Stat 8053: Manova (rev November 4, 2013)

Wishart Distribution

1. Suppose $\mathbf{z}_{i} \sim N_{p}(\mathbf{0}, \mathbf{I}), i=1, \ldots, n$. Then we say that

$$
\mathbf{z}_{i} \mathbf{z}_{i}^{\prime} \sim W_{p}(\mathbf{I}, 1)
$$

has a Wishart distribution in p dimensions with covariance matrix \mathbf{I} and with 1 df . The diagonal elements of $\mathbf{z}_{i} \mathbf{z}_{i}^{\prime}$ are all distributed as $\chi^{2}(1)$.
2. Write \mathbf{Z} as an $n \times p$ matrix with rows \mathbf{x}_{i}^{\prime}. If the \mathbf{z}_{i} are independent, then

$$
\mathbf{Z}^{\prime} \mathbf{Z}=\sum_{i=1}^{n} \mathbf{z}_{i} \mathbf{Z}_{i}^{\prime} \sim \sum_{i=1}^{n} W_{p}(\mathbf{I}, 1)=W_{p}(\mathbf{I}, n)
$$

has a Wishart distribution with covariance matrix \mathbf{I} and n degrees of freedom. If $p=1, \sum z_{i}^{2} \sim \chi^{2}(n)$. Also, $\mathrm{E}\left(W_{p}(\mathbf{I}), n\right)=$ n I.
3. Let $\mathbf{Y}=\mathbf{Z} \boldsymbol{\Sigma}^{1 / 2} \sim \mathrm{~N}_{p}(\mathbf{0}, \boldsymbol{\Sigma})$. Then

$$
\begin{aligned}
\mathbf{Y}^{\prime} \mathbf{Y} & \sim W_{p}(\boldsymbol{\Sigma}, n) \\
\mathrm{E}\left(W_{p}(\boldsymbol{\Sigma}, n)\right) & =n \boldsymbol{\Sigma}
\end{aligned}
$$

If $\boldsymbol{\Sigma}^{-1 / 2}$ is any square root of $\boldsymbol{\Sigma}$, then $\boldsymbol{\Sigma}^{-1 / 2} \mathbf{Y} \sim \mathrm{~N}_{p}(\mathbf{0}, \mathbf{I})$, and

$$
\begin{aligned}
\boldsymbol{\Sigma}^{-1 / 2} \mathbf{Y}^{\prime} \mathbf{Y} \boldsymbol{\Sigma}^{-1 / 2^{\prime}} & \sim W_{p}(\mathbf{I}, n) \\
\mathbf{Y}^{\prime} \mathbf{Y} & \sim \boldsymbol{\Sigma}^{1 / 2} W_{p}(\mathbf{I}, n) \boldsymbol{\Sigma}^{1 / 2^{\prime}}
\end{aligned}
$$

If $p=1$, then $\mathbf{Y}^{\prime} \mathbf{Y} \sim \sigma^{2} \chi^{2}(n)$. Like the χ^{2} distributions, the Wishart distribution with non-identity covariance matrix differs from the standard Wishart by multiplication by constants.
4. If \mathbf{A} is $q \times p$, and \mathbf{a} is a $p \times 1$ vector, then

$$
\begin{aligned}
\mathbf{A}\left(\mathbf{Y}^{\prime} \mathbf{Y}\right) \mathbf{A}^{\prime} & \sim W_{q}\left(\mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\prime}, n\right)=\boldsymbol{\Sigma}^{-1 / 2} \mathbf{A}^{\prime} W_{q}(\mathbf{I}, n) \mathbf{A} \boldsymbol{\Sigma}^{-1 / 2^{\prime}} \\
\mathbf{a}^{\prime}\left(\mathbf{Y}^{\prime} \mathbf{Y}\right) \mathbf{a} & \sim\left(\mathbf{a}^{\prime} \boldsymbol{\Sigma} \mathbf{\Sigma}\right) \chi^{2}(n)
\end{aligned}
$$

5. Suppose that $\boldsymbol{\Sigma}$ is a $p \times p$ symmetric matrix. By the Spectral Theorem, we can find a $p \times p$ orthogonal matrix $\boldsymbol{\Gamma}=\left(\boldsymbol{\gamma}_{1}, \ldots, \boldsymbol{\gamma}_{p}\right)$, $\boldsymbol{\Gamma} \boldsymbol{\Gamma}^{\prime}=\boldsymbol{\Gamma}^{\prime} \boldsymbol{\Gamma}=\mathbf{I}$, and a $p \times p$ diagonal matrix $\boldsymbol{\Lambda}$ with non-negative diagonal elements $\lambda_{1}, \ldots, \lambda_{p}$, such that

