
(Notation is from Chapter 10 of Härdle and Simar.)

F is a $k \times 1$ vector of unobservable, or latent common factor variables. In the normal factor analysis model, we assume

$$F \sim N_k(0, I)$$

(1)

The dimension k is also unknown.

X is a $p \times 1$ vector of observable or manifest variables. The factor analysis model specifies the conditional distribution of $Y|F$ as

$$X|F \sim N_p(\mu + QF, \Psi)$$

(2)

where Q is a $p \times k$ matrix of factor loadings and Ψ is assumed to be a diagonal matrix with nonnegative entries. Thus the model assumes that the manifest variables X have a linear regression on the latent variables F.

Standard calculations based (1)–(2) give

$$X \sim N_p(\mu, QQ' + \Psi)$$

(3)

so μ is the unconditional mean of X, and $\Sigma = QQ' + \Psi$ is the covariance matrix. The goal is to learn about $Q, k,$ and Ψ based on (3).

An alternative representation of the normal factor analysis model is the single equation

$$X = QF + U + \mu$$

(4)

This introduces a new quantity $U \sim N_p(0, \Psi)$ often called the vector of specific factors, and F is distributed as in (1). This differs by our understanding of the data generating mechanism. For (1)–(3) we have a two-step process of generating first a subject at random with latent value F, and then given F we generate X, while in (4) we envision F and U generated simultaneously to produce the manifest variables x. In either, only X is observable.

Estimation The only estimates we consider are maximum likelihood, assuming X_1, \ldots, X_n are iid copies from the distribution in (3). The likelihood was derived in class, and is given in the textbook. The data will consist of the $n \times p$ matrix of manifest variables X, each of whose rows satisfies (3). The sufficient statistic for Q and Ψ, is the sample correlation matrix, which has $p(p + 1)/2$ unique elements. All parameters of interest are in Σ. The factor loading matrix Q has pk parameters for a k-factor solution, while Ψ has p parameters. Additional constraints on the parameters are introduced to get a unique solution, and these introduce an additional $k(k - 1)/2$ parameters (see the textbook for details). Estimation is possible as long as the number of unique elements in the correlation matrix exceeds the number of parameters and constraints.
US Company Data

We continue with the US Companies data. As suggested in the last handout, all but two of the variables are converted to log-scale using the `transform` function in R. I will choose to keep all companies including 38 and 40 in the data. We create a new variable called `sector` which represents the type of company, as described in the textbook.

```r
loc <- "http://www.stat.umn.edu/~sandy/courses/8053/Data/uscomp1.dat"
uscomp <- read.table(url(loc),header=TRUE)
uscomp <- transform(uscomp, Assets=log(Assets), Sales=log(Sales),
                    MarketValue=log(MarketValue), Employees=log(Employees))
```

```
head(uscomp)

   Assets Sales MarketValue Profits CashFlow Employees
 1     9.893   9.114     9.272  1092.9    2576.8     4.374
 2     8.532   7.847     7.545   239.9    578.3     3.086
 3     9.519   8.486     8.428   485.0    898.9     3.153
 4     7.018   6.945     6.170    59.7     91.7     1.335
 5     7.398   6.553     6.521   74.3   135.9     1.030
 6     8.640   7.134     7.602  310.7   407.9     1.825
```

```r
sector <- rep(1:9, c(2, 15, 17, 8, 10, 4, 7, 10, 6))
print(R <- cor(uscomp), digits=3)
```

```
           Assets Sales MarketValue Profits CashFlow Employees
Assets  1.000  0.582    0.501   0.355   0.411    0.465
Sales  0.582  1.000    0.727   0.394   0.468    0.899
MarketValue  0.501  0.727   1.000   0.576   0.623    0.733
Profits  0.351  0.394    0.576  1.000   0.989    0.351
CashFlow  0.411  0.468    0.623   0.989  1.000    0.410
Employees 0.465  0.899    0.733   0.351   0.410  1.000
```

After fitting, $\hat{Q}\hat{Q}' + \hat{\Psi}$ should be “close” to R. In particular we want to reproduce the large correlations in this matrix, between Employees and Sales, and between Profits and Cash Flow. Each of these will require a separate factor (column of the Q matrix), so a solution of at least two factors is probably needed, and we will try a two-factor solution\(^1\).

\(^1\)The four-factor solution cannot be fit as there are too many parameters relative to the number of variables. The three-factor model can be fit, but but there are as many parameters are there are unique elements in R.

