
Stat 8053: Manova (rev November 4, 2013)

Wishart Distribution

1. Suppose zi ∼ Np(0, I), i = 1, . . . , n. Then we say that

ziz
′
i ∼ Wp(I, 1)

has a Wishart distribution in p dimensions with covariance matrix I and with 1 df. The diagonal elements of ziz
′
i are all

distributed as χ2(1).

2. Write Z as an n× p matrix with rows x′i. If the zi are independent, then

Z′Z =
n∑

i=1

ziz
′
i ∼

n∑
i=1

Wp(I, 1) = Wp(I, n)

has a Wishart distribution with covariance matrix I and n degrees of freedom. If p = 1,
∑
z2i ∼ χ2(n). Also, E(Wp(I), n) =

nI.

3. Let Y = ZΣ1/2 ∼ Np(0,Σ). Then

Y′Y ∼ Wp(Σ, n)

E(Wp(Σ, n)) = nΣ

If Σ−1/2 is any square root of Σ, then Σ−1/2Y ∼ Np(0, I), and

Σ−1/2Y′YΣ−1/2
′ ∼ Wp(I, n)

Y′Y ∼ Σ1/2Wp(I, n)Σ1/2′

If p = 1, then Y′Y ∼ σ2χ2(n). Like the χ2 distributions, the Wishart distribution with non-identity covariance matrix
differs from the standard Wishart by multiplication by constants.

4. If A is q × p, and a is a p× 1 vector, then

A(Y′Y)A′ ∼ Wq(AΣA′, n) = Σ−1/2A′Wq(I, n)AΣ−1/2
′

a′(Y′Y)a ∼ (a′Σa)χ2(n)
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5. Suppose that Σ is a p×p symmetric matrix. By the Spectral Theorem, we can find a p×p orthogonal matrix Γ = (γ1, . . . ,γp),
ΓΓ′ = Γ′Γ = I, and a p× p diagonal matrix Λ with non-negative diagonal elements λ1, . . . , λp, such that

Σ = ΓΛΓ′ =
∑

λiγiγ
′
i

Σ−1 = ΓΛ−1Γ′ =
∑

λ−1i γiγ
′
i

where the inverse requires all the λi > 0.

6. A (not the) square root of Σ and its inverse are Σ1/2 = ΓΛ1/2 and Σ−1/2 = ΓΛ−1/2. The point here is to show that a
square root exists and is computable. The γ are eigenvectors and the λ are corresponding eigenvalues. A symmetric square
root is given by ΓΛ1/2Γ′.

Hotelling’s T 2

1. If y ∼ Np(µ,Σ), then if Σ is of full rank, Σ−1/2(y − µ) ∼ Np(0, I), and (y − µ)′Σ−1(y − µ) ∼ Wp(I, 1).

2. In most problems Σ is unknown. Suppose that M ∼ Wp(Σ, n) is an estimate of Σ that is independent of y. Then

T 2 = n(y − µ)′M−1(y − µ)

Is distributed as Hotelling’s T 2(p, n) in p dimensions with n degrees of freedom. If p = 1 then T 2 is the square of Student’s
t(n).

3.
T 2(p, n) =

np

n− p+ 1
F (p, n− p+ 1)

so T 2 has a distribution proportional to a central F distribution, so the F can be used to get significance levels if T 2 is
used for testing.

Cochran’s Theorem

Cochran’s theorem provides one of many ways to get to Anova and to Manova. Suppose Y is an n× p matrix with iid Np(0,Σ)
rows. Also suppose that C is any n × n symmetric matrix. Define Y′CY to be a sum of squares and cross products matrix.
With another application of the spectral theorem, we can always write C =

∑
δiγiγ

′
i where the δi are nonnegative eigenvalues

and the γi are eigenvectors.
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1. For any C,

Y′CY = Y′
(∑

δiγiγ
′
i

)
Y =

∑
δi (Y′γiγ

′
iY)

∼
n∑

i=1

δiWp(Σ, 1)

which is a weighted linear combination of Wishart random variables with nonnegative weights. For p = 1, we get a weighted
sum of central χ2(1)s.

