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Singular Value Decomposition

Suppose that X is an n× p matrix. There exists an n× p matrix U , a p× p diagonal matrix D and and a p× p matrix V such
that:

1. X = UDV ′ =
∑
diuiv

′
i, where ui and vi are respectively the ith columns of U and V , and di is the ith diagonal of D.

2. The matrix U has orthogonal columns, so U ′U = Ip and UU ′ is an n× n projection on the column space of X.

3. The diagonals d1 ≥ d2 ≥ · · · ≥ dp ≥ 0 of D are called singular values. The number of nonzero diagonals is the rank of X.

4. The matrix V is a p× p orthogonal matrix, so V V ′ = V ′V = Ip.

5. Writing out X ′X we get:
X ′X = [DUV ′]

′
[V UD′] = V DU ′UDV ′ = V D2V ′

We see immediately that the spectral decomposition of X ′X is V D2V ′.

6. The right singular vectors V are the eigenvectors of X ′X.

7. The singular values are the square roots of the eigenvalues of X ′X.

8. The left singular vectors U are the nonzero eigenvalues of XX ′.

In R, the function svd computes the singular value decomposition.

Banknotes

This follows the results in Chapter 9 of Härdle and Simar on principal component analysis. The first example is the banknote
data from Flury, B. and Riedwyl, H. (1988). Multivariate Statistics: A practical approach. London: Chapman & Hall, and
discussed in many books and articles. It has to do with dimensional characteristics of genuine and counterfeit Swiss banknotes.
All the variables except Y are lengths, while Y is an indicator of whether or not the bill was counterfeit. We ignore Y except
in graphics. We think of the 6 measurements as a p × 1 vector x presumably as a sample from a population with mean µ and
covariance matrix Σ. The goal is to describe the banknotes by a few linear combinations/principal components.
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> data(banknote, package="alr3")

> banknote$Y <- factor(c("0-genuine", "1-counterfeit")[1 + banknote$Y])

> library(psych)

> describe(banknote[, -7], ranges=FALSE)

var n mean sd skew kurtosis se

Length 1 200 214.90 0.38 0.19 0.71 0.03

Left 2 200 130.12 0.36 -0.19 -0.59 0.03

Right 3 200 129.96 0.40 0.04 -0.19 0.03

Bottom 4 200 9.42 1.44 0.37 -1.05 0.10

Top 5 200 10.65 0.80 -0.23 0.15 0.06

Diagonal 6 200 140.48 1.15 -0.19 -1.15 0.08

> print(cor(banknote[, -7]), digits=3)

Length Left Right Bottom Top Diagonal

Length 1.0000 0.231 0.152 -0.190 -0.0613 0.194

Left 0.2313 1.000 0.743 0.414 0.3623 -0.503

Right 0.1518 0.743 1.000 0.487 0.4007 -0.516

Bottom -0.1898 0.414 0.487 1.000 0.1419 -0.623

Top -0.0613 0.362 0.401 0.142 1.0000 -0.594

Diagonal 0.1943 -0.503 -0.516 -0.623 -0.5940 1.000

> library(car)

> print(scatterplotMatrix(~ . - Y | Y, data=banknote, smooth=FALSE, reg.line=FALSE, pch=c(18, 3),

+ cex=.75, ellipse=TRUE, levels= c(0.9), by.groups=FALSE, diagonal="none"))

2



0−genuine
1−counterfeit

Length

129.0 130.5

● ●

7 9 11

● ●

138 140 142

21
4.

0
21

5.
5

●

12
9.

0
13

0.
5

●

Left
● ● ● ●

● ●

Right

● ●

12
9.

0
13

0.
5

●

7
9

11

● ● ●

Bottom

● ●

● ● ● ●

Top

8
10

12

●

214.0 215.5

13
8

14
0

14
2

● ●

129.0 130.5

● ●

8 10 12

●

Diagonal

3



We will use the prcomp function in R for PCA that uses the svd function to do its computing (there is also a similar function
called princomp that uses eigen and will not be discussed). We will standardize and work with the correlation matrix by setting
center=TRUE, the default, and scale=TRUE, which is not the default.

