
Stat 8053, Fall 2013: Latent Class Analysis

Generalities

j level of the latent factor, j = 1, . . . , K
i the ith manifest variable, i = 1, . . . , p, also

a factor with 2 levels in this handout
h subject number, h = 1, . . . , n
γj fraction of population in level j of the la-

tent factor
πij probability of correct response on manifest

variable i for an individual in latent cate-
gory j

xh p × 1 response vectors for the p manifest
variables for subject h

1. We observe p manifest variables x1, . . . , xp. Each of the manifest variables is categorical,
such as the response to a question, the presence/absence of a state, and so on. Suppose
the j-th variable has mj levels. Example: The manifest variables are p exam questions.
Question j has mj = 2 possible responses, of which one is correct and the other is
incorrect.

2. We hypothesize the existence of a latent categorical variable y with K ≥ 2 levels. The
big idea is: Each level of y defines a population of subjects. Conditioning on level of
the latent variable, the manifest variables are independent : (x1 x2 · · · xp)|y. This
replaces the possibly complex association among the manifest variables with a simple
classification. Example: Exam takers are of 2 types: those who have mastered the ma-
terial and those who have not mastered the material. Students who have mastered the
material may still get some of the questions wrong, but their responses are independent.
Similarly, for the other class we have complete independence. We would further expect
that the probability of correct response on a question depends on both the difficulty of
the question and on class membership, so the students who have mastered the material
would have higher probabilities than those who have not mastered it.

This approach is certainly not appropriate for understanding the structure in all contingency
tables, depending on the xj. This model seems most appropriate when the manifest variables
xi are measuring the aspects of the same thing. As a different example, people surveyed in
a questionnaire may answer a set of p questions about their attitudes toward about various
government programs, and we could hypothesize that subjects can be classified into a number
of levels of a latent variable so that given their class membership responses are independent.

The Set Up

1. The latent variable y has K classes, and suppose for an individual in the population
the prior probability of class membership is P (y = j) = γj, with

∑
γj = 1.
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2. For simplicity here, suppose that all the manifest variables are binary. The extension to
manifest variables with more categories requires only a little more notation. Let πij be
the probability that a person in latent category j gives a correct response on manifest
variable i. If xi = 1 for a correct response and xi = 0 for an incorrect response, then
according to the model

f(x|y = j) =

p∏
i=1

πxi
ij (1− πij)1−xi (1)

3. The unconditional distribution is

f(x) =
K∑
j=1

{
γj

p∏
i=1

πxi
ij (1− πij)1−xi

}
(2)

Suppose we sample at random from a population, which implies that on average the fraction
of subjects in class j estimates γ)j. With this crucial assumption, all we need is (2). If we
have n observations, then the log-likelihood is

logL(θ) = log

(
n∏

h=1

f(xh)

)
(3)

where θ consists of the γs (K−1 free parameters) and the {πij} (Kp parameters). From this
we can find estimates using an appropriate maximizing method like Newton-Raphson, or the
EM procedure to be outlined shortly.

We may wish to assign observations to the latent classes. Let h index the current subject
to be assigned. For j = 1, . . . , K, by Bayes’ theorem

h(j|xh) =
f(xh|y = j)

f(xh)

=
γj
[∏

πxhi
ij (1− πij)1−xhi

]
f(xh)

(4)

To make a “hard” assignment, assign i to level j if j = arg max [h(j|xi)], with estimates
replacing parameters.

ML estimation

The log-likelihood (3) can be maximized directly using Newton-Raphson subject the the
constraint that

∑
γ̂j = 1. Because this is a special case of more complex models, an EM al-

gorithm is used. This is an alternative algorithm with repeated applications of an Expectation
step and a Maximization step; a student will present later in the course a talk on this al-
gorthim. We differentiate logL with respect to the parameters and solve to get estimating
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equations. We skip the details, and get the following.

γ̂j =
n∑

h=1

h(j|xh)/n, i = 1, . . . , K (5)

π̂ij =
1

nγ̂j

n∑
h=1

xihh(j|xh), i = 1, . . . , K, j = 1, . . . , p (6)

Equation (5) is the estimated fraction of observations allocated to latent class j, while (6) is
the fraction of correct answers to manifest variable i in latent class j.

