
Stat 8053: Variable Selection and Regularization, Fall 2013

In a regression problem with p predictors, we can reduce the dimension of the regression problem in two general ways:

� Replace x1, . . . , xp, by z1, . . . , zq, where q < p and zj = β′jxj is a linear combination of the original p predictors. Nonlinear
combinations are also possible, but not commonly used in the context we are studying. The most common methods that reduce
dimension in this was are principal components regression, and newer methods like SIR. These will be discussed later in the semester.
In addition, the usual linear model, and generalized linear model, are also special cases of this type of dimension reduction, provided
that interactions and basis functions like polynomials and splines are not used.

� Devise some method for removing some of the predictors. If we concentrate on expectations, we could seek to find a partition
x = (xG, xD) such that

E(y|xG, xD) = E(y|xG)

so once we know the “good” variables xG the deleted variables xD provide no further information.

We expect the model without xD to be “better” in the sense estimates should be more precise and predictions should be better.

Why?

I can think of three general goals for model selection:

Learn about an effect of interest For example, about the effect of group membership, such as treatment or control, participate in a
program or not, and so on. Other predictors may be relevant to the response, and the effect of the group membership variable can
depend on other predictors. Methodology for this is to my knowledge not well developed

Variable discovery Identify the “active” predictors. For example, to find 10 or so active genes from a set of 100,000 potential genes
based on a very limited data: See Ioannidis (2005), “Why most published research findings are false”, http://dx.doi.org/10.

1371%2Fjournal.pmed.0020124. This problem has an important multiple testing component.

Prediction Includes credit scoring, disease diagnosis, buyer behavior, and so on. This corresponds to much of machine learning.

Forward stepwise regression

We start with an initial class of models, e.g., E(Y |X = x) = α+ β′x, Var(Y |X = x) = σ2, which is the linear regression model. All that
is uncertain is which elements of β should be zero, and so dimension reduction is equivalent to finding the zeroes in β. We allow elements
of X to be functionally related to allow for interactions and basis functions.

The usual forward selection algorithm is as follows:

1. Start with all elements of β = 0. Set k = 0.

2. Increment k → k + 1.
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3. At step k, add the variable that optimizes a criterion, usually reduction in deviance, or an information criterion like AIC or BIC.

4. Stop if a stopping criterion is met or if all variables have been added. Older programs like SPSS use a “t to enter” criterion, while
newer programs like step in R continue until AIC increases by the next deletion. See also Benjamini and Gavrilov (2009, Annals)
for an FDA based method for stepwise regresion. If the criterion is not met, go to step 2.

Here is an example of the forward algorithm. The data in file Rateprof are aggregate professor ratings for 366 professors at a
midwestern university (not the U of MN) from RateMyProfessor.com

> library(alr4)

> set.seed(1)

> str(Rateprof[, c(1, 5, 6, 8:12)])

'data.frame': 366 obs. of 8 variables:

$ gender : Factor w/ 2 levels "female","male": 2 2 2 2 2 2 2 2 2 2 ...

$ pepper : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 1 1 1 ...

$ discipline : Factor w/ 4 levels "Hum","SocSci",..: 1 1 1 1 1 1 1 1 1 1 ...

$ quality : num 4.64 4.32 4.79 4.25 4.68 ...

$ helpfulness : num 4.64 4.55 4.72 4.46 4.68 ...

$ clarity : num 4.64 4.09 4.86 4.04 4.68 ...

$ easiness : num 4.82 4.36 4.6 2.79 4.47 ...

$ raterInterest: num 3.55 4 3.43 3.18 4.21 ...