> print(p1 <- prcomp(~ . - Y, data = banknote, center=TRUE, scale=TRUE), digits=3)

Standard deviations:

[1] 1.716 1.131 0.932 0.671 0.518 0.435

Rotation:

PC1 PC2 PC3 PC4 PC5 PC6

Length 0.00699 -0.8155 0.0177 0.575 -0.0588 0.0311

Left -0.46776 -0.3420 -0.1034 -0.395 0.6395 -0.2977

Right -0.48668 -0.2525 -0.1235 -0.430 -0.6141 0.3492

Bottom -0.40676 0.2662 -0.5835 0.404 -0.2155 -0.4624

Top -0.36789 0.0915 0.7876 0.110 -0.2198 -0.4190

Diagonal 0.49346 -0.2739 -0.1139 -0.392 -0.3402 -0.6318

As a change of notation, let X now be the standardized data matrix so X1 = 0 and (X ′X)/(n−1) is a correlation matrix.
The prcomp command with center=TRUE and scale=TRUE computes the SVD of

(n− 1)−1/2X = UDV ′

With the constant (n− 1)−1/2, the spectral decomposition of the sample correlation matrix is V D2V ′.

> n1 <- dim(banknote)[1] - 1

> s <- svd(sqrt(1/n1) * scale(banknote[, -7]))

The singular values of s

> s$d

[1] 1.7163 1.1305 0.9322 0.6706 0.5183 0.4346

are the same as the Standard deviations in the prcomp output. The Rotation is the orthogonal matrix V of the right singular
vectors (the matrix s$v), or equivalently eigenvectors of the sample correlation matrix. The first rotation vector gives the linear
combination of the standardized variables with the largest variance, so it explains the most variation. It essentially ignores
Length, averages the next 5 variables but with Diagonal with a negative sign. The second component is effectively Length.
Becasue V is orthogonal, the sum of squares of the elements in each row and the sum of squares of elements in each column, is
equal to 1.
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> summary(p1)

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6

Standard deviation 1.716 1.131 0.932 0.671 0.5183 0.4346

Proportion of Variance 0.491 0.213 0.145 0.075 0.0448 0.0315

Cumulative Proportion 0.491 0.704 0.849 0.924 0.9685 1.0000

The summary repeats the singular values
√
λi, i = 1 . . . , p in the first row (these are also the square roots of the eigenvalues λi of

the correlation matrix in normalized PCA). The Cumulative Proportions are the scaled inertia values ψj =
∑j

i=1 λi/
∑p

i=1 λi =∑j
i=1 λi/p if the correlation matrix is used. The first two PCs account for 70.4% of the variance in the data.

The default plot method for prcomp produces a scree plot, a bar chart of the PC variances λi, the squares of the standard
deviations.

> plot(p1)
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The scree plot is supposed to help you choose the number of PCs to use by looking for an “elbow” in the plot. Here 2 or 3
PCs makes sense.

The principal component scores are Y = XV = UDV ′V = UD. The first 6 rows of this n× p matrix are:

> print(head(p1$x, n=4), digits=3)

PC1 PC2 PC3 PC4 PC5 PC6

1 -1.74 -1.6467 -1.420 -2.748 0.00329 0.6020

2 2.27 0.5374 -0.531 -0.657 -0.15817 0.4565

3 2.27 0.1074 -0.716 -0.341 -0.45388 -0.0453

4 2.28 0.0874 0.604 -0.392 -0.28291 -0.0554
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The results here differ from those in the text because I used the scaled data and correlations rather than the unscaled data and
covariances. In the text using the correlation matrix is called normalized principal component analysis. I see no justification for
using the unscaled data in this problem (and I’m not so keen on the scaled, either!).

Here are scatterplots of the first three PC scores. The PCs are of course uncorrelated, but the colors here reveal an interesting
picture. There is no reason in theory why the PCs should separate groups not used in computing them, as they appear to do in
this example.

> scatterplotMatrix(~ PC1 + PC2 + PC3|banknote$Y, main="PC -- all observations",

+ data=predict(p1), diagonal="none", smooth=FALSE, reg.line=FALSE)
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An interesting exercise in this problem is to compute PC analysis with only the genuine bills

> (p2 <- update(p1, subset=Y=="0-genuine"))

Standard deviations:

[1] 1.4845 1.3026 0.9827 0.7635 0.5716 0.4734
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Rotation:

