
Stat 8053, Fall 2013: Additive Models

We will only use the package mgcv for fitting additive and later generalized additive models.
The best reference is S. N. Wood (2006), Generalized Additive Models, An Introduction with
R, Chapman & Hall. You should be able to get enough from the examples in our textbook,
the help page for the gam function, and handouts to use the package. If you want to apply
these methods to real problems, you will find Wood’s book very helpful.

The first example is of fitting an additive model, rather than a generalized additive model.
Foresters are often interested in estimating the Volume of wood available in a forest from
simple measurements on a tree, typically the Girth, the circumference of the tree at a fixed
height above the ground, and the height of the tree, which can be measured, with somewhat
less accuracy, using trigonometry. For this example, we have n = 31 black cherry trees on
which volume has been measured, as shown in Figure 1.

library(car)

library(mgcv)

data(trees)

pairs(trees, cex=1.5)

Girth
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Figure 1: Cherry tree data

A standard first-order linear model fit to these data matches the data surprisingly well,
but even so it misses systematic features, as can be seen from the marginal model plot1 in
Figure 2.

1Marginal Model Plots are discussed in S. Weisberg (2005), Applied Linear Regression, 3ed Ed., p.185–
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Figure 2: Cherry tree data

m0 <- lm(Volume ~ Height + Girth, trees)

mmps(m0, layout=c(1, 3))

There is relatively subtle lack-of-fit apparent in both the plot for Girth and the plot for
fitted values, as the lines don’t agree perfectly. It should be no surprise that this model can’t
match the data perfectly, as simple geometric considerations would suggest that Volume ∝
Girth2 × Height, so fitting with all variables in log-scale would do better2. Here, we will
instead fit an additive model,

E(Volume|Girth, Height) = β0 + s1(Height) + s2(Girth) (1)

The package mgcv uses penalized regression splines for the sj, so we can write

sj(x) =
∑

βjkφjk(x) = β′
jφj

for the basis functions φjk that determine the splines. Given the basis function representation
of the sj, (1) is now a parametric mean function with parameters β = (β0,β

′
1,β

′
2)

′ and
predictors X that define the intercept and the splines that define the sj.

The penalized least squares objective function for estimating β is

‖ Y −Xβ ‖2 +
∑
j

λjβ
′
jBjβj

The values of the λj are selected in an iterative algorithm to minimize a generalized cross
validation criterion.

This fit is done using the gam function in the mgcv package,

190. It is a plot of the response Y versus a predictor X, or any other quantity. Shown on the graph are two
smooths: The Data smooth is a smooth of the data shown. The Model smooth is obtained by smoothing Ŷ
versus X, a plot that is not shown. If the model is appropriate for the data, then the two smooths should
agree for any choice of X, and if there is any X for which they disagree we have evidence of lack-of-fit.

2Another alternative is to replace the predictors by their logarithms, and then fit a GLM with normal
errors and log-link.
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summary(m1 <- gam(Volume ~ s(Height) + s(Girth), data=trees))

Family: gaussian
Link function: identity

Formula:
Volume ~ s(Height) + s(Girth)

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 30.171 0.482 62.6 <2e-16

Approximate significance of smooth terms:
edf Ref.df F p-value

s(Height) 1.00 1.00 16 0.00042
s(Girth) 2.69 3.37 204 < 2e-16

R-sq.(adj) = 0.973 Deviance explained = 97.7%
GCV score = 8.4734 Scale est. = 7.1905 n = 31

The only visible parameter in this model is the intercept, estimated to be 30.171. The βj

are hidden inside the smoothers and are largely uninterpretable. For each of the predictors,
a smoother was fit by the s functions. The default in the function s that does the smoothing
uses thin plate regression splines, which are slightly different from the B-splines we discussed
in class, but are apparently preferred because they don’t depend as much on the number of
knots selected and also they generalize to smooths of more than one variable at a time. You
can also get the fit using B-splines:

summary(m1a <-

gam(Volume ~ s(Height, bs="cr") + s(Girth, bs="cr"), data=trees))

Family: gaussian
Link function: identity

Formula:
Volume ~ s(Height, bs = "cr") + s(Girth, bs = "cr")