$$
\begin{aligned}
\boldsymbol{\Sigma} & =\boldsymbol{\Gamma} \boldsymbol{\Lambda} \boldsymbol{\Gamma}^{\prime}=\sum \lambda_{i} \boldsymbol{\gamma}_{i} \boldsymbol{\gamma}_{i}^{\prime} \\
\boldsymbol{\Sigma}^{-1} & =\boldsymbol{\Gamma} \boldsymbol{\Lambda}^{-1} \boldsymbol{\Gamma}^{\prime}=\sum \lambda_{i}^{-1} \boldsymbol{\gamma}_{i} \boldsymbol{\gamma}_{i}^{\prime}
\end{aligned}
$$

where the inverse requires all the $\lambda_{i}>0$.
6. A (not the) square root of $\boldsymbol{\Sigma}$ and its inverse are $\boldsymbol{\Sigma}^{1 / 2}=\boldsymbol{\Gamma} \boldsymbol{\Lambda}^{1 / 2}$ and $\boldsymbol{\Sigma}^{-1 / 2}=\boldsymbol{\Gamma} \boldsymbol{\Lambda}^{-1 / 2}$. The point here is to show that a square root exists and is computable. The γ are eigenvectors and the λ are corresponding eigenvalues. A symmetric square root is given by $\boldsymbol{\Gamma} \boldsymbol{\Lambda}^{1 / 2} \boldsymbol{\Gamma}^{\prime}$.

Hotelling's T^{2}

1. If $\mathbf{y} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then if $\boldsymbol{\Sigma}$ is of full rank, $\boldsymbol{\Sigma}^{-1 / 2}(\mathbf{y}-\boldsymbol{\mu}) \sim N_{p}(\mathbf{0}, \mathbf{I})$, and $(\mathbf{y}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\mathbf{y}-\boldsymbol{\mu}) \sim W_{p}(\mathbf{I}, 1)$.
2. In most problems $\boldsymbol{\Sigma}$ is unknown. Suppose that $\mathbf{M} \sim W_{p}(\boldsymbol{\Sigma}, n)$ is an estimate of $\boldsymbol{\Sigma}$ that is independent of \mathbf{y}. Then

$$
T^{2}=n(\mathbf{y}-\boldsymbol{\mu})^{\prime} \mathbf{M}^{-1}(\mathbf{y}-\boldsymbol{\mu})
$$

Is distributed as Hotelling's $T^{2}(p, n)$ in p dimensions with n degrees of freedom. If $p=1$ then T^{2} is the square of Student's $t(n)$.
3.

$$
T^{2}(p, n)=\frac{n p}{n-p+1} F(p, n-p+1)
$$

so T^{2} has a distribution proportional to a central F distribution, so the F can be used to get significance levels if T^{2} is used for testing.

Cochran's Theorem

Cochran's theorem provides one of many ways to get to Anova and to Manova. Suppose \mathbf{Y} is an $n \times p$ matrix with iid $N_{p}(\mathbf{0}, \boldsymbol{\Sigma})$ rows. Also suppose that \mathbf{C} is any $n \times n$ symmetric matrix. Define $\mathbf{Y}^{\prime} \mathbf{C Y}$ to be a sum of squares and cross products matrix. With another application of the spectral theorem, we can always write $\mathbf{C}=\sum \delta_{i} \gamma_{i} \gamma_{i}^{\prime}$ where the δ_{i} are nonnegative eigenvalues and the $\boldsymbol{\gamma}_{i}$ are eigenvectors.

1. For any \mathbf{C},

$$
\begin{aligned}
\mathbf{Y}^{\prime} \mathbf{C Y} & =\mathbf{Y}^{\prime}\left(\sum \delta_{i} \gamma_{i} \gamma_{i}^{\prime}\right) \mathbf{Y}=\sum \delta_{i}\left(\mathbf{Y}^{\prime} \gamma_{i} \gamma_{i}^{\prime} \mathbf{Y}\right) \\
& \sim \sum_{i=1}^{n} \delta_{i} W_{p}(\Sigma, 1)
\end{aligned}
$$

which is a weighted linear combination of Wishart random variables with nonnegative weights. For $p=1$, we get a weighted sum of central $\chi^{2}(1) \mathrm{s}$.
2. We will have

$$
\mathbf{Y}^{\prime} \mathbf{C Y} \sim W_{p}(\boldsymbol{\Sigma}, r)
$$

if and only if one of the following three equivalent conditions holds: (a) all δ_{i} equal either 0 or 1 ; (b) $\mathbf{C}=\mathbf{C}^{\prime}=\mathbf{C}^{2}$; (c) \mathbf{C} is a projection matrix. Here $r=\sum \delta_{i}$ is the rank of the matrix \mathbf{C}.
3. The two sums of squares and cross products matrices $\mathbf{Y}^{\prime} \mathbf{C Y}$ and $\mathbf{Y}^{\prime} \mathbf{B Y}$ have independent Wishart distributions if and only if \mathbf{B} and \mathbf{C} are projections and $\mathbf{C B}=\mathbf{0}$. This is the basis for both Anova and for Manova.