PC1 PC2 PC3 PC4 PC5 PC6

Length 0.44955 0.07400 -0.47875 -0.741568 0.06494 0.09532

Left 0.58505 -0.10733 0.04828 0.286154 -0.69957 0.26943

Right 0.57218 -0.03576 -0.07727 0.455925 0.67581 0.02766

Bottom 0.28120 0.61628 0.27956 -0.044657 -0.11601 -0.66897

Top 0.08239 -0.70886 -0.17047 -0.005562 -0.09547 -0.67270

Diagonal -0.20583 0.31535 -0.80950 0.397869 -0.16460 -0.13231

> scatterplotMatrix(~ PC1 + PC2 + PC3|banknote$Y, main="PC -- genuine only",

+ data=predict(p2, banknote), diagonal="none", smooth=FALSE, reg.line=FALSE)

Objects created by prcomp have the following components:

> names(p1)

[1] "sdev" "rotation" "center" "scale" "x" "call"

The square roots of the eigenvalues are returned by p1$sdev. The eigenvectors are returned by p1$rotation and p1$x, or
predict(p1), returns PC scores. p1$center returns the column means of the input matrix, and if scale=TRUE, p1$scale
returns the column SDs.

Tests and Intervals

Tests/confidence statements generally are based on the sample eigenvalues. For example, from (9.18) on p. 226, if `i is the
observed value of the i-th eigenvalue, and λi is the unobserved population value, then

√
n− 1(log(`j)− log(λj)) is asymptotically

N(0, 2). Marginal 95% confidence intervals for the standard deviations (square roots of the eigenvalues) are

> n <- dim(p1$x)[1]

> cis <- data.frame(obs = log(p1$sdev^2), upper = log(p1$sdev^2) - 1.96 * sqrt(2/(n-1)),

+ lower = log(p1$sdev^2) + 1.96 * sqrt(2/(n-1)))

> sqrt(exp(cis))

obs upper lower

1 1.7163 1.5557 1.8934

2 1.1305 1.0247 1.2472
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3 0.9322 0.8450 1.0285

4 0.6706 0.6079 0.7399

5 0.5183 0.4698 0.5719

6 0.4346 0.3939 0.4795

We can do a similar calculation concerning variance explained by the first q PCs, from Theorem 9.5. Let ψq =
∑q

1 λi/
∑n

1 λi
be the (scaled) population variance explained by the first q PCs, and ψ̂q is its estimator. Then

√
n− 1(ψ̂q−ψq) is asymptotically

N(0, ω2), where ω2 is

ω2 =
2tr(Σ2)

(tr(Σ)2)
[ψ2

q − 2βψq + β2]

and βq =
∑q

1 λ
2
i /

∑n
1 λ

2
i . The variance is estimated by substituting estimates for parameters.

For example to test if the first three PCs explain 90% of the variance,

> evals <- p1$sdev^2 # for convenience

> psihat <- sum(evals[1:3]) / sum(evals)

> betahat <- sum(evals[1:3]^2) / sum(evals^2)

> trS <- sum(evals)

> trS2 <- sum(evals^2)

> omegahat2 <- (2 * trS2/(trS^2)) * (psihat^2 - 2*betahat * psihat + betahat^2)

> psihat + c(-1, 1) * sqrt(omegahat2)/(sqrt(n-1))

[1] 0.8418 0.8558

We would reject 0.90 as it is outside the confidence interval.

Correlations between PCs and Original Variables

The correlations between the original variables and the PCs are given by (9.15) in the text. Let x be a p × 1 vector of the
original (scaled) variables, and y = V ′x be a p× 1 vector of the corresponding principal components (we need the transpose on
V because then the first element of y is the linear combination v′1x, and so on). Then assuming that x is centered,

cov(x, y) = E((xy′) = E(xx′V ) = E(xx′)V = ΣV = V DV ′V = V D

We can get a correlation between the ith predictor and the jth PC score by dividing the (i, j) element of V D by the product

of the corresponding standard deviations, which is just
√

Var(xi)λj =
√
λj if X is centered and scaled, as in this and many

examples.
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> (rXY <- with(p1, rotation %*% diag( sdev)))

[,1] [,2] [,3] [,4] [,5] [,6]

Length 0.01199 -0.9219 0.01648 0.38537 -0.03048 0.0135

Left -0.80280 -0.3866 -0.09638 -0.26485 0.33148 -0.1294

Right -0.83527 -0.2854 -0.11511 -0.28857 -0.31831 0.1517

Bottom -0.69810 0.3010 -0.54399 0.27072 -0.11169 -0.2009

Top -0.63140 0.1034 0.73419 0.07392 -0.11396 -0.1821

Diagonal 0.84690 -0.3097 -0.10616 -0.26285 -0.17632 -0.2746

The squared correlation can be viewed as the proportion of the variance in the original variable “explained” by each of the
orthogonal PCs, and so the sum of the squared entries of each row of this table is 1. With a two-dimensional solution, the text
suggests plotting the correlations rXY1 between each of the variables and the first principal vector versus rXY2 . Points close to
the boundary of the unit circle in this plot correspond to variables that are explained by the first two PCs. The code below
uses asp=1 to assure the aspect ratio is one, and draw.circle in the plotrix package to draw a circle. In this example, all six
variables are fairly close to the boundary circle, and for all variables except for the fifth (Top) at least 75% of the variation is
captured by the first two principal component vectors.