> scatterplotMatrix(~ quality + helpfulness + clarity + easiness + raterInterest|discipline, Rateprof, smoother=FALSE)
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raterInterest

> Rateprof$score <- scale(with(Rateprof, (quality + helpfulness + clarity)/3))

> test <- sample(1:366, 200, replace=FALSE)

> m0 <- lm(score ~ 1, Rateprof, subset=test)

> m1 <- update(m0, ~ discipline + gender + pepper + easiness + raterInterest)

> (f <- as.formula(paste("~",paste(all.vars(formula(m1))[-1],collapse="+"))))

~discipline + gender + pepper + easiness + raterInterest
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> library(MASS)

> FScoefs <- function(m0, m1, data, trace=FALSE) {

+ keepCoef <- function(m, aic) {

+ all <- names(coef(m1))

+ new <- names(coef(m))

+ ans <- rep(0,length(all))

+ ans[match(new, all)] <- coef(m)

+ ans

+ }

+ out <- with(data,stepAIC(m0, scope=list(lower=~1, upper=f), k=0,

+ trace=trace, keep=keepCoef, direction="forward"))

+ rownames(out$keep) <- names(coef(m1))

+ out$keep}

> coefs <- FScoefs(m0, m1, Rateprof, trace=TRUE)

Start: AIC=-6

score ~ 1

Df Sum of Sq RSS AIC

+ easiness 1 58.200 135.89 -77.290

+ raterInterest 1 36.504 157.59 -47.665

+ pepper 1 27.972 166.12 -37.120

+ discipline 3 4.290 189.80 -10.466

+ gender 1 0.085 194.01 -6.083

<none> 194.09 -5.996

Step: AIC=-77.29

score ~ easiness

Df Sum of Sq RSS AIC

+ raterInterest 1 25.1780 110.72 -118.271

+ pepper 1 11.1474 124.75 -94.408

+ gender 1 2.7777 133.12 -81.420

+ discipline 3 1.8128 134.08 -79.976

<none> 135.89 -77.290

Step: AIC=-118.27

score ~ easiness + raterInterest
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Df Sum of Sq RSS AIC

+ pepper 1 8.1161 102.60 -133.50

+ discipline 3 3.0677 107.65 -123.89

+ gender 1 0.7572 109.96 -119.64

<none> 110.72 -118.27

Step: AIC=-133.5

score ~ easiness + raterInterest + pepper

Df Sum of Sq RSS AIC

+ discipline 3 3.6378 98.961 -140.72

+ gender 1 0.8767 101.722 -135.21

<none> 102.599 -133.50

Step: AIC=-140.72

score ~ easiness + raterInterest + pepper + discipline

Df Sum of Sq RSS AIC

+ gender 1 0.18585 98.775 -141.09

<none> 98.961 -140.72

Step: AIC=-141.09

score ~ easiness + raterInterest + pepper + discipline + gender

The algorithm adds variables, one at a time, until adding the next variable increases, rather than decreases, the value of AIC. Factors
are added all at once.

stepAIC is used rather than step because it allows saving information at each step via the keep argument, here saving the coefficients.
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> print(coefs, digits=2)

[,1] [,2] [,3] [,4] [,5] [,6]

(Intercept) -0.061 -2.29 -4.19 -3.92 -4.252 -4.263

disciplineSocSci 0.000 0.00 0.00 0.00 0.125 0.116

disciplineSTEM 0.000 0.00 0.00 0.00 0.343 0.321

disciplinePre-prof 0.000 0.00 0.00 0.00 0.094 0.093

gendermale 0.000 0.00 0.00 0.00 0.000 0.066

pepperyes 0.000 0.00 0.00 0.69 0.714 0.714

easiness 0.000 0.71 0.64 0.57 0.607 0.613

raterInterest 0.000 0.00 0.64 0.61 0.627 0.617

Here is a coefficient trace plot :

> n <- length(coef(m1))-1

> steps <- 0:(dim(coefs)[2]-1)

> matplot(steps, t(coefs[-1,]),lty=1,type="l",xlim=c(0,n+1),

+ xlab="Step number",ylab="Coef est", main="FS Coefficient Trace")

> lines(c(0, 5), c(0, 0), lwd=2)

> xpos = rep(rev(steps)[1], n)

> ypos = coefs[-1, xpos[1]+1]

> text(xpos, ypos, rownames(coefs)[-1], cex=1, pos=4)
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The figure shows the estimates for each variable at each step in the process. We have no stopping rule here, so the process is continued
until all variables are included. At step zero, all coefficient estimates are zero. Coefficients become non-zero one at a time, and eventually
reach their ols estimates from the “full” model.