Here is the iterative procedure:

1. Choose starting values for the conditional probabilities (4).

2. Use (5) and (6) to update parameter estimates. This is the M step; in this case there
is a closed-form maximization so this is really fast.

3. Substitute the estimates into (4) to get improved estimates of the conditional proba-
bilities. This is imputing values for the unobserved allocation of individuals to levels of
the latent variable, and is the E step.

4. Repeat steps 2–3 until convergence.

Tidbits

1. The EM algorithm generally has linear convergence, meaning that many, hundreds or
even thousands, of iterations can be required. In this example the iterations all have
closed form and are fast.

2. logL need not be unimodal, and so local maxima are possible. Several random starts
are recommended.

3. SEs are from the inverse of the negative Fisher Information, by evaluating minus the
second derivatives of the logL evaluated at the mle and inverting.

4. Likelihood ratio tests are available for the number of classes. If a model fits the like-
lihood ratio test is almost the same as testing (x1 · · · xp)|ŷ, where ŷ is the “hard
allocation of units to levels of the latent variable. Presumably other model selection
criteria exist/could be developed.

5. All this easily extends to items with more than 2 categories for the manifest variables.

6. Extends to regression, in which γj = γj(zh) for some vector of covariates zh.
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Example 1

To get started, I’ll work with simulated data and set

� K = 2, γ = (0.7, .03)′, so 70% of subjects on average are in class 1.

� Set p = 4 manifest variables.

� All the πi1 = 0.9 and all the πi2 = 0.3, so for subjects in class 1 the total number of
correct answers is Bn(4, 0.9) and in the other class the number of correct answers is
Bn(4, 0.3).

gam <- c(0.7, 0.3)

pr <- c(0.9, 0.3)

p <- 4

Next, set n = 400, and generate the “data”:

n <- 400

set.seed(567)

class <- ifelse( runif(n) > gam[1], 2, 1) # assign rows to classes

data <- matrix(runif(n*p), nrow=n, ncol=p) # initialize

data <- t(apply(cbind(class, data), 1, function(x){ # by roww

prob <- pr[x[1]]

ifelse(x[-1] > prob, 2, 1)

}))

data <- as.data.frame(data)

data$class <- class

(data.table <- as.data.frame(xtabs( ~ V1 +V2 +V3 +V4, data)))

V1 V2 V3 V4 Freq
1 1 1 1 1 197
2 2 1 1 1 19
3 1 2 1 1 22
4 2 2 1 1 9
5 1 1 2 1 22
6 2 1 2 1 6
7 1 2 2 1 11
8 2 2 2 1 10
9 1 1 1 2 20
10 2 1 1 2 8
11 1 2 1 2 11
12 2 2 1 2 12
13 1 1 2 2 3
14 2 1 2 2 5
15 1 2 2 2 11
16 2 2 2 2 34
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Fit the model of complete independence to the cell frequencies:

p1 <- glm(Freq ~ ., family=poisson, data=data.table)

data.frame(deviance=p1$deviance, df=p1$df.residual,

pval=1-pchisq(p1$deviance,p1$df.residual))

deviance df pval
1 270.6 11 0

library(car)

Anova(update(p1, ~ (.)^2))

Analysis of Deviance Table (Type II tests)

Response: Freq
LR Chisq Df Pr(>Chisq)

V1 98.2 1 < 2e-16
V2 65.8 1 4.9e-16
V3 100.3 1 < 2e-16
V4 96.1 1 < 2e-16
V1:V2 15.1 1 0.00010
V1:V3 11.6 1 0.00067
V1:V4 19.3 1 1.1e-05
V2:V3 26.9 1 2.1e-07
V2:V4 27.1 1 1.9e-07
V3:V4 4.6 1 0.03253

At least all the 2 fi’s are needed. If we look at the (unobservable) 5-way table,

big.data.table <- as.data.frame(xtabs( ~ V1 +V2 +V3 +V4 + class, data))

m1 <- glm(Freq ~ V1 + V2 + V3 + V4, poisson, big.data.table,

subset=class==1) # class 1

m2 <- update(m1, subset=class==2) # class 2

m3 <- glm(Freq ~ (V1 + V2 + V3 + V4)*class, poisson,

big.data.table) # conditional indep

data.frame(deviance=d <- c(m1$deviance, m2$deviance, m3$deviance),

df=f <- c(m1$df.residual, m2$df.residual, m3$df.residual),

pval = 1-pchisq(d, f)