2. We will have
Y′CY ∼ Wp(Σ, r)

if and only if one of the following three equivalent conditions holds: (a) all δi equal either 0 or 1; (b) C = C′ = C2; (c) C
is a projection matrix. Here r =

∑
δi is the rank of the matrix C.

3. The two sums of squares and cross products matrices Y′CY and Y′BY have independent Wishart distributions if and
only if B and C are projections and CB = 0. This is the basis for both Anova and for Manova.

Applying Cochran’s Theorem: One-sample Test

Suppose yi are iid, Np(µ,Σ).

1. Define J = 11′/n be the projection on the column of 1’s, J = J′ = J2. Then JY returns a matrix with all rows given by
ȳ′, the sample mean vector. The matrix Y′JY = nȳȳ′. In the p = 1 case, this is nȳ2. Y′JY does not have a Wishart
distribution unless µ = 0.

2. (I − J) = (I − J)′ = (I − J)2 is also a projection, and (I − J)Y returns a matrix like Y but centered by subtracting the
mean ȳ from each row.

3. (I− J)Y has mean 0, and the corrected sum of squares and cross products matrix.

(n− 1)Su = Y′(I− J)Y ∼ Wp(Σ, n− 1)

and so Su is an unbiased estimate of Σ. Since J(I − J) = 0, Su and ȳ are independent. The textbook defines S =
((n− 1)/n)S.

4. Consider a test of µ = µ0 versus µ 6= µ0. Compute

T 2 = n(ȳ − µ0)
′S−1u (ȳ − µ0)

Then T 2 ∼ T 2(p, n− 1) = [(n− 1)p/(n− p)]F (p, n− p).
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More generally. . .

Suppose we have the general multivariate linear model.

Y|X = Xβ + E

= 1β0 + X1β
′
1 + X2β2 + E

Here Y is an n×m data matrix of responses for the m response variables, (1,X1) is n× q for the first q columns of X, and X2

is the remaining columns. The p×m matrix β has first row β′0, next q rows β1 and remaining rows β2. The error matrix E has
iid Np(0,Σ) elements.

Let P1 be the projection on (1,X1), P12 the projection on X, and so P2|1 = P12 − P1 is the projection on the part of X2

orthogonal to (1,X1), and P1P2|1 = 0. In this over-brief presentation, we skip general methods for computing the P. Then

1. Under the hypothesis that β2 = 0, B = Y′P′2|1Y ∼ Wp(Σ, p − q). The matrix B is the between sum of squares and
cross-products.

2. For any value of β, W = Y′(I−P12)
′Y ∼ Wp(Σ, n− p). The matrix W is the within sum of squares and cross-products.

3. A test of β = 0 is then based of “comparing” these two Wishart matrices, via W−1B.

One-way Multivariate Analysis of Variance

For the one-way Manova model with p groups, X = (1,X2), where as in Anova X2 is some basis for the p− 1 dimensional space.
For this model, X1 is empty. Using the R parametrization, X2(i, j) = 1 if the ith observation is in group j + 1 for j = 2, . . . , p,
but as in Anova the results here do not depend on parameterization, in general as long as the marginality property is followed.
We want to test the coefficients for X2 = 0.

The projection on the whole space is P12 = X(X′X)−1X′, while the projection on the space spanned by 1 is J. Then
P2|1 = PX − J is the projection on the columns of X2 orthogonal to J.