The advantages of stepwise (FS, backward elimination or a hybrid) regression are:

1. Familiar, easily explained, widely used and implemented

2. Easily extended to other regression problems

3. Works pretty well, particularly for large n

4. Can be improved by fancy stopping rules

There are also several disadvantages:

1. Computational compromise to avoid “all possible” model computation. The machine learning people call “all possible” a greedy
search.

2. Based on a model; if model is wrong, selection may be wrong.

3. Based on correlations only.

Lasso and regularization

Regularization has been intensely studied on the interface between statistics and computer science. We describe the basic idea through the
lasso, Tibshirani (1996), as applied in the context of linear regression. The method starts by assuming a model like E(y|X = x) = α+β′x
and Var(Y |X) = σ2. The variable selection problem is formulated as finding the elements of β that equal zero. Estimates are chosen to
minimize

arg min
∑

(yi − α− β′xi)2 subject to
∑
|βj | < t

This is equivalent to minimizing
1

2n

∑
(yi − α− β′xi)2 + λ

∑
|βj |

which is just the usual least squares criterion with a penalty determined by λ for large coefficient estimates. If λ = 0 the lasso is the same
as ols; as λ increases, shorter vectors are preferred. There are many variations on this procedure, including application of it to other-than
the linear model. Very high quality software in the package glmnet by Jerome Friedman, Trevor Hastie, Rob Tibshirani, is available in
R. It computes estimates for a large number of values for λ at once. The “optimal” λ is selected by cross validation of some sort, although
the validation procedure does not seem to be part of the glmnet package and you need to write your own.

Figure 1 illustrates how the lasso works, in the special case of exactly p = 2 predictors. The ellipses are contours of constant residual
sum of squares, which is minimized at the point marked β̂. As you move away from β̂ the residual sum of squares increases, but all points
on the same elliptical contour have the same value of RSS.
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Figure 1: How lasso, works, from Tibshirani, 1996. The elliptical contours are centered at the ols estimator β̂ are of the residual sum of
squares function {β|(β − β̂)′X ′X(β − β̂) = k}.

The black square is the set of vectors β that satisfy the constraint
∑
|βj | ≤ λ, and for given λ the estimator will be the point with

smallest residual sum of squares, and so the lasso estimator will be the point in the black square, or clearly on the boundary of the black
square unless β̂ = 0, that lies on the contour closest to β̂. From the figure we can see that this will happen at one of the vertices of
the black figure, at which one of the βj is estimated to be exactly zero and the other is estimated to be non-zero. If the black figure is
expanded, eventually the estimates of all the βj will become non-zero, until for large enough λ the ols estimate will be obtained. Thus
for λ = 0 we get all estimates equal zero, and for very large λ we get the ols estimate.

Computing with glmnet

An important property of the lasso procedure is that it is not invariant to linear transformations of the predictors, because of the penalty
based on absolute value of β. As a result it is “usual” to scale the data before beginning the analysis, usually to correlation scale. The
glmnet package uses a very fast computing algorithm to compute estimates for many values of the penalty λ simultaneously. The “answer”
requires selecting a value of λ, and this is done using cross-validation.

The most important function to use in the glmnet package is called cv.glmnet. The function glmnet is first run to get a sequence of
λ-values that corresponding to getting one additional non-zero coefficient. Given this sequence of potential λs, the program does n-fold
cross-validation, with n = 10 by default, to estimate error, so glmnet is run n times, each with a fraction (n − 1)/n of the data, and
prediction errors are accumulated on the remaining fold.

Here is the call to cv.glmnet for the example:
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> library(glmnet)

> X <- model.matrix(update(m1, subset=1:dim(Rateprof)[1]))[, -1]

> Y <- Rateprof$score

> ans <- cv.glmnet(X[test, ], Y[test], standardize=TRUE)

Unlike most other functions we have seen, glmnet does not have a formula interface and you must specify the response and predictors
explicitly. The argument standardize=FALSE is used because the data are already standardized.