)

deviance df pval
1 13.11 11 0.28641
2 17.81 11 0.08614
3 30.91 22 0.09787
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Next, we use the poLCA package to do LCA (Linzer and Lewis, 2011). Although the
sufficient statistics are the cell counts, the poLCA software requires one line per observation,
not sufficient statistics. For this example the data.frame data is in this format, but if you
only have the contingency table you can convert it to the correct form with

freq.to.long <- function(x, freq){x[rep(1:length(freq), freq), ]}

data1 <- freq.to.long(data.table, data.table$Freq)

We first fit the one-class model, which is the same as the model p1 fit above. You may
need to install the poLCA package.

library(poLCA)

m1 <- poLCA(cbind(V1, V2, V3, V4) ~ 1, data=data, nclass=1)

Conditional item response (column) probabilities,
by outcome variable, for each class (row)

$V1
Pr(1) Pr(2)

class 1: 0.7425 0.2575

$V2
Pr(1) Pr(2)

class 1: 0.7 0.3

$V3
Pr(1) Pr(2)

class 1: 0.745 0.255

$V4
Pr(1) Pr(2)

class 1: 0.74 0.26

Estimated class population shares
1

Predicted class memberships (by modal posterior prob.)
1

=========================================================
Fit for 1 latent classes:
=========================================================
number of observations: 400
number of estimated parameters: 4
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residual degrees of freedom: 11
maximum log-likelihood: -928.8

AIC(1): 1866
BIC(1): 1882
G^2(1): 270.6 (Likelihood ratio/deviance statistic)
X^2(1): 637.8 (Chi-square goodness of fit)

The left-side of the formula is a list of all the manifest variables. The right-side is not yet
used, so the specification ~ 1 is appropriate. The nclass argument specifies K. Unlike most
R functions, this one produces printed output unless you suppress it with verbose=FALSE.
The G2 reported is identical to the G2 for complete independence computed in p1 above.

Fit the more interesting 2 class model. The function has its own algorithm for choosing
starting values, and we will use the default method. To avoid finding a local maximum, the
argument nrep=5 tells the program to repeat nrep times, each time with different starting
values, and keep the fit with the highest likelihood.

m2 <- poLCA(cbind(V1, V2, V3, V4) ~ 1, data=data, nclass=2, nrep=5)

Model 1: llik = -797.2 ... best llik = -797.2
Model 2: llik = -797.2 ... best llik = -797.2
Model 3: llik = -797.2 ... best llik = -797.2
Model 4: llik = -797.2 ... best llik = -797.2
Model 5: llik = -797.2 ... best llik = -797.2
Conditional item response (column) probabilities,
by outcome variable, for each class (row)

$V1
Pr(1) Pr(2)

class 1: 0.3124 0.6876
class 2: 0.9095 0.0905

$V2
Pr(1) Pr(2)

class 1: 0.1727 0.8273
class 2: 0.9048 0.0952

$V3
Pr(1) Pr(2)

class 1: 0.3424 0.6576
class 2: 0.9014 0.0986

$V4
Pr(1) Pr(2)
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class 1: 0.3023 0.6977
class 2: 0.9100 0.0900

Estimated class population shares
0.2797 0.7203

Predicted class memberships (by modal posterior prob.)
0.3 0.7

=========================================================
Fit for 2 latent classes:
=========================================================
number of observations: 400
number of estimated parameters: 9
residual degrees of freedom: 6
maximum log-likelihood: -797.2

AIC(2): 1612
BIC(2): 1648
G^2(2): 7.355 (Likelihood ratio/deviance statistic)
X^2(2): 7.533 (Chi-square goodness of fit)

