For generalized additive models, we have a linear predictor,
\[
\eta(x) = \beta_0 + \sum_{j=1}^{p} s_j(x)
\]
\[
= \beta_0 + \sum_{j=1}^{p} \sum_{j=1}^{d_j} \beta_{jk} \phi_{jk}(x)
\]

Assuming the \(\phi_s\) and \(d_j\) are known, by selecting a link function and an appropriate error distribution we could fit a generalized linear model. For a gam, we maximize the penalized likelihood function,
\[
\ell_p(\beta) = \ell(\beta) - \frac{1}{2} \sum_j \lambda_j \beta_j^T B_j \beta_j
\]
where \(\ell_p(\beta)\) is the log-likelihood for the generalized linear model, \(B_j\) is a known matrix, \(\lambda_j\) is the smoothing parameter for the \(j\)-th smooth, the penalty has a negative sign because the log-likelihood is to be maximized rather than minimized as for least squares. The fraction \(1/2\) is unimportant but it makes the log-likelihood match the least square objective function for normal data.

```r
data(kyphosis, package="gam")
str(kyphosis)
```

These data are on the results of a spinal “laminectomy” on children to correct a condition called `kyphosis`, curvature of the spine. The response is presence/absence of kyphosis after surgery. Predictors are `Age` if the child, the `Starting` vertebrae number, and the `Number of vertebra` effected.

```r
pairs(~ Age + Start + Number, kyphosis, col=as.numeric(kyphosis$Kyphosis),
pch=as.numeric(kyphosis$Kyphosis))
```
library(car)
summary(m0 <- glm(Kyphosis ~ Age + Number + Start, data=kyphosis, family=binomial))

Call:
 glm(formula = Kyphosis ~ Age + Number + Start, family = binomial,
 data = kyphosis)

Deviance Residuals:
 Min 1Q Median 3Q Max
 -2.312 -0.548 -0.363 -0.166 2.161

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.03693 1.44957 -1.41 0.1600
 Age 0.01093 0.00645 1.70 0.0900
 Number 0.41060 0.22486 1.83 0.0678
 Start -0.20651 0.06770 -3.05 0.0023

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 83.234 on 80 degrees of freedom
Residual deviance: 61.380 on 77 degrees of freedom
AIC: 69.38

Number of Fisher Scoring iterations: 5

mmps(m0)
There appears to be an obvious problem with Age, and possible Start.

```r
library(mgcv)
m1 <- gam(Kyphosis ~ s(Age) + s(Start) + Number, data=kyphosis, family=binomial)
summary(m1)
```

Family: binomial
Link function: logit
Formula:
Kyphosis ~ s(Age) + s(Start) + Number

Parametric coefficients:

| | Estimate | Std. Error | z value | Pr(>|z|) |
|---------------------|----------|------------|---------|----------|
| (Intercept) | -3.593 | 1.146 | -3.13 | 0.0017 |
| Number | 0.333 | 0.232 | 1.43 | 0.1515 |

Approximate significance of smooth terms:

<table>
<thead>
<tr>
<th></th>
<th>edf</th>
<th>Ref.df</th>
<th>Chi.sq</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>s(Age)</td>
<td>2.21</td>
<td>2.79</td>
<td>6.30</td>
<td>0.084</td>
</tr>
<tr>
<td>s(Start)</td>
<td>2.02</td>
<td>2.52</td>
<td>9.76</td>
<td>0.014</td>
</tr>
</tbody>
</table>

R-sq.(adj) = 0.355 Deviance explained = 39.4%
UBRE score = -0.22384 Scale est. = 1 n = 81

plot(m1, residuals=TRUE, pch=16, cex=.7, pages=1)
par(mfrow=c(1, 2))
plot(predict(m1) ~ predict(m0), main="Logit scale")
abline(0, 1, lwd=2)
plot(predict(m1, type="response") ~ predict(m0, type="response"), main="Probability scale")
abline(0, 1, lwd=2)

m2 <- update(m1, ~ . - s(Start) + Start)
anova(m2, m1, test="Chisq")

Analysis of Deviance Table

Model 1: Kyphosis ~ s(Age) + Number + Start
Model 2: Kyphosis ~ s(Age) + s(Start) + Number

<table>
<thead>
<tr>
<th>Resid. Df</th>
<th>Resid. Dev</th>
<th>Df</th>
<th>Deviance</th>
<th>Pr(>Chi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>75.9</td>
<td></td>
<td>55.1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>74.8</td>
<td>1</td>
<td>50.4</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.64</td>
<td>0.036</td>
</tr>
</tbody>
</table>

...and then with an interaction:
summary(m3 <- update(m1, ~ s(Age, Start) + Number))

Family: binomial
Link function: logit

Formula:
Kyphosis ~ s(Age, Start) + Number

Parametric coefficients:

| | Estimate | Std. Error | z value | Pr(>|z|) |
|---------------------|----------|------------|---------|----------|
| (Intercept) | -3.668 | 1.134 | -3.23 | 0.0012 |
| Number | 0.418 | 0.231 | 1.81 | 0.0701 |

Approximate significance of smooth terms:

<table>
<thead>
<tr>
<th></th>
<th>edf</th>
<th>Ref.df</th>
<th>Chi.sq</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>s(Age,Start)</td>
<td>3.53</td>
<td>4.48</td>
<td>12.7</td>
<td>0.019</td>
</tr>
</tbody>
</table>

R-sq.(adj) = 0.316 Deviance explained = 33.9%
UBRE score = -0.18431 Scale est. = 1 n = 81

UBRE stands for unbiased risk estimator, Wood, p. 172, and is similar to an AIC statistic.

par(mfrow=c(2, 2))
vis.gam(m3)
vis.gam(m3, theta=-35)
vis.gam(m2, plot.type="contour", type="response", main="Additive")
vis.gam(m3, plot.type="contour", type="response", main="Interactive")