Write ȳi for the mean in the ni observations in the i-th group; ȳ =
∑
niȳi/

∑
ni, then the multivariate analysis of variance,

Manova, is

Source df SS
Mean 1 Y′JY = nȳȳ′

Groups d2|1 = g − 1 B = Y′P2|1Y =
∑
ni(ȳi − ȳ)(ȳi − ȳ)′

Error d =
∑

(ni − 1) W = Y′(I−P12)Y =
∑∑

(xij − ȳi)(xij − ȳi)
′

Su = W/(
∑

(ni − 1)) is the unbiased estimate of the common Σ.
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In the p = 1 case the likelihood ratio test of all group means equal is an F test, but the multivariate test is not an exact
F -test, even under normality. The likelihood ratio test can be shown to be

Λ =
|W|

|W + B|
=

1

|I + W−1B|

where |A| is the determinant of A, and we reject for small values of Λ. Λ depends on the data only through the eignevalues of
the matrix W−1B. If λ1 ≥ . . . λp are the eigenvalues of W−1B, then

Λ =

p∏
i=1

1

1 + λi

The distribution of Λ depends on the distribution of the eigenvalues. Here are the usual methods of obtaining p-values.

1. Asymptotic: −2 log(Λ)→ χ2[pd2|1].

2. Bartlett corrected with n =
∑
ni:

−(n− 1 +
p+ d2|1 + 1

2
) log(Λ)→ χ2(pd2|1)

3. The exact distribution is available in special cases with d2|1p ≤ 3.

4. Replace Λ by a different function of the λs but still use asymptotics to get p-values. The Lawley-Hotelling method uses
tr(W−1B) =

∑
λi. A small-sample F -approximation is used to get p-values.

5. Pillai’s trace criterion appears to be the most popular and is often the default in computer programs, tr(B(B + W)−1) =∑
(λi/(1 + λi)). A small-sample F -approximation is used to get p-values.

6. Roy’s largest root is the maximum eigenvalue of W(B + W)−1 = λ1/(1 + λ1). It is equivalent to testing all possible
univariate Anova’s with response Y′a for all a, and then computing the p-value based on the maximum of all these tests.
The distribution of this statistic is known and tables (or algorithms to compute tables) are available.

We use as an example data from Johnson and Wichern, Applied Multivariate Statistical Analysis, 6th Ed., p. 318. The data
are concerned with a two-factor experiment done to study the properties of extruded plastic film. The two factors are rate of
extrusion and amount of additive, both at two levels. There are three response variables, y1 = tear resistance, y2 = gloss, and
y3 = opacity. These three variables are on completely different scales and in different units.
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loc <- "http://www.stat.umn.edu/~sandy/courses/8053/Data/Wichern_data/T6-4.dat"

data <- read.table(url(loc))

colnames(data) <- c("Rate", "Additive", "Y1", "Y2", "Y3")

data$Rate <- factor(data$Rate)

data$Additive <- factor(data$Additive)

data$RateAdd <- factor(with(data, paste("R", Rate, "A", Additive, sep="")))

data

Rate Additive Y1 Y2 Y3 RateAdd
1 0 0 6.5 9.5 4.4 R0A0
2 0 0 6.2 9.9 6.4 R0A0
3 0 0 5.8 9.6 3.0 R0A0
4 0 0 6.5 9.6 4.1 R0A0
5 0 0 6.5 9.2 0.8 R0A0
6 0 1 6.9 9.1 5.7 R0A1
7 0 1 7.2 10.0 2.0 R0A1
8 0 1 6.9 9.9 3.9 R0A1
9 0 1 6.1 9.5 1.9 R0A1
10 0 1 6.3 9.4 5.7 R0A1
11 1 0 6.7 9.1 2.8 R1A0
12 1 0 6.6 9.3 4.1 R1A0
13 1 0 7.2 8.3 3.8 R1A0
14 1 0 7.1 8.4 1.6 R1A0
15 1 0 6.8 8.5 3.4 R1A0
16 1 1 7.1 9.2 8.4 R1A1
17 1 1 7.0 8.8 5.2 R1A1
18 1 1 7.2 9.7 6.9 R1A1
19 1 1 7.5 10.1 2.7 R1A1
20 1 1 7.6 9.2 1.9 R1A1