Applying Cochran's Theorem: One-sample Test

Suppose \mathbf{y}_{i} are iid, $N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

1. Define $\mathbf{J}=\mathbf{1 1}^{\prime} / n$ be the projection on the column of 1^{\prime} 's, $\mathbf{J}=\mathbf{J}^{\prime}=\mathbf{J}^{2}$. Then $\mathbf{J Y}$ returns a matrix with all rows given by $\overline{\mathbf{y}}^{\prime}$, the sample mean vector. The matrix $\mathbf{Y}^{\prime} \mathbf{J Y}=n \overline{\mathbf{y}} \overline{\mathbf{y}}^{\prime}$. In the $p=1$ case, this is $n \bar{y}^{2}$. $\mathbf{Y}^{\prime} \mathbf{J} \mathbf{Y}$ does not have a Wishart distribution unless $\boldsymbol{\mu}=\mathbf{0}$.
2. $(\mathbf{I}-\mathbf{J})=(\mathbf{I}-\mathbf{J})^{\prime}=(\mathbf{I}-\mathbf{J})^{2}$ is also a projection, and $(\mathbf{I}-\mathbf{J}) \mathbf{Y}$ returns a matrix like \mathbf{Y} but centered by subtracting the mean $\overline{\mathbf{y}}$ from each row.
3. $(\mathbf{I}-\mathbf{J}) \mathbf{Y}$ has mean $\mathbf{0}$, and the corrected sum of squares and cross products matrix.

$$
(n-1) \mathbf{S}_{u}=\mathbf{Y}^{\prime}(\mathbf{I}-\mathbf{J}) \mathbf{Y} \sim W_{p}(\boldsymbol{\Sigma}, n-1)
$$

and so \mathbf{S}_{u} is an unbiased estimate of $\boldsymbol{\Sigma}$. Since $\mathbf{J}(\mathbf{I}-\mathbf{J})=\mathbf{0}, \mathbf{S}_{u}$ and $\overline{\mathbf{y}}$ are independent. The textbook defines $\mathbf{S}=$ $((n-1) / n) \mathbf{S}$.
4. Consider a test of $\boldsymbol{\mu}=\boldsymbol{\mu}_{0}$ versus $\boldsymbol{\mu} \neq \boldsymbol{\mu}_{0}$. Compute

$$
T^{2}=n\left(\overline{\mathbf{y}}-\boldsymbol{\mu}_{0}\right)^{\prime} \mathbf{S}_{u}^{-1}\left(\overline{\mathbf{y}}-\boldsymbol{\mu}_{0}\right)
$$

Then $T^{2} \sim T^{2}(p, n-1)=[(n-1) p /(n-p)] F(p, n-p)$.

More generally...

Suppose we have the general multivariate linear model.

$$
\begin{aligned}
\mathbf{Y} \mid \mathbf{X} & =\mathbf{X} \boldsymbol{\beta}+\mathbf{E} \\
& =\mathbf{1} \boldsymbol{\beta}_{0}+\mathbf{X}_{1} \boldsymbol{\beta}_{1}^{\prime}+\mathbf{X}_{2} \boldsymbol{\beta}_{2}+\mathbf{E}
\end{aligned}
$$

Here \mathbf{Y} is an $n \times m$ data matrix of responses for the m response variables, $\left(\mathbf{1}, \mathbf{X}_{1}\right)$ is $n \times q$ for the first q columns of \mathbf{X}, and \mathbf{X}_{2} is the remaining columns. The $p \times m$ matrix $\boldsymbol{\beta}$ has first row β_{0}^{\prime}, next q rows $\boldsymbol{\beta}_{1}$ and remaining rows $\boldsymbol{\beta}_{2}$. The error matrix \mathbf{E} has iid $N_{p}(0, \boldsymbol{\Sigma})$ elements.

Let \mathbf{P}_{1} be the projection on $\left(\mathbf{1}, \mathbf{X}_{1}\right), \mathbf{P}_{12}$ the projection on \mathbf{X}, and so $\mathbf{P}_{2 \mid 1}=\mathbf{P}_{12}-\mathbf{P}_{1}$ is the projection on the part of \mathbf{X}_{2} orthogonal to $\left(\mathbf{1}, \mathbf{X}_{1}\right)$, and $\mathbf{P}_{1} \mathbf{P}_{2 \mid 1}=\mathbf{0}$. In this over-brief presentation, we skip general methods for computing the \mathbf{P}. Then

1. Under the hypothesis that $\boldsymbol{\beta}_{2}=\mathbf{0}, \mathbf{B}=\mathbf{Y}^{\prime} \mathbf{P}_{2 \mid 1}^{\prime} \mathbf{Y} \sim W_{p}(\boldsymbol{\Sigma}, p-q)$. The matrix \mathbf{B} is the between sum of squares and cross-products.
2. For any value of $\boldsymbol{\beta}, \mathbf{W}=\mathbf{Y}^{\prime}\left(\mathbf{I}-\mathbf{P}_{12}\right)^{\prime} \mathbf{Y} \sim W_{p}(\boldsymbol{\Sigma}, n-p)$. The matrix \mathbf{W} is the within sum of squares and cross-products.
3. A test of $\boldsymbol{\beta}=\mathbf{0}$ is then based of "comparing" these two Wishart matrices, via $\mathbf{W}^{-1} \mathbf{B}$.

