Stat 8053, Fall 2013: Generalized Additive Models

For generalized additive models, we have a linear predictor,

$$
\begin{aligned}
\eta(x) & =\beta_{0}+\sum_{j=1}^{p} s_{j}(x) \\
& =\beta_{0}+\sum_{j=1}^{p} \sum_{j=1}^{d_{j}} \beta_{j k} \phi_{j k}(x)
\end{aligned}
$$

Assuming the $\phi \mathrm{s}$ and d_{j} are known, by selecting a link function and an appropriate error distribution we could fit a generalized linear model. For a gam, we maximize the penalized likelihood function,

$$
\ell_{p}(\boldsymbol{\beta})=\ell(\boldsymbol{\beta})-\frac{1}{2} \sum_{j} \lambda_{j} \boldsymbol{\beta}_{j}^{\prime} B_{j} \boldsymbol{\beta}_{j}
$$

where $\ell_{p}(\boldsymbol{\beta})$ is the log-likelihood for the generalized linear model, B_{j} is a known matrix, λ_{j} is the smoothing parameter for the j-th smooth, the penalty has a negative sign because the log-likelihood is to be maximized rather than minimized as for least squares. The fraction $1 / 2$ is unimportant but it makes the log-likelihood match the least square objective function for normal data.

```
data(kyphosis, package="gam")
str(kyphosis)
'data.frame': 81 obs. of 4 variables:
$ Kyphosis: Factor w/ 2 levels "absent","present": 1 1 2 1 1 1 1 1 1 2 ...
$ Age : int 71 158 128 2 1 1 61 37 113 59 ...
$ Number : int 3 3 4 5 4 2 2 3 2 6 ...
$ Start : int 5 14 5 1 15 16 17 16 16 12 ...
```

These data are on the results of a spinal "laminectomy" on children to correct a condition called kyphosis, curvature of the spine. The response is presence/absence of kyphosis after surgery. Predictors are Age if the child, the Starting vertebrae number, and the Number of vertebra effected.

```
pairs(~ Age + Start + Number, kyphosis, col=as.numeric(kyphosis$Kyphosis),
    pch=as.numeric(kyphosis$Kyphosis))
```



```
library(car)
summary(m0 <- glm(Kyphosis ~ Age + Number + Start, data=kyphosis, family=binomial))
Call:
glm(formula = Kyphosis ~ Age + Number + Start, family = binomial,
    data = kyphosis)
Deviance Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-2.312 & -0.548 & -0.363 & -0.166 & 2.161
\end{tabular}
Coefficients:
\begin{tabular}{lrrrrr} 
& Estimate & Std. Error & z & value & Pr \((>|z|)\) \\
(Intercept) & -2.03693 & 1.44957 & -1.41 & 0.1600 \\
Age & 0.01093 & 0.00645 & 1.70 & 0.0900 \\
Number & 0.41060 & 0.22486 & 1.83 & 0.0678 \\
Start & -0.20651 & 0.06770 & -3.05 & 0.0023
\end{tabular}
    (Dispersion parameter for binomial family taken to be 1)
        Null deviance: 83.234 on 80 degrees of freedom
Residual deviance: 61.380 on 77 degrees of freedom
AIC: 69.38
Number of Fisher Scoring iterations: 5
mmps(m0)
```


There appears to be an obvious problem with Age, and possible Start.
library (mgcv)
m 1 <- gam(Kyphosis ~ s(Age) + s(Start) + Number, data=kyphosis, family=binomial) summary (m1)

Family: binomial
Link function: logit

Formula:
Kyphosis $\sim s(A g e)+s(S t a r t)+$ Number

| Parametric coefficients: | | | | |
| :--- | ---: | :--- | ---: | ---: | ---: |
| | Estimate Std. Error | z | value $\operatorname{Pr}(>\|z\|)$ | |
| (Intercept) | -3.593 | 1.146 | -3.13 | 0.0017 |
| Number | 0.333 | 0.232 | 1.43 | 0.1515 |

Approximate significance of smooth terms:

	edf	Ref.df	Chi.sq	p-value
s (Age)	2.21	2.79	6.30	0.084
s (Start)	2.02	2.52	9.76	0.014

R-sq.(adj) $=0.355$ Deviance explained $=39.4 \%$
UBRE score $=-0.22384$ Scale est. $=1 \quad \mathrm{n}=81$
plot(m1, residuals=TRUE, pch=16, cex=.7, pages=1)


```
par(mfrow=c(1, 2))
plot(predict(m1) ~ predict(m0), main="Logit scale")
abline(0, 1, lwd=2)
plot(predict(m1, type="response") ~ predict(m0, type="response"), main="Probability scale")
abline(0, 1, lwd=2)
```

Logit scale

$\mathrm{m} 2<-\operatorname{update}(\mathrm{m} 1, \sim$ ~ $-\mathrm{s}($ Start $)+$ Start $)$
anova(m2, m1, test="Chisq")
Analysis of Deviance Table
Model 1: Kyphosis ~ s(Age) + Number + Start
Model 2: Kyphosis ~ s(Age) + s(Start) + Number
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
$1 \quad 75.9 \quad 55.1$
$\begin{array}{llllll}2 & 74.8 & 50.4 & 1.1 & 4.64 & 0.036\end{array}$
... and then with an interaction:

```
summary(m3 <- update(m1, ~ s(Age, Start) + Number))
```

Family: binomial
Link function: logit
Formula:
Kyphosis ~ s(Age, Start) + Number
Parametric coefficients:

| | Estimate | Std. Error z | value | $\operatorname{Pr}(>\|z\|)$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | -3.668 | 1.134 | -3.23 | 0.0012 |
| Number | 0.418 | 0.231 | 1.81 | 0.0701 |

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value
s(Age, Start) $3.53 \quad 4.48 \quad 12.7 \quad 0.019$
R-sq.(adj) $=0.316$ Deviance explained $=33.9 \%$
UBRE score $=-0.18431$ Scale est. $=1 \quad n=81$

UBRE stands for unbiased risk estimator, Wood, p. 172, and is similar to an AIC statistic.

```
par(mfrow=c(2, 2))
vis.gam(m3)
vis.gam(m3, theta=-35)
vis.gam(m2, plot.type="contour", type="response", main="Additive")
vis.gam(m3, plot.type="contour", type="response", main="Interactive")
```


Additive