library(car)

print(scatterplotMatrix( ~ Y1 + Y2 + Y3 | RateAdd, data=data, smooth=FALSE,

reg.line=FALSE, ellipse=TRUE, levels= c(0.5), by.groups=TRUE,

diagonal="none"))
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The model assumes that the within group covariance matrices are equal. The ellipses are contours of constant probability
based on the normal distribution taking the responses two at a time. Within a plot all the ellipses should be of the same shape
and orientation, something not apparent here. However, the sample sizes are much to small to make much of this. Under the
NH the larger dots on each plot should be the same. Y1 seems to show larger differences than do the other two responses.

One-sample test

Let’s start by a test that all the variable means are equal to zero, effectively a one-sample test:

# One sample test:

ybar <- colMeans(data[, 3:5])

n <- dim(data)[1] # sample size

p <- 3 # dimension of response
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S_u <- var(data[, 3:5])

T2 <- n * t(ybar) %*% solve(S_u) %*% (ybar)

F <- (n - p)/((n-1)*p) * T2

c(T2=T2, F=F)

T2 F
12686 3783

You can get lm to do the same test:

anova(m0 <- lm(cbind(Y1, Y2, Y3) ~ 1, data))

Analysis of Variance Table

Df Pillai approx F num Df den Df Pr(>F)
(Intercept) 1 0.999 3783 3 17 <2e-16
Residuals 19

The computation by hand matches the F for the Pillai test because there is only one eigenvalue, so all tests are equivalent. A
slight modification is to test µ = c for some vector c:

C <- c(7, 9, 4)

anova(update(m0, I(cbind(Y1, Y2, Y3) - outer(rep(1, n), C)) ~ .))

Analysis of Variance Table

Df Pillai approx F num Df den Df Pr(>F)
(Intercept) 1 0.348 3.02 3 17 0.059
Residuals 19

I set c to equal round(xbar).

One-way Manova

Let’s fit a one-way Manova with four levels created all possible combinations of the factors:

(m1 <- lm(cbind(Y1, Y2, Y3) ~ RateAdd, data))
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Call:
lm(formula = cbind(Y1, Y2, Y3) ~ RateAdd, data = data)

Coefficients:
Y1 Y2 Y3

(Intercept) 6.30 9.56 3.74
RateAddR0A1 0.38 0.02 0.10
RateAddR1A0 0.58 -0.84 -0.60
RateAddR1A1 0.98 -0.16 1.28

The left-side of the model is a matrix, not a data-frame, with three columns; otherwise the use of lm is the same as for univariate
models. The printed output is a table of coefficients for each of the responses. The summary method is illustrated later in this
handout.

Manova is computed using the Anova function in car

library(car)

a1 <- Anova(m1)

summary(a1)

Type II MANOVA Tests:

Sum of squares and products for error:
Y1 Y2 Y3

Y1 1.764 0.020 -3.070
Y2 0.020 2.628 -0.552
Y3 -3.070 -0.552 64.924

------------------------------------------

Term: RateAdd

Sum of squares and products for the hypothesis:
Y1 Y2 Y3

Y1 2.5015 -0.8055 2.831
Y2 -0.8055 2.4575 2.461
Y3 2.8305 2.4615 9.282
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Multivariate Tests: RateAdd
Df test stat approx F num Df den Df Pr(>F)

Pillai 3 1.146 3.295 9 48.00 0.003350
Wilks 3 0.178 3.925 9 34.22 0.001663
Hotelling-Lawley 3 2.817 3.965 9 38.00 0.001245
Roy 3 1.870 9.971 3 16.00 0.000603

The “Sum of squares and products for error” is the matrix W and “Sum of squares and products for the hypothesis” is B. The
tests are based on the eigenvalues of W−1B.