One-way Multivariate Analysis of Variance

For the one-way Manova model with p groups, $\mathbf{X}=\left(\mathbf{1}, \mathbf{X}_{2}\right)$, where as in Anova \mathbf{X}_{2} is some basis for the $p-1$ dimensional space. For this model, \mathbf{X}_{1} is empty. Using the R parametrization, $\mathbf{X}_{2}(i, j)=1$ if the $i t h$ observation is in group $j+1$ for $j=2, \ldots, p$, but as in Anova the results here do not depend on parameterization, in general as long as the marginality property is followed. We want to test the coefficients for $\mathbf{X}_{2}=\mathbf{0}$.

The projection on the whole space is $P_{12}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$, while the projection on the space spanned by $\mathbf{1}$ is \mathbf{J}. Then $\mathbf{P}_{2 \mid 1}=\mathbf{P}_{X}-\mathbf{J}$ is the projection on the columns of \mathbf{X}_{2} orthogonal to \mathbf{J}.

Write $\overline{\mathbf{y}}_{i}$ for the mean in the n_{i} observations in the i-th group; $\overline{\mathbf{y}}=\sum n_{i} \overline{\mathbf{y}}_{i} / \sum n_{i}$, then the multivariate analysis of variance, Manova, is

Source	df	SS
Mean	1	$\mathbf{Y}^{\prime} \mathbf{J Y}=n \overline{\mathbf{y}} \overline{\mathbf{y}}^{\prime}$
Groups	$d_{2 \mid 1}=g-1$	$\mathbf{B}=\mathbf{Y}^{\prime} \mathbf{P}_{2 \mid 1} \mathbf{Y}=\sum n_{i}\left(\overline{\mathbf{y}}_{i}-\overline{\mathbf{y}}\right)\left(\overline{\mathbf{y}}_{i}-\overline{\mathbf{y}}\right)^{\prime}$
Error	$d=\sum\left(n_{i}-1\right)$	$\mathbf{W}=\mathbf{Y}^{\prime}\left(\mathbf{I}-\mathbf{P}_{12}\right) \mathbf{Y}=\sum \sum\left(x_{i j}-\overline{\mathbf{y}}_{i}\right)\left(x_{i j}-\overline{\mathbf{y}}_{i}\right)^{\prime}$

$\mathbf{S}_{u}=\mathbf{W} /\left(\sum\left(n_{i}-1\right)\right)$ is the unbiased estimate of the common $\boldsymbol{\Sigma}$.

In the $p=1$ case the likelihood ratio test of all group means equal is an F test, but the multivariate test is not an exact F-test, even under normality. The likelihood ratio test can be shown to be

$$
\Lambda=\frac{|\mathbf{W}|}{|\mathbf{W}+\mathbf{B}|}=\frac{1}{\left|\mathbf{I}+\mathbf{W}^{-1} \mathbf{B}\right|}
$$

where $|\mathbf{A}|$ is the determinant of \mathbf{A}, and we reject for small values of $\Lambda . \Lambda$ depends on the data only through the eignevalues of the matrix $\mathbf{W}^{-1} \mathbf{B}$. If $\lambda_{1} \geq \ldots \lambda_{p}$ are the eigenvalues of $\mathbf{W}^{-1} \mathbf{B}$, then

$$
\Lambda=\prod_{i=1}^{p} \frac{1}{1+\lambda_{i}}
$$

The distribution of Λ depends on the distribution of the eigenvalues. Here are the usual methods of obtaining p-values.

1. Asymptotic: $-2 \log (\Lambda) \rightarrow \chi^{2}\left[p d_{2 \mid 1}\right.$.
2. Bartlett corrected with $n=\sum n_{i}$:

$$
-\left(n-1+\frac{p+d_{2 \mid 1}+1}{2}\right) \log (\Lambda) \rightarrow \chi^{2}\left(p d_{2 \mid 1}\right)
$$

3. The exact distribution is available in special cases with $d_{2 \mid 1} p \leq 3$.
4. Replace Λ by a different function of the λ_{s} but still use asymptotics to get p-values. The Lawley-Hotelling method uses $\operatorname{tr}\left(\mathbf{W}^{-1} \mathbf{B}\right)=\sum \lambda_{i}$. A small-sample F-approximation is used to get p-values.
5. Pillai's trace criterion appears to be the most popular and is often the default in computer programs, $\operatorname{tr}\left(\mathbf{B}(\mathbf{B}+\mathbf{W})^{-1}\right)=$ $\sum\left(\lambda_{i} /\left(1+\lambda_{i}\right)\right)$. A small-sample F-approximation is used to get p-values.
6. Roy's largest root is the maximum eigenvalue of $\mathbf{W}(\mathbf{B}+\mathbf{W})^{-1}=\lambda_{1} /\left(1+\lambda_{1}\right)$. It is equivalent to testing all possible univariate Anova's with response \mathbf{Y}^{\prime} a for all \mathbf{a}, and then computing the p-value based on the maximum of all these tests. The distribution of this statistic is known and tables (or algorithms to compute tables) are available.