> plot(rXY[,1:2], asp=1, xlim=c(-1, 1), ylim=c(-1, 1), pch=as.character(1:6))

> abline(h=0, lty=2)

> abline(v=0, lty=2)

> require(plotrix)

> draw.circle(0, 0, 1, lty=2, lwd=2)

> draw.circle(0, 0, 0.75, lty=2)
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Example 9.9

We have data on 79 US companies and six variables: assets, sales, market value, profits, cash flow and number of employees.
PC analysis could be useful here to reduce dimensionality to discover common characteristics among companies, or unusual
companies. Because the variables are in completely different units, correlation scale seems appropriate.

> loc <- "http://www.stat.umn.edu/~sandy/courses/8053/Data/uscomp1.dat"

> head(uscomp <- read.table(url(loc), header=TRUE), n=4)

Assets Sales MarketValue Profits CashFlow Employees

1 19788 9084 10636 1092.9 2576.8 79.4

2 5074 2557 1892 239.9 578.3 21.9

3 13621 4848 4572 485.0 898.9 23.4

4 1117 1038 478 59.7 91.7 3.8
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> scatterplotMatrix(uscomp, id.n=3, smooth=FALSE, reg=FALSE)
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For future reference,
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Case No. Company
14 Phillips Petroleum
22 Cigna
28 Marine Corp.
38 GE
40 IBM
52 United Technologies

> print(pr1 <- prcomp(uscomp, center=TRUE, scale=TRUE), digits=3)

Standard deviations:

[1] 2.2447 0.7189 0.5991 0.2225 0.1706 0.0829

Rotation:

PC1 PC2 PC3 PC4 PC5 PC6

Assets -0.340 0.84921 -0.339 0.2050 0.0770 -0.00593

Sales -0.423 0.17011 0.379 -0.7833 -0.0057 -0.18560

MarketValue -0.434 -0.19013 -0.192 0.0708 -0.8437 0.14859

Profits -0.420 -0.36370 -0.324 0.1556 0.2606 -0.70319

CashFlow -0.428 -0.28528 -0.267 -0.1215 0.4523 0.66686

Employees -0.397 -0.00987 0.726 0.5481 0.0983 0.06523

> summary(pr1)

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6

Standard deviation 2.24 0.7189 0.5991 0.22249 0.17060 0.08289

Proportion of Variance 0.84 0.0862 0.0598 0.00825 0.00485 0.00115

Cumulative Proportion 0.84 0.9259 0.9858 0.99400 0.99885 1.00000

The first PC accounts for 84% of the variance and the first two account for 93%. We examine the plot of the first two PC scores,
using sector label as the plotting symbol:

> y <- as.data.frame(pr1$x)

> scatterplot(y$PC1, y$PC2, smooth=FALSE, reg=FALSE, box=F, id.n=4)

22 28 38 40

22 28 38 40
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Cases 38 and 40 are very different on the first principal component, while two financial companies are different on the second
component. The first two PCs merely serve to discover that these are different from the others. Excluding 38 and 40, and
figuring out why they are different, is probably sensible.

> print(pr2 <- prcomp(uscomp[-c(38, 40), ],center=TRUE, scale=TRUE), digits=3)

Standard deviations:

[1] 1.786 1.239 0.889 0.541 0.386 0.203

Rotation:

PC1 PC2 PC3 PC4 PC5 PC6

Assets -0.263 0.40757 0.7997 0.0675 -0.333 0.0988

Sales -0.438 0.40712 -0.1616 0.5094 0.441 -0.4028

MarketValue -0.500 0.00289 0.0351 -0.8013 0.265 -0.1903

Profits -0.331 -0.62348 0.0803 0.1920 -0.426 -0.5262

CashFlow -0.443 -0.45013 0.1234 0.2379 0.335 0.6456

Employees -0.427 0.27711 -0.5580 -0.0209 -0.575 0.3132

> summary(pr2)