The usual print method for Anova uses some of this output:

print(a1, test.statistic="Pillai")

Type II MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr(>F)

RateAdd 3 1.15 3.29 9 48 0.0034

Two-way Manova

summary(m2 <- lm(cbind(Y1, Y2, Y3) ~ Rate*Additive, data))

Response Y1 :

Call:
lm(formula = Y1 ~ Rate * Additive, data = data)

Residuals:
Min 1Q Median 3Q Max

-0.580 -0.205 0.060 0.220 0.520

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.300 0.148 42.43 <2e-16
Rate1 0.580 0.210 2.76 0.014
Additive1 0.380 0.210 1.81 0.089
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Rate1:Additive1 0.020 0.297 0.07 0.947

Residual standard error: 0.332 on 16 degrees of freedom
Multiple R-squared: 0.586, Adjusted R-squared: 0.509
F-statistic: 7.56 on 3 and 16 DF, p-value: 0.00227

Response Y2 :

Call:
lm(formula = Y2 ~ Rate * Additive, data = data)

Residuals:
Min 1Q Median 3Q Max

-0.600 -0.245 -0.070 0.325 0.700

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.560 0.181 52.75 <2e-16
Rate1 -0.840 0.256 -3.28 0.0047
Additive1 0.020 0.256 0.08 0.9388
Rate1:Additive1 0.660 0.362 1.82 0.0874

Residual standard error: 0.405 on 16 degrees of freedom
Multiple R-squared: 0.483, Adjusted R-squared: 0.386
F-statistic: 4.99 on 3 and 16 DF, p-value: 0.0125

Response Y3 :

Call:
lm(formula = Y3 ~ Rate * Additive, data = data)

Residuals:
Min 1Q Median 3Q Max
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-3.12 -1.61 0.22 1.18 3.38

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.740 0.901 4.15 0.00075
Rate1 -0.600 1.274 -0.47 0.64403
Additive1 0.100 1.274 0.08 0.93841
Rate1:Additive1 1.780 1.802 0.99 0.33789

Residual standard error: 2.01 on 16 degrees of freedom
Multiple R-squared: 0.125, Adjusted R-squared: -0.039
F-statistic: 0.762 on 3 and 16 DF, p-value: 0.531

Anova from the car package does all the usual tests. If the data were unbalanced the correct tests are the Type II tests that
obey the marginality principle.

Anova(m2)

Type II MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr(>F)

Rate 1 0.618 7.55 3 14 0.003
Additive 1 0.477 4.26 3 14 0.025
Rate:Additive 1 0.223 1.34 3 14 0.302

In this problem all the tests are based on 1 eigenvalue, and hence have the same asymptotic distribution.

# install.packages("effects", repos="http://r-forge.r-project.org")

library(effects)

plot(Effect(c("Rate", "Additive"), m2), rows=1, cols=3, multiline=TRUE, grid=TRUE, ci.style="bars")
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The effects plots suggest a hint of an interaction for Y2; how could you explore this further? Are tests believable?

Testing Linear Hypotheses

The multivariate general linear model is
Y|X = Xβ + E (1)

where Y is n×m, X is n× p, β is p×m and rows of E have Np(0,Σ) distributions.
Consider testing a general linear hypothesis that places restrictions on the coefficient matrix β,

H0 : Lβ = C

where L is a q × p full rank hypothesis matrix, and C is a q ×m matrix of constants, usually zeroes. The sum of squares and
cross-products matrix for this hypothesis is

BH = (Lβ̂ −C)′
[
L(X′X)−1L′

]−1
(Lβ̂ −C)

where β̂ = (X′X)−1X′Y is the ols estimator. Using Cochran’s theorem again, tests are based on the eigenvalues of W−1BH .
For example, consider the Rate:Additive interaction. Using model m2, this corresponds to testing the coefficient for

Rate1:Additive1 = 0, so L = (0, 0, 0, 1),

linearHypothesis(m2, c(0, 0, 0, 1))
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Sum of squares and products for the hypothesis:
Y1 Y2 Y3