We use as an example data from Johnson and Wichern, Applied Multivariate Statistical Analysis, 6th Ed., p. 318. The data are concerned with a two-factor experiment done to study the properties of extruded plastic film. The two factors are rate of extrusion and amount of additive, both at two levels. There are three response variables, $y_{1}=$ tear resistance, $y_{2}=$ gloss, and $y_{3}=$ opacity. These three variables are on completely different scales and in different units.
loc <- "http://www.stat.umn.edu/~sandy/courses/8053/Data/Wichern_data/T6-4.dat" data <- read.table (url(loc))
colnames(data) <- c("Rate", "Additive", "Y1", "Y2", "Y3")
data\$Rate <- factor (data\$Rate)
data\$Additive <- factor (data\$Additive)
data\$RateAdd <- factor (with(data, paste("R", Rate, "A", Additive, sep=""))) data

	Rate	Additive	Y1	Y2	Y3	RateAdd
1	0	0	6.5	9.5	4.4	R0A0
2	0	0	6.2	9.9	6.4	R0A0
3	0	0	5.8	9.6	3.0	R0A0
4	0	0	6.5	9.6	4.1	R0A0
5	0	0	6.5	9.2	0.8	R0A0
6	0	1	6.9	9.1	5.7	R0A1
7	0	1	7.2	10.0	2.0	R0A1
8	0	1	6.9	9.9	3.9	R0A1
9	0	1	6.1	9.5	1.9	R0A1
10	0	1	6.3	9.4	5.7	R0A1
11	1	0	6.7	9.1	2.8	R1A0
12	1	0	6.6	9.3	4.1	R1A0
13	1	0	7.2	8.3	3.8	R1A0
14	1	0	7.1	8.4	1.6	R1A0
15	1	0	6.8	8.5	3.4	R1A0
16	1	1	7.1	9.2	8.4	R1A1
17	1	1	7.0	8.8	5.2	R1A1
18	1	1	7.2	9.7	6.9	R1A1
19	1	1	7.5	10.1	2.7	R1A1
20	1	1	7.6	9.2	1.9	R1A1

library (car)
print(scatterplotMatrix(~ Y1 + Y2 + Y3 | RateAdd, data=data, smooth=FALSE, reg.line=FALSE, ellipse=TRUE, levels= c(0.5), by.groups=TRUE, diagonal="none"))

The model assumes that the within group covariance matrices are equal. The ellipses are contours of constant probability based on the normal distribution taking the responses two at a time. Within a plot all the ellipses should be of the same shape and orientation, something not apparent here. However, the sample sizes are much to small to make much of this. Under the NH the larger dots on each plot should be the same. Y_{1} seems to show larger differences than do the other two responses.

One-sample test

Let's start by a test that all the variable means are equal to zero, effectively a one-sample test:

```
# One sample test:
ybar <- colMeans(data[, 3:5])
n <- dim(data)[1] # sample size
p <- 3 # dimension of response
```

```
S_u <- var(data[, 3:5])
T2 <- n * t(ybar) %*% solve(S_u) %*% (ybar)
F<- (n - p)/((n-1)*p) * T2
c(T2=T2, F=F)
```

T 2	F
12686	3783

You can get lm to do the same test:

```
anova(m0 <- lm(cbind(Y1, Y2, Y3) ~ 1, data))
Analysis of Variance Table
\begin{tabular}{rrrrrr} 
& Df Pillai & approx \(F\) & num \(\operatorname{Df}\) den \(\operatorname{Df} \operatorname{Pr}(>F)\) \\
(Intercept) & 1 & 0.999 & 3783 & 3 & \(17<2 e-16\)
\end{tabular}
Residuals 19
```

The computation by hand matches the F for the Pillai test because there is only one eigenvalue, so all tests are equivalent. A slight modification is to test $\boldsymbol{\mu}=\mathbf{c}$ for some vector \mathbf{c} :

```
C <- c(7, 9, 4)
anova(update(m0, I(cbind(Y1, Y2, Y3) - outer(rep(1, n), C)) ~ .))
Analysis of Variance Table
\begin{tabular}{lrrrrrr} 
& Df Pillai & approx \(F\) & num \(\operatorname{Df}\) den & Df & \(\operatorname{Pr}(>F)\) \\
(Intercept) & 1 & 0.348 & 3.02 & 3 & 17 & 0.059
\end{tabular}
Residuals 19
```

I set \mathbf{c} to equal round(xbar).