The glmnet fit to all the (test) data is stored as ans$glmnet.fit. We can get the variable trace using

> par(mfrow=c(1, 3))

> plot(ans$glmnet.fit, "norm", label=TRUE)

> plot(ans$glmnet.fit, "lambda", label=TRUE)

> plot(ans)
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This is a variable trace, just as with stepwise regression, the trace of the penalty parameter, and a record of the cross-validation. The
standard error bars on the plot are estimated using the cross-validation. The minimum value of λ is

> log(ans$lambda.min)

[1] -3.594294

and a larger value of λ whose mean-square error is 1 SE larger is

> log(ans$lambda.1se)
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[1] -2.01272

> coef(ans, s=ans$lambda.1se)

8 x 1 sparse Matrix of class "dgCMatrix"

1

(Intercept) -2.8669772

disciplineSocSci .

disciplineSTEM .

disciplinePre-prof .

gendermale .

pepperyes 0.3801487

easiness 0.4481515

raterInterest 0.4119277

Apparently, the default is to use the lambda.1se as the solution.
Finally we can compute how well this does by applying the answer to the validation set.

> rss <- function(pred){

+ error <- (Y - pred)^2

+ c(Construction = sqrt(sum(error[test])/length(test)),

+ Validation= sqrt(sum(error[-test])/(length(Y)-length(test))))

+ }

> rss.lassomin <- rss(predict(ans$glmnet.fit, s=ans$lambda.min, newx=X))

> rss.lasso1se <- rss(predict(ans$glmnet.fit, s=ans$lambda.1se, newx=X))

> befit <- stepAIC(m0,scope=list(lower=~1,upper=f),trace=F,direction="forward")

> rss.be <- rss(predict(befit, Rateprof))

> rss.ols <- rss(predict(m1, Rateprof))

> rbind(rss.lassomin, rss.lasso1se, rss.be, rss.ols)

Construction Validation

rss.lassomin 0.7067690 0.7048039

rss.lasso1se 0.7432208 0.7463511

rss.be 0.7034244 0.7053879

rss.ols 0.7027636 0.7039740

Here are some advantages of the lasso method.

1. Large n, large p the linear model will be approximately OK.
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2. p >> n can be handled with this method and the automatic procedure produces an answer.

3. The argument family=c("gaussian", "binomial", "poisson", "multinomial", "cox") extends the method to continuous, bi-
nomial, and other problems.

4. Enormous literature of extensions and modifications

Here is a list of disadvantages.

1. The initial “full” model specification must include the “true” model as a special case or else information is lost. That occurs in this
example in which the possibility that effects might differ by Sex are not included and are therefore not discovered.

2. The method is not invariant under rescaling columns of X or multiplying by a nonsingular matrix. The default is to scale all columns
to have variance one, essentially working with a correlation matrix, but multiplication by a nonsingular matrix may completely change
the results.

3. The method depends only on correlation coefficients, not on the original data, so it is likely to be sensitive to any modeling problems.

GlaucomaM

> show <- function(tt){

+ print(tt)

+ cat(paste("Misclassification rate =", round(1-sum(diag(tt))/sum(tt), 2),"\n"))

+ invisible()}

> data(GlaucomaM, package="TH.data")

> set.seed(123456)

> const <- sample(1:198, 150)

> library(randomForest)

> b2 <- randomForest(Class ~., GlaucomaM, subset=const)

> show(with(GlaucomaM, table(actual=Class[const], predicted=predict(b2))))

predicted

actual glaucoma normal

glaucoma 62 14

normal 13 61

Misclassification rate = 0.18

> show(with(GlaucomaM, table(actual=Class[-const],

+ predicted=predict(b2, newdata=GlaucomaM[-const, ]))))
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predicted

actual glaucoma normal

glaucoma 18 4

normal 3 21

Misclassification rate = 0.15

> X <- as.matrix(GlaucomaM[, -63])

> Y <- as.factor(GlaucomaM[, 63])

> l2 <- cv.glmnet(X[const, ], Y[const], family="binomial")

> show(table(actual=Y[const],

+ predicted=predict(l2, newx=X[const,], type="class")))

predicted

actual glaucoma normal

glaucoma 64 12

normal 13 61

Misclassification rate = 0.17

> show(table(actual=Y[-const],

+ predicted=predict(l2, newx=X[-const,], type="class")))

predicted

actual glaucoma normal

glaucoma 18 4

normal 6 18

Misclassification rate = 0.22
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