Y1 0.0005 0.0165 0.0445
Y2 0.0165 0.5445 1.4685
Y3 0.0445 1.4685 3.9605

Sum of squares and products for error:
Y1 Y2 Y3

Y1 1.764 0.020 -3.070
Y2 0.020 2.628 -0.552
Y3 -3.070 -0.552 64.924

Multivariate Tests:
Df test stat approx F num Df den Df Pr(>F)

Pillai 1 0.2229 1.339 3 14 0.302
Wilks 1 0.7771 1.339 3 14 0.302
Hotelling-Lawley 1 0.2868 1.339 3 14 0.302
Roy 1 0.2868 1.339 3 14 0.302

In model m1, the interaction is given by L = (0,−1,−1, 1),

linearHypothesis(m1, c(0, -1, -1, 1))

Sum of squares and products for the hypothesis:
Y1 Y2 Y3

Y1 0.0005 0.0165 0.0445
Y2 0.0165 0.5445 1.4685
Y3 0.0445 1.4685 3.9605

Sum of squares and products for error:
Y1 Y2 Y3

Y1 1.764 0.020 -3.070
Y2 0.020 2.628 -0.552
Y3 -3.070 -0.552 64.924

Multivariate Tests:
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Df test stat approx F num Df den Df Pr(>F)
Pillai 1 0.2229 1.339 3 14 0.302
Wilks 1 0.7771 1.339 3 14 0.302
Hotelling-Lawley 1 0.2868 1.339 3 14 0.302
Roy 1 0.2868 1.339 3 14 0.302

linearHypothesis has several shortcuts for specifying L: see http://z.umn.edu/ffwmult.

Repeated Measures

You probably already know two methods for the analysis of repeated measures on the same variable on the same subject: using
mixed-effects models with a random subject effects, and using split-plot type analysis of variance with multiple error terms. A
third approach uses the multivariate linear model (1), where the columns of Y are measures of the same variable over time. In
this case hypotheses of the form

H0 : LβP = C

may make sense. Here L is a hypothesis matrix concerning contrasts of columns of β, or between-subject contrasts, while the
m× v matrix P defines contrasts over the repeated measures, or within-subjects contrasts. In this case the BH matrix is

BH = (Lβ̂P−C)′
[
L(X′X)−1L′

]−1
(Lβ̂P−C)

Testing is based on the eigenvalues of W−1BH .
The data in the car data set OBrienKaiser consists of 16 subjects, with between-subjects effects gender with two levels and

treatment with three levels:

xtabs(~ gender + treatment, OBrienKaiser)

treatment
gender control A B

F 2 2 4
M 3 2 3

The file also includes 15 response variables, 5 hourly measurements in a pretest phase, 5 5 hourly measurements in a post test
phase, and finally 5 5 hourly measurements in a follow-up, so there are 15 repeated observations. We create a within-subject
design matrix:

head(OBrienKaiser)
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treatment gender pre.1 pre.2 pre.3 pre.4 pre.5 post.1 post.2 post.3 post.4 post.5 fup.1
1 control M 1 2 4 2 1 3 2 5 3 2 2
2 control M 4 4 5 3 4 2 2 3 5 3 4
3 control M 5 6 5 7 7 4 5 7 5 4 7
4 control F 5 4 7 5 4 2 2 3 5 3 4
5 control F 3 4 6 4 3 6 7 8 6 3 4
6 A M 7 8 7 9 9 9 9 10 8 9 9

fup.2 fup.3 fup.4 fup.5
1 3 2 4 4
2 5 6 4 1
3 6 9 7 6
4 4 5 3 4
5 3 6 4 3
6 10 11 9 6

phase <- factor(rep(c("pretest", "posttest", "followup"), each=5),

levels=c("pretest", "posttest", "followup"))

hour <- ordered(rep(1:5, 3))

idata <- data.frame(phase, hour)

idata

phase hour
1 pretest 1
2 pretest 2
3 pretest 3
4 pretest 4
5 pretest 5
6 posttest 1
7 posttest 2
8 posttest 3
9 posttest 4
10 posttest 5
11 followup 1
12 followup 2
13 followup 3
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14 followup 4
15 followup 5