One-way Manova

Let's fit a one-way Manova with four levels created all possible combinations of the factors:

```
(m1 <- lm(cbind(Y1, Y2, Y3) ~ RateAdd, data))
```

Call:
lm(formula $=$ cbind(Y1, Y2, Y3) ~ RateAdd, data $=$ data)

Coefficients:

	Y1	Y2	Y3
(Intercept)	6.30	9.56	3.74
RateAddR0A1	0.38	0.02	0.10
RateAddR1A0	0.58	-0.84	-0.60
RateAddR1A1	0.98	-0.16	1.28

The left-side of the model is a matrix, not a data-frame, with three columns; otherwise the use of 1 m is the same as for univariate models. The printed output is a table of coefficients for each of the responses. The summary method is illustrated later in this handout.

Manova is computed using the Anova function in car

```
library(car)
a1 <- Anova(m1)
summary(a1)
Type II MANOVA Tests:
Sum of squares and products for error:
            Y1 Y2 Y3
Y1 1.764 0.020 -3.070
Y2 0.020 2.628 -0.552
Y3 -3.070 -0.552 64.924
```

Term: RateAdd
Sum of squares and products for the hypothesis:
Y1 Y2 Y3
Y1 2.5015-0.8055 2.831
Y2 -0.8055 2.4575 2.461
$\begin{array}{llll}Y 3 & 2.8305 & 2.4615 & 9.282\end{array}$

Multivariate	Tests: RateAdd					
	Df test stat	approx F	num Df den Df	$\operatorname{Pr}(>F)$		
Pillai	3	1.146	3.295	9	48.00	0.003350
Wilks	3	0.178	3.925	9	34.22	0.001663
Hotelling-Lawley	3	2.817	3.965	9	38.00	0.001245
Roy	3	1.870	9.971	3	16.00	0.000603

The "Sum of squares and products for error" is the matrix \mathbf{W} and "Sum of squares and products for the hypothesis" is \mathbf{B}. The tests are based on the eigenvalues of $\mathbf{W}^{-1} \mathbf{B}$.

The usual print method for Anova uses some of this output:

```
print(a1, test.statistic="Pillai")
Type II MANOVA Tests: Pillai test statistic
    Df test stat approx F num Df den Df Pr (>F)
RateAdd 3 1.15 3.29 9 48 0.0034
```


Two-way Manova

```
summary(m2 <- lm(cbind(Y1, Y2, Y3) ~ Rate*Additive, data))
```

Response Y1 :
Call:
lm(formula $=$ Y1 ~ Rate * Additive, data = data)
Residuals:

Min	12	Median	32	Max
-0.580	-0.205	0.060	0.220	0.520

Coefficients:

	Estimate	Std. Error	value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	6.300	0.148	42.43	$<2 e-16$
Rate1	0.580	0.210	2.76	0.014
Additive1	0.380	0.210	1.81	0.089

```
Rate1:Additive1 0.020 0.297 0.07 0.947
Residual standard error: 0.332 on 16 degrees of freedom
Multiple R-squared: 0.586, Adjusted R-squared: 0.509
F-statistic: 7.56 on 3 and 16 DF, p-value: 0.00227
Response Y2 :
Call:
lm(formula = Y2 ~ Rate * Additive, data = data)
Residuals:
    Min 12 Median 32 Max
-0.600 -0.245-0.070 0.325 0.700
Coefficients:
\begin{tabular}{lrrrr} 
& Estimate & Std. Error & value & Pr \((>|t|)\) \\
(Intercept) & 9.560 & 0.181 & 52.75 & \(<2 e-16\) \\
Rate1 & -0.840 & 0.256 & -3.28 & 0.0047 \\
Additive1 & 0.020 & 0.256 & 0.08 & 0.9388 \\
Ratel:Additive1 & 0.660 & 0.362 & 1.82 & 0.0874
\end{tabular}
Residual standard error: 0.405 on 16 degrees of freedom
Multiple R-squared: 0.483, Adjusted R-squared: 0.386
F-statistic: 4.99 on 3 and 16 DF, p-value: 0.0125
Response Y3 :
Call:
lm(formula = Y3 ~ Rate * Additive, data = data)
Residuals:
    Min 1Q Median 3Q Max
```

Coefficients:

	Estimate Std. Error t value $\operatorname{Pr}(>\|t\|)$			
(Intercept)	3.740	0.901	4.15	0.00075
Rate1	-0.600	1.274	-0.47	0.64403
Additive1	0.100	1.274	0.08	0.93841
Ratel:Additive1	1.780	1.802	0.99	0.33789

```
Residual standard error: 2.01 on 16 degrees of freedom
```

Multiple R-squared: 0.125, Adjusted R-squared: -0.039
F-statistic: 0.762 on 3 and 16 DF, p-value: 0.531

Anova from the car package does all the usual tests. If the data were unbalanced the correct tests are the Type II tests that obey the marginality principle.