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6
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Standard deviation 1.786 1.239 0.889 0.5406 0.3859 0.2035

Proportion of Variance 0.532 0.256 0.132 0.0487 0.0248 0.0069

Cumulative Proportion 0.532 0.788 0.920 0.9683 0.9931 1.0000

> cor(pr2$x[, 1:2],uscomp[-c(38, 40), ])

Assets Sales MarketValue Profits CashFlow Employees

PC1 -0.4701 -0.7832 -0.894126 -0.5907 -0.7914 -0.7632

PC2 0.5050 0.5044 0.003579 -0.7725 -0.5577 0.3433

> par(mfrow=c(1, 2))

> plot(pr2$x[, 1],pr2$x[, 2], main="2 PCs without 38, 40")

> plot(pr2$x[, 1],pr1$x[-c(38, 40), 1], main="Comparison of first PCs")
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The first principal component remains close to the average of the variables.
As an alternative, start with the US company data, and consider first transforming for normality using the Box-Cox method

and the function powerTransform in car.

> #pairs(uscomp)

> library(car)

> summary(powerTransform(uscomp,family="yjPower"))
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yjPower Transformations to Multinormality

Est.Power Std.Err. Wald Lower Bound Wald Upper Bound

Assets 0.0556 0.0810 -0.1032 0.2143

Sales 0.1083 0.0589 -0.0072 0.2238

MarketValue 0.1783 0.0658 0.0494 0.3072

Profits 0.9501 0.0106 0.9294 0.9708

CashFlow 0.9195 0.0121 0.8958 0.9433

Employees 0.0398 0.0700 -0.0974 0.1770

Likelihood ratio tests about transformation parameters

LRT df pval

LR test, lambda = (0 0 0 0 0 0) 2654.298 6 0.000

LR test, lambda = (1 1 1 1 1 1) 573.579 6 0.000

LR test, lambda = (0 0 0.18 0.95 0.92 0) 3.687 6 0.719

> print(pr3<-prcomp(~log(Assets) + log(Sales) + log(MarketValue) + Profits +

+ CashFlow + log(Employees), data=uscomp, scale=TRUE),

+ digits=3)

Standard deviations:

[1] 1.9625 1.0873 0.7790 0.5135 0.2972 0.0857

Rotation:

PC1 PC2 PC3 PC4 PC5 PC6

log(Assets) -0.343 0.195 0.9080 -0.040 -0.1347 -0.0162

log(Sales) -0.436 0.387 -0.1279 0.370 0.7074 -0.0798

log(MarketValue) -0.447 0.085 -0.2120 -0.860 0.0878 -0.0155

Profits -0.387 -0.589 -0.0374 0.156 -0.0819 -0.6856

CashFlow -0.413 -0.531 -0.0172 0.156 0.0331 0.7223

log(Employees) -0.415 0.419 -0.3353 0.269 -0.6826 0.0357

> summary(pr3)

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6
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Standard deviation 1.963 1.087 0.779 0.514 0.2972 0.08572

Proportion of Variance 0.642 0.197 0.101 0.044 0.0147 0.00122

Cumulative Proportion 0.642 0.839 0.940 0.984 0.9988 1.00000

> scatterplot(pr3$x[, 1], pr3$x[, 3], box=FALSE, reg=FALSE,

+ smooth=FALSE, id.n=4)
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> round(rXY <- with(pr3, rotation %*% diag( sdev)), 2)

[,1] [,2] [,3] [,4] [,5] [,6]

log(Assets) -0.67 0.21 0.71 -0.02 -0.04 0.00

log(Sales) -0.86 0.42 -0.10 0.19 0.21 -0.01

log(MarketValue) -0.88 0.09 -0.17 -0.44 0.03 0.00

Profits -0.76 -0.64 -0.03 0.08 -0.02 -0.06

CashFlow -0.81 -0.58 -0.01 0.08 0.01 0.06

log(Employees) -0.81 0.46 -0.26 0.14 -0.20 0.00
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> plot(rXY[,1:2], asp=1, xlim=c(-1, 1), ylim=c(-1, 1), pch=as.character(1:6))

> abline(h=0, lty=2)

> abline(v=0, lty=2)

> require(plotrix)

> draw.circle(0, 0, 1, lty=2, lwd=2)

> draw.circle(0, 0, .75, lty=2, lwd=1)
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