The estimate γ̂1 = 0.28 nearly reproduces the population value from the simulation of γ1 =
0.3. The input values for the probabilities in the simulation were (.3, .7) for one class and
(.1, .9) for the other, nearly matching the estimates for most of the manifest variables. This
fitted model is almost equivalent to fitting a 25 table with additional dimension determined
by the predicted class, and fitting the model of conditional independence given the predicted
class ŷ:

data.table1 <- as.data.frame(xtabs( ~ m2$predclass + V1 +V2 +V3 +V4, data))

p2 <- glm(Freq ~ m2.predclass*(V1 + V2 + V3 + V4),

family=poisson, data=data.table1, subset=Freq > 0)

c(deviance=p2$deviance, df=p2$df.residual)

deviance df
11.11 6.00

Let’s see how well this the predicted class matched the actual class (this is a simulation,
after all):

xtabs(~ class + m2$predclass)

m2$predclass
class 1 2

1 14 271
2 106 9
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The order of the predicted classes is reversed from the input. Finally, here is a three class
solution:

m3 <- poLCA(cbind(V1, V2, V3, V4) ~ 1, data=data, nclass=3, nrep=5)

Model 1: llik = -795.8 ... best llik = -795.8
Model 2: llik = -794.8 ... best llik = -794.8
Model 3: llik = -794.8 ... best llik = -794.8
Model 4: llik = -795.8 ... best llik = -794.8
Model 5: llik = -795.8 ... best llik = -794.8
Conditional item response (column) probabilities,
by outcome variable, for each class (row)

$V1
Pr(1) Pr(2)

class 1: 0.5706 0.4294
class 2: 0.9403 0.0597
class 3: 0.1601 0.8399

$V2
Pr(1) Pr(2)

class 1: 0.4361 0.5639
class 2: 0.9522 0.0478
class 3: 0.0526 0.9474

$V3
Pr(1) Pr(2)

class 1: 0.6277 0.3723
class 2: 0.9221 0.0779
class 3: 0.1456 0.8544

$V4
Pr(1) Pr(2)

class 1: 0.5828 0.4172
class 2: 0.9372 0.0628
class 3: 0.1294 0.8706

Estimated class population shares
0.2682 0.6054 0.1264

Predicted class memberships (by modal posterior prob.)
0.2425 0.645 0.1125

=========================================================
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Fit for 3 latent classes:
=========================================================
number of observations: 400
number of estimated parameters: 14
residual degrees of freedom: 1
maximum log-likelihood: -794.8

AIC(3): 1618
BIC(3): 1674
G^2(3): 2.547 (Likelihood ratio/deviance statistic)
X^2(3): 2.353 (Chi-square goodness of fit)

c(dev_change=m2$Gsq-m3$Gsq, df=m2$resid.df-m3$resid.df,

pval=pchisq(m2$Gsq-m3$Gsq, m2$resid.df-m3$resid.df))

dev_change df pval
4.8085 5.0000 0.5603

As expected, the 3 class model offers no improvement over the two class model.

Student Cheating

This example has 319 observations on 4 manifest variables relating to student cheating, either
no (= 1) or yes (= 2). A fifth variable in the data file is GPA, the student’s overall grade point
average.

data(cheating)

str(cheating)

'data.frame': 319 obs. of 5 variables:
$ LIEEXAM : num 1 1 1 1 1 1 1 1 1 1 ...
$ LIEPAPER: num 1 1 1 1 1 1 1 1 1 1 ...
$ FRAUD : num 1 1 1 1 1 1 1 1 1 1 ...
$ COPYEXAM: num 1 1 1 1 1 1 1 1 1 1 ...
$ GPA : int NA NA NA NA 1 1 1 1 1 1 ...

f <- cbind(LIEEXAM, LIEPAPER, FRAUD, COPYEXAM) ~ 1

ch2 <- poLCA(f, cheating, nclass=2, nrep=5)

Model 1: llik = -440 ... best llik = -440
Model 2: llik = -440 ... best llik = -440
Model 3: llik = -440 ... best llik = -440
Model 4: llik = -440 ... best llik = -440
Model 5: llik = -440 ... best llik = -440
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Conditional item response (column) probabilities,
by outcome variable, for each class (row)

$LIEEXAM
Pr(1) Pr(2)

class 1: 0.4231 0.5769
class 2: 0.9834 0.0166

$LIEPAPER
Pr(1) Pr(2)

class 1: 0.4109 0.5891
class 2: 0.9708 0.0292

$FRAUD
Pr(1) Pr(2)

class 1: 0.7840 0.2160
class 2: 0.9629 0.0371

$COPYEXAM
Pr(1) Pr(2)

class 1: 0.6236 0.3764
class 2: 0.8181 0.1819

Estimated class population shares
0.1606 0.8394

Predicted class memberships (by modal posterior prob.)
0.1693 0.8307

=========================================================
Fit for 2 latent classes:
=========================================================
number of observations: 319
number of estimated parameters: 9
residual degrees of freedom: 6
maximum log-likelihood: -440