2
(f2 <- factanal(uscomp, factor=2, rotation="varimax"))

Call:
factanal(x = uscomp, factors = 2, rotation = "varimax")

Uniquenesses:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Unique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assets</td>
<td>0.638</td>
</tr>
<tr>
<td>Sales</td>
<td>0.040</td>
</tr>
<tr>
<td>MarketValue</td>
<td>0.340</td>
</tr>
<tr>
<td>Profits</td>
<td>0.011</td>
</tr>
<tr>
<td>CashFlow</td>
<td>0.005</td>
</tr>
<tr>
<td>Employees</td>
<td>0.160</td>
</tr>
</tbody>
</table>

Loadings:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Factor1</th>
<th>Factor2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assets</td>
<td>0.544</td>
<td>0.258</td>
</tr>
<tr>
<td>Sales</td>
<td>0.961</td>
<td>0.194</td>
</tr>
<tr>
<td>MarketValue</td>
<td>0.681</td>
<td>0.443</td>
</tr>
<tr>
<td>Profits</td>
<td>0.215</td>
<td>0.971</td>
</tr>
<tr>
<td>CashFlow</td>
<td>0.294</td>
<td>0.953</td>
</tr>
<tr>
<td>Employees</td>
<td>0.904</td>
<td>0.154</td>
</tr>
</tbody>
</table>

Factor 1 Factor 2

SS loadings 2.631 2.175
Proportion Var 0.438 0.363
Cumulative Var 0.438 0.801

Test of the hypothesis that 2 factors are sufficient.
The chi square statistic is 13.6 on 4 degrees of freedom.
The p-value is 0.00871

In the above output:

1. The first argument to `factanal` is in this case the name of a data frame, and by default all columns are used to define \(X \). You can also specify the columns using a one-sided formula, like `~ Assets + Sales + MarketValue + Profits + CashFlow + Employees`, and then using a `data=uscomp` argument. By default the program will convert the sample covariance matrix \(S \) to a correlation matrix before computing. If you want to override this behavior, you can choose the matrix yourself using the `covmat` argument. If you do provide a covariance matrix the program appears to convert it to a correlation matrix.

2. The *uniquenesses* are the estimates of the diagonal elements of \(\Psi \). In the textbook, these are called *specific variances*. The larger the specific variance, the less a particular variable is determined by the latent factors. If the uniquenesses are close to
1, then that particular variable is not well “explained” by the common factors. In this example, Assets and MarketValue are least well represented by the two common factors, while CashFlow, Sales and Profits are very well represented.

3. The *loadings* are an estimate of \(Q \), in this case computed as if \(k = 2 \) factors were sufficient. Another bit of factor analysis jargon is the *communality*, which is one minus the specific variance, is equal to \(\sum_j q_{ij}^2 \), and so gives the same information as the specific variance. If any entries in \(\hat{Q} \) are shown as blank, they are really just small: the default is to display a blank if \(|q_{jk}| < .1 \). The `factanal` function does not compute standard errors for elements of \(\hat{Q} \), although other programs do compute standard errors.

The displayed \(\hat{Q} \) depends on the argument *rotation*, since \(Q \) is unique only up to a rotation. The default in `factanal` that we have used here is the varimax rotation, which attempts to make the first column of \(\hat{Q} \) as close to a vector of 0s and 1s as possible, so it maximizes

\[
V \propto \sum_{j=1}^{k} (\text{variance of squares of scaled factor loadings for factor } j)
\]

The choice *rotation"none"* selects \(Q \) so that \(Q'\Psi^{-1}Q \) is a diagonal matrix. It’s hard for me to see why this would be a meaningful choice of rotation.

4. At the foot of the loadings, the *SS loadings* are the column sum of squares \(\sum_i q_{ij}^2 \), and this will depend on the rotation. If we define \(\text{tr}(R) = p \) to be the total variance, then SS loadings/\(6\) is the proportion of the total variance “explained” by each factor, *Proportion Var*. The *Cumulative Var* will generally stay less than 1 because of the specific factors. The *Cumulative Var* for all the factors does not depend on the rotation.

5. Finally a likelihood ratio test is given, with null hypothesis that two factors are sufficient versus the alternative that more than two factors are required. The small \(p \)-value suggests that the two-factor model is not adequate. We could try the three-factor model.