Anova(m2)

| Type II MANOVA Tests: Pillai test statistic | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | Df test stat approx F | num Df den | Df | $\operatorname{Pr}(>F)$ | | |
| Rate | 1 | 0.618 | 7.55 | 3 | 14 | 0.003 |
| Additive | 1 | 0.477 | 4.26 | 3 | 14 | 0.025 |
| Rate:Additive | 1 | 0.223 | 1.34 | 3 | 14 | 0.302 |

In this problem all the tests are based on 1 eigenvalue, and hence have the same asymptotic distribution.

```
# install.packages("effects", repos="http://r-forge.r-project.org")
library(effects)
plot(Effect(c("Rate", "Additive"), m2), rows=1, cols=3, multiline=TRUE, grid=TRUE, ci.style="bars")
```


The effects plots suggest a hint of an interaction for Y2; how could you explore this further? Are tests believable?

Testing Linear Hypotheses

The multivariate general linear model is

$$
\begin{equation*}
\mathbf{Y} \mid \mathbf{X}=\mathbf{X} \boldsymbol{\beta}+\mathbf{E} \tag{1}
\end{equation*}
$$

where \mathbf{Y} is $n \times m, \mathbf{X}$ is $n \times p, \boldsymbol{\beta}$ is $p \times m$ and rows of \mathbf{E} have $\mathrm{N}_{p}(\mathbf{0}, \boldsymbol{\Sigma})$ distributions.
Consider testing a general linear hypothesis that places restrictions on the coefficient matrix $\boldsymbol{\beta}$,

$$
\mathrm{H}_{0}: \mathbf{L} \boldsymbol{\beta}=\mathbf{C}
$$

where \mathbf{L} is a $q \times p$ full rank hypothesis matrix, and \mathbf{C} is a $q \times m$ matrix of constants, usually zeroes. The sum of squares and cross-products matrix for this hypothesis is

$$
\mathbf{B}_{H}=(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{C})^{\prime}\left[\mathbf{L}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{L}^{\prime}\right]^{-1}(\mathbf{L} \hat{\boldsymbol{\beta}}-\mathbf{C})
$$

where $\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}$ is the ols estimator. Using Cochran's theorem again, tests are based on the eigenvalues of $\mathbf{W}^{-1} \mathbf{B}_{H}$.
For example, consider the Rate:Additive interaction. Using model m 2 , this corresponds to testing the coefficient for Rate1:Additive1 $=0$, so $\mathbf{L}=(0,0,0,1)$,
linearHypothesis(m2, c(0, 0, 0, 1))

In model m 1 , the interaction is given by $\mathbf{L}=(0,-1,-1,1)$,
linearHypothesis(m1, c(0, $-1,-1,1)$)
Sum of squares and products for the hypothesis:
Y1 Y2 Y3
Y1 0.00050 .01650 .0445
Y2 $0.0165 \quad 0.54451 .4685$
Y3 $0.04451 .4685 \quad 3.9605$

Sum of squares and products for error:
$\begin{array}{lll}Y 1 & Y 2 & Y 3\end{array}$
$\begin{array}{llll}\mathrm{Y} 1 & 1.764 \quad 0.020 & -3.070\end{array}$
$\begin{array}{llll}\mathrm{Y} 2 & 0.020 & 2.628 & -0.552\end{array}$
Y3 -3.070 -0.552 64.924

Multivariate Tests:

| | Df test stat approx F | num Df den Df Pr $(>F)$ | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Pillai | 1 | 0.2229 | 1.339 | 3 | 14 | 0.302 |
| Wilks | 1 | 0.7771 | 1.339 | 3 | 14 | 0.302 |
| Hotelling-Lawley | 1 | 0.2868 | 1.339 | 3 | 14 | 0.302 |
| Roy | 1 | 0.2868 | 1.339 | 3 | 14 | 0.302 |

linearHypothesis has several shortcuts for specifying \mathbf{L} : see http://z.umn.edu/ffwmult.

Repeated Measures

You probably already know two methods for the analysis of repeated measures on the same variable on the same subject: using mixed-effects models with a random subject effects, and using split-plot type analysis of variance with multiple error terms. A third approach uses the multivariate linear model (1), where the columns of \mathbf{Y} are measures of the same variable over time. In this case hypotheses of the form

$$
\mathrm{H}_{0}: \mathbf{L} \boldsymbol{\beta} \mathbf{P}=\mathbf{C}
$$

may make sense. Here \mathbf{L} is a hypothesis matrix concerning contrasts of columns of $\boldsymbol{\beta}$, or between-subject contrasts, while the $m \times v$ matrix \mathbf{P} defines contrasts over the repeated measures, or within-subjects contrasts. In this case the \mathbf{B}_{H} matrix is

$$
\mathbf{B}_{H}=(\mathbf{L} \hat{\boldsymbol{\beta}} \mathbf{P}-\mathbf{C})^{\prime}\left[\mathbf{L}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{L}^{\prime}\right]^{-1}(\mathbf{L} \hat{\boldsymbol{\beta}} \mathbf{P}-\mathbf{C})
$$