AIC(2): 898.1
BIC(2): 931.9
G^2(2): 7.764 (Likelihood ratio/deviance statistic)
X^2(2): 8.323 (Chi-square goodness of fit)

Comparing G2 to its df, the two-class model seems to fit adequately.
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plot(ch2)
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The two classes are called “cheaters” and “not-cheaters”.

xtabs(~ ch2$predclass + rowSums(cheating[, -5]))

rowSums(cheating[, -5])
ch2$predclass 4 5 6 7 8

1 0 23 20 9 2
2 207 53 5 0 0

The classes are not the same as the sum!

Regression

Regression can allow γj to depend on predictors, in this case GPA. We first do logistic regression
as if classes were observed not estimated.

summary(g1 <- glm(I(ch2$predclass -1) ~ GPA, binomial, cheating))$coef

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.6052 0.3170 1.909 0.056245
GPA 0.4628 0.1472 3.144 0.001668

Alternatively estimate latent classes and coefficients simultaneously. When K = 2, we
can use a logistic model,

log (γ2/γ1) = α0 + α′z
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When K > 2, poLCA uses the baseline category multinomial logistic model,

log (γi/γ1) = α0i + α′iz, i = 2, . . . , K

f2 <- cbind(LIEEXAM, LIEPAPER, FRAUD, COPYEXAM) ~ GPA

ch2c <- poLCA(f2, cheating, nclass=2, nrep=5)

Model 1: llik = -429.6 ... best llik = -429.6
Model 2: llik = -429.6 ... best llik = -429.6
Model 3: llik = -429.6 ... best llik = -429.6
Model 4: llik = -429.6 ... best llik = -429.6
Model 5: llik = -429.6 ... best llik = -429.6
Conditional item response (column) probabilities,
by outcome variable, for each class (row)

$LIEEXAM
Pr(1) Pr(2)

class 1: 0.9903 0.0097
class 2: 0.4389 0.5611

$LIEPAPER
Pr(1) Pr(2)

class 1: 0.9647 0.0353
class 2: 0.4858 0.5142

$FRAUD
Pr(1) Pr(2)

class 1: 0.9655 0.0345
class 2: 0.7850 0.2150

$COPYEXAM
Pr(1) Pr(2)

class 1: 0.8257 0.1743
class 2: 0.5925 0.4075

Estimated class population shares
0.8219 0.1781

Predicted class memberships (by modal posterior prob.)
0.8508 0.1492

=========================================================
Fit for 2 latent classes:
=========================================================
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2 / 1
Coefficient Std. error t value Pr(>|t|)

(Intercept) 0.1134 0.5099 0.222 0.833
GPA -0.8425 0.2813 -2.995 0.030
=========================================================
number of observations: 315
number of estimated parameters: 10
residual degrees of freedom: 5
maximum log-likelihood: -429.6

AIC(2): 879.3
BIC(2): 916.8
X^2(2): 8.642 (Chi-square goodness of fit)

ALERT: estimation algorithm automatically restarted with new initial values

See the help page for poLCA.reorder on how to get poLCA to reorder the latent classes.
For these data, you cannot fit with K > 2 because the number of parameters would then

exceed the number of cells with data.

table(cheating$GPA)

1 2 3 4 5
100 104 48 34 29

GPAmat <- cbind(1, c(1:5))

exb <- exp(GPAmat %*% ch2c$coeff)

matplot(c(1:5),

cbind(1-predict(g1, newdata=data.frame(GPA=1:5), type="response") , exb/(1+exb)),

xlab="GPA", type="l", lwd=2, lty=1:2, col=1:2,

ylab="Probability of membership in cheaters class")

legend("topright", c("LCA + GLM", "Combined"), lty=1:2, col=1:2,inset=0.02)

grid(lty=1)
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Effects Plots

Effects plots for the covariates like GPA above will be available in the next version of the
efffects package that you can get using

install.packages("effects", repos="http://r-forge.r-project.org")
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