tau=0.5))
  abline(r1)
  abline(lm(Y ~ X, data),lty=2, col="red")
  abline(lm(Y ~ X, data, subset=1:n1), lty=1, col="blue")
  legend("topleft", c("L1","ols","ols on good"),
          inset=0.02, lty=c(1, 2, 1), col=c("black", "red", "blue"),
          cex=.9)
}
par(mfrow=c(2, 2))
l1.data(100, 20)
l1.data(100, 30)
l1.data(100, 75)
l1.data(100, 100)
```

4
Comparing L_1 and L_2

L_1 minimizes the sum of the absolute errors while L_2 minimizes squared errors. L_1 gives much less weight to large deviations. Here are the ρ-functions for L_1 and L_2.

```r
curve(abs(x), -2, 2, ylab="L1 or L2 or Huber M evaluated at x")
curve(x^2, -3, 3, add=T, col="red")
abline(h=0)
abline(v=0)
```

Quantile regression

L_1 is a special case of quantile regression in which we minimize the $\tau = .50$-quantile, but a similar calculation can be done for any $0 < \tau < 1$. Here is what the check function (2) looks like for $\tau \in \{.25, .5, .9\}$.

```r
rho <- function(u) {
  u * (tau - ifelse(u < 0, 1, 0) )
}
```
Quantile regression is just like L_1 regression with ρ_τ replacing $\rho_0.5$ in (2), and with τ replacing 0.5 in the asymptotics.

Example. This example shows expenditures on food as a function of income for nineteenth-century Belgian households.

data(engel)
plot(foodexp~income, engel, cex=.5, xlab = "Household Income", ylab = "Food Expenditure", pch = 20)
abline(rq(foodexp~income, data = engel, tau = .5), col = "blue")
taus <- c(.1, .25, .75, .90)
for(i in 1:length(taus)){
 abline(rq(foodexp~income, data = engel, tau = taus[i]), col = "gray")
}
plot(summary(rq(foodexp~income, data=engel, tau=2:98/100)))
(The horizontal line is the ols estimate, with the dashed lines for confidence interval for it.)

Second Example This example examines salary as a function of job difficulty for job classes in a large governmental unit. Points are marked according to whether or not the fraction of female employees in the class exceeds 80%.

```r
library(alr4)
mdom <- with(salarygov, NW/NE < .8)
```
taus <- c(.1, .5, .9)
cols <- c("blue", "red", "blue")
x <- 100:900
plot(MaxSalary ~ Score, salarygov, xlim=c(100, 1000), ylim=c(1000, 10000),
 cex=0.75, pch=c(20, 3)[mdom + 1])
for(i in 1:length(taus)){
 lines(x, predict(rq(MaxSalary ~ bs(Score,5), data=salarygov[mdom,], tau=taus[i]),
 newdata=data.frame(Score=x)), col=cols[i],lwd=2)
}
legend("topleft",paste("Quantile",taus),lty=1,col=cols,inset=.01, cex=.8)
legend("bottomright",c("Female","Male"),pch=c(20, 3),inset=.01, cex=.8)
```r
plot(MaxSalary ~ Score, salarygov[!mdom, ], xlim=c(100, 1000), ylim=c(1000, 10000),
     cex=0.75, pch=20)
for( i in 1:length(taus)){
    lines(x, predict(rq(MaxSalary ~ bs(Score,5), data=salarygov[mdom, ], tau=taus[i]),
        newdata=data.frame(Score=x)), col=cols[i],lwd=2)
}
legend("topleft",paste("Quantile",taus),lty=1,col=cols,inset=.01, cex=.8)
legend("bottomright",c("Female"),pch=c(20),inset=.01, cex=.8)
```