Testing is based on the eigenvalues of $\mathbf{W}^{-1} \mathbf{B}_{H}$.
The data in the car data set OBrienKaiser consists of 16 subjects, with between-subjects effects gender with two levels and treatment with three levels:

```
xtabs(~ gender + treatment, OBrienKaiser)
    treatment
gender control A B
    F 2 2 4
    M 3 2 3
```

The file also includes 15 response variables, 5 hourly measurements in a pretest phase, 55 hourly measurements in a post test phase, and finally 55 hourly measurements in a follow-up, so there are 15 repeated observations. We create a within-subject design matrix:

```
head(OBrienKaiser)
```

1	control	gender M	pre. 1	pre. 2	pre. 3	pre. 4	1	3	2	5	3	2	2
2	control	M	4	4	5	3	4	2	2	3	5	3	4
3	control	M	5	6	5	7	7	4	5	7	5	4	7
4	control	F	5	4	7	5	4	2	2	3	5	3	4
5	control	F	3	4	6	4	3	6	7	8	6	3	4
6	A	M	7	8	7	9	9	9	9	10	8	9	9
	fup. 2 fup.	3 fup. 4	4 fup. 5										
1	3	24	4	4									
2	5	$6 \quad 4$	41										
3	6	97	76	6									
4	4	53	34	4									
5	3	6 - 4	43	3									
6	101	119	96	6									

```
phase <- factor(rep(c("pretest", "posttest", "followup"), each=5),
    levels=c("pretest", "posttest", "followup"))
hour <- ordered(rep(1:5, 3))
idata <- data.frame(phase, hour)
idata
```

phase	hour
pretest	1
pretest	2
pretest	3
pretest	4
pretest	5
posttest	1
posttest	2
posttest	3
posttest	4
posttest	5
followup	1
followup	2
followup	3

```
1 4 ~ f o l l o w u p ~ 4 ~
15 followup 5
```

The within-subject effects are called phase and hour.
We first fit the between-subjects model only:
mod.ok <- lm(cbind(pre.1, pre.2, pre.3, pre.4, pre.5, post.1, post.2, post.3, post.4, post.5, fup.1, fup.2, fup.3, fup.4, fup.5) ~ treatment*gender, data=OBrienKaiser)

This fit has $n=16, m=15$, and $p=5$. Manova cannot be computed because the matrix \mathbf{W} has no degrees of freedom. The Anova function takes additional arguments idata and idesign to specify the within-subject effects:

Anova(mod.ok, idata=idata, idesign=~phase*hour)

Reading the Manova table as usual from bottom to top, only the within-subject main-effects of phase and hour, and possibly the between-subject treatment main effect seem to be important.

Further details of this example are given by http://z.umn.edu/ffwmult.
For completeness, here is the same problem treated using lmer:

```
OBrien.long <- reshape(OBrienKaiser,
    varying=c("pre.1", "pre.2", "pre.3", "pre.4", "pre.5", "post.1", "post.2", "post.3",
            "post.4", "post.5", "fup.1", "fup.2", "fup.3", "fup.4", "fup.5"),
    v.names="score", timevar="phase.hour", direction="long")
    OBrien.long$phase <- ordered(c("pre", "post", "fup")[1 + ((OBrien.long$phase.hour - 1) %/% 5)],
                        levels=c("pre", "post", "fup"))
    OBrien.long$hour <- ordered(1 + ((OBrien.long$phase.hour - 1) %% 5))
    library(lme4)
    l1 <- lmer(score ~ treatment*gender*phase*hour + (1|id), OBrien.long)
    Anova(l1)
Analysis of Deviance Table (Type II Wald chisquare tests)
Response: score
treatment
gender
phase
hour
treatment:gender
treatment:phase
gender:phase
treatment:hour
gender:hour
phase:hour
treatment:gender:phase
treatment:gender:hour
treatment:phase:hour
gender:phase:hour
treatment:gender:phase:hour
\begin{tabular}{rrr} 
Chisq & Df & Pr (>Chisq) \\
9.26 & 2 & 0.0097 \\
2.56 & 1 & 0.1099 \\
98.14 & 2 & \(<2 e-16\) \\
62.28 & 4 & \(9.6 e-13\) \\
5.71 & 2 & 0.0575 \\
46.09 & 4 & \(2.4 e-09\) \\
0.98 & 2 & 0.6135 \\
0.68 & 8 & 0.9996 \\
1.50 & 4 & 0.8268 \\
6.49 & 8 & 0.5921 \\
5.99 & 4 & 0.2000 \\
4.54 & 8 & 0.8050 \\
3.67 & 16 & 0.9994 \\
3.89 & 8 & 0.8671 \\
8.29 & 16 & 0.9397
\end{tabular}
plot(Effect(c("treatment", "phase", "hour"), l1), multiline=TRUE, rows=1, cols=3, grid=TRUE)
```

treatment*phase*hour effect plot