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 30.171 0.482 62.6 <2e-16

Approximate significance of smooth terms:
edf Ref.df F p-value

s(Height) 1.00 1.00 16 0.00043
s(Girth) 2.67 3.33 206 < 2e-16
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R-sq.(adj) = 0.973 Deviance explained = 97.7%
GCV score = 8.4847 Scale est. = 7.2065 n = 31

which is nearly identical to the fit with thin plate splines. You can look at the help pages for
s and smooth.terms for additional options. Additional hint: The number of basis functions
is set by the argument k, and s has an algorithm for selecting it. In some instances you will
need to make k either smaller or larger to get convergence.

In the output, the “edf” is the equivalent degrees of freedom for each of the smooths.
If we were using q basis functions for a smooth and ml estimation, then we would have q
df for the smooth. Penalization will generally reduce the edf to a number smaller than q.
For Height the smoother has only 1 edf, essentially fitting a straight line. The approximate
significance tests for the smooths are apparently Wald tests of βj = 0 with approximate
df for the F distributions. The adjusted R2 is more or less the square of the correlation
between the observed and fitted values, with an adjustment for degrees of freedom, while the
deviance explained appears to be the usual R2 written as a percentage. The scale estimate
is σ̂, assumed constant throughout the data.

The usual summary of the fit of a gam is a set of pictures:

plot(m1, residuals=TRUE, pages=1, pch=16, cex=0.6)
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The plot method with no arguments beyond the name of the fitted object returns the
plots of xj versus the estimate sj(xj) for all j. The argument residuals=TRUE adds the partial
residuals, equal to the êi + sj(xij). By default, one graph is drawn at a time, with required
user input to see the next plot. You can override this with the argument page=1, which will
put all the plots on one page. There are many more arguments; type ?plot.gam to see them
all.

You can perform likelihood ratio type tests to compare models. For example:

m2 <-update(m1, ~ . - s(Girth))

anova(m2, m1, test="F")

Analysis of Deviance Table

Model 1: Volume ~ s(Height)
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Model 2: Volume ~ s(Height) + s(Girth)
Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 29.0 5205
2 26.3 189 2.69 5016 259 <2e-16

Or, you can replace a smooth by a parametric fit:

summary(m3 <- update(m1, ~ . - s(Height) + Height))

Family: gaussian
Link function: identity

Formula:
Volume ~ s(Girth) + Height

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.5256 7.1765 0.21 0.83329
Height 0.3769 0.0942 4.00 0.00046

Approximate significance of smooth terms:
edf Ref.df F p-value

s(Girth) 2.69 3.37 207 <2e-16

R-sq.(adj) = 0.973 Deviance explained = 97.7%
GCV score = 8.4734 Scale est. = 7.1905 n = 31

AIC(m2, m3, m1)

df AIC
m2 3.000 252.8
m3 5.693 155.4
m1 5.693 155.4

Methods available for gam objects include predict, residuals and plot. For example,
?predict.gam will give you help on how to use this function. Just about any function that
works with a glm object is likely to work with a gam object as well. An exception is effects
plots, but the effects plots for the smoothed terms will have the same shape, but different
values on the vertical axis, as the plots produced by the mgcv plot method.

Although probably not needed here, we could also fit with a bivariate smoother. Here I
had to specify the number of basis functions to be used by the thin plate splines because the
default was apparently too small.

par(mfrow=c(1, 2))

summary(m4 <- update(m1, ~ s(Height, Girth, k=8)))
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Family: gaussian
Link function: identity

Formula:
Volume ~ s(Height, Girth, k = 8)

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 30.171 0.516 58.4 <2e-16

Approximate significance of smooth terms:
edf Ref.df F p-value

s(Height,Girth) 5.71 6.57 145 <2e-16

R-sq.(adj) = 0.969 Deviance explained = 97.5%
GCV score = 10.548 Scale est. = 8.2665 n = 31

AIC(m1, m4)

df AIC
m1 5.693 155.4
m4 7.706 161.3

plot(m4)

plot(predict(m1), predict(m4), xlab="Predictions, additive",

ylab="Predictions, nonadditive")

abline(0, 1)
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