The within-subject effects are called phase and hour.
We first fit the between-subjects model only:

mod.ok <- lm(cbind(pre.1, pre.2, pre.3, pre.4, pre.5, post.1, post.2, post.3, post.4, post.5,

fup.1, fup.2, fup.3, fup.4, fup.5) ~ treatment*gender, data=OBrienKaiser)

This fit has n = 16, m = 15, and p = 5. Manova cannot be computed because the matrix W has no degrees of freedom. The
Anova function takes additional arguments idata and idesign to specify the within-subject effects:

Anova(mod.ok, idata=idata, idesign=~phase*hour)

Type II Repeated Measures MANOVA Tests: Pillai test statistic
Df test stat approx F num Df den Df Pr(>F)

(Intercept) 1 0.970 318 1 10 6.5e-09
treatment 2 0.481 5 2 10 0.03769
gender 1 0.204 3 1 10 0.14097
treatment:gender 2 0.364 3 2 10 0.10447
phase 1 0.851 26 2 9 0.00019
treatment:phase 2 0.685 3 4 20 0.06674
gender:phase 1 0.043 0 2 9 0.82000
treatment:gender:phase 2 0.311 1 4 20 0.47215
hour 1 0.935 25 4 7 0.00030
treatment:hour 2 0.301 0 8 16 0.92952
gender:hour 1 0.293 1 4 7 0.60237
treatment:gender:hour 2 0.570 1 8 16 0.61319
phase:hour 1 0.550 0 8 3 0.83245
treatment:phase:hour 2 0.664 0 16 8 0.99144
gender:phase:hour 1 0.695 1 8 3 0.62021
treatment:gender:phase:hour 2 0.793 0 16 8 0.97237

Reading the Manova table as usual from bottom to top, only the within-subject main-effects of phase and hour, and possibly
the between-subject treatment main effect seem to be important.

Further details of this example are given by http://z.umn.edu/ffwmult.
For completeness, here is the same problem treated using lmer:
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OBrien.long <- reshape(OBrienKaiser,

varying=c("pre.1", "pre.2", "pre.3", "pre.4", "pre.5", "post.1", "post.2", "post.3",

"post.4", "post.5", "fup.1", "fup.2", "fup.3", "fup.4", "fup.5"),

v.names="score", timevar="phase.hour", direction="long")

OBrien.long$phase <- ordered(c("pre", "post", "fup")[1 + ((OBrien.long$phase.hour - 1) %/% 5)],

levels=c("pre", "post", "fup"))

OBrien.long$hour <- ordered(1 + ((OBrien.long$phase.hour - 1) %% 5))

library(lme4)

l1 <- lmer(score ~ treatment*gender*phase*hour + (1|id), OBrien.long)

Anova(l1)

Analysis of Deviance Table (Type II Wald chisquare tests)

Response: score
Chisq Df Pr(>Chisq)

treatment 9.26 2 0.0097
gender 2.56 1 0.1099
phase 98.14 2 < 2e-16
hour 62.28 4 9.6e-13
treatment:gender 5.71 2 0.0575
treatment:phase 46.09 4 2.4e-09
gender:phase 0.98 2 0.6135
treatment:hour 0.68 8 0.9996
gender:hour 1.50 4 0.8268
phase:hour 6.49 8 0.5921
treatment:gender:phase 5.99 4 0.2000
treatment:gender:hour 4.54 8 0.8050
treatment:phase:hour 3.67 16 0.9994
gender:phase:hour 3.89 8 0.8671
treatment:gender:phase:hour 8.29 16 0.9397

plot(Effect(c("treatment", "phase", "hour"), l1), multiline=TRUE, rows=1, cols=3, grid=TRUE)
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treatment*phase*hour effect plot
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