We try a 3-factor solution:

(f3 <- factanal(uscomp, factor=3, rotation="varimax", scores="regression"))

Call:
`factanal(x = uscomp, factors = 3, scores = "regression", rotation = "varimax")`

Uniquenesses:

<table>
<thead>
<tr>
<th>Assets</th>
<th>Sales</th>
<th>MarketValue</th>
<th>Profits</th>
<th>CashFlow</th>
<th>Employees</th>
</tr>
</thead>
</table>

4
Loadings:

<table>
<thead>
<tr>
<th></th>
<th>Factor1</th>
<th>Factor2</th>
<th>Factor3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assets</td>
<td>0.337</td>
<td>0.217</td>
<td>0.571</td>
</tr>
<tr>
<td>Sales</td>
<td>0.809</td>
<td>0.187</td>
<td>0.468</td>
</tr>
<tr>
<td>MarketValue</td>
<td>0.628</td>
<td>0.433</td>
<td>0.312</td>
</tr>
<tr>
<td>Profits</td>
<td>0.179</td>
<td>0.969</td>
<td>0.146</td>
</tr>
<tr>
<td>CashFlow</td>
<td>0.227</td>
<td>0.944</td>
<td>0.229</td>
</tr>
<tr>
<td>Employees</td>
<td>0.968</td>
<td>0.156</td>
<td>0.184</td>
</tr>
</tbody>
</table>

Factor1 Factor2 Factor3

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS loadings</td>
<td>2.183</td>
<td>2.123</td>
<td>0.750</td>
</tr>
<tr>
<td>Proportion Var</td>
<td>0.364</td>
<td>0.354</td>
<td>0.125</td>
</tr>
<tr>
<td>Cumulative Var</td>
<td>0.364</td>
<td>0.718</td>
<td>0.843</td>
</tr>
</tbody>
</table>

The degrees of freedom for the model is 0 and the fit was 0.0058

We get an exact fit because the three-factor model has as many free parameters as does a general Σ. The two-factor solution is not the first two columns of the three-factor solution. The uniqueness for Assets is smaller, but still relatively large. The cumulative variance increases from about 80% to about 84%, so it is not clear that a three-factor solution is much better than the two-factor solution.

Factor scores For each unit in the data there is a vector F of factor scores. Since F is a random variable, we would speak of predicting F rather than estimating it, as with mixed models. Now

$$
\text{Var} \left(\frac{X - \mu}{F} \right) = \left(\begin{array}{ccc}
\Sigma = QQ' + \Psi & Q \\
Q' & I_k
\end{array} \right)
$$

and so regression prediction, which is justified by multivariate normality of X and F, of the factor score is

$$
E(F|X) = Q'S_u^{-1}(X - \bar{x})
$$

where S_u is the sample covariance (usually, correlation) matrix. We get the estimated factor scores by the argument scores = "regression" on the call to factanal. Here is a scatterplot:

```r
library(car)
scatterplotMatrix(f3$scores, diagonal="none", reg.line=FALSE, smooth=FALSE, id.n=4)
```
Factor 1 appears to be successful at assorting the companies, but factor 2 seems to only serve to distinguish companies 38 and 40 from the others. These companies had enormous profits and cash flow relative to the other companies. Let’s delete these two:

\[
(f4 <- \text{factanal}(\text{uscomp[-c(38, 40),]}, \text{factor}=3, \text{rotation}="\text{varimax"}, \text{scores}="\text{regression"}))
\]

Call:
\[
\text{factanal}(x = \text{uscomp[-c(38, 40),]}, \text{factors} = 3, \text{scores} = "\text{regression"}, \text{rotation} = "\text{varimax"})
\]

Uniquenesses:

<table>
<thead>
<tr>
<th></th>
<th>Assets</th>
<th>Sales</th>
<th>MarketValue</th>
<th>Profits</th>
<th>CashFlow</th>
<th>Employees</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.592</td>
<td>0.100</td>
<td>0.396</td>
<td>0.070</td>
<td>0.062</td>
<td>0.005</td>
</tr>
</tbody>
</table>

Loadings:

<table>
<thead>
<tr>
<th></th>
<th>Factor1</th>
<th>Factor2</th>
<th>Factor3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assets</td>
<td>0.281</td>
<td>0.128</td>
<td>0.559</td>
</tr>
<tr>
<td>Sales</td>
<td>0.801</td>
<td></td>
<td>0.502</td>
</tr>
<tr>
<td>MarketValue</td>
<td>0.616</td>
<td>0.379</td>
<td>0.286</td>
</tr>
<tr>
<td>Profits</td>
<td></td>
<td>0.962</td>
<td></td>
</tr>
<tr>
<td>CashFlow</td>
<td>0.219</td>
<td>0.900</td>
<td>0.284</td>
</tr>
<tr>
<td>Employees</td>
<td>0.975</td>
<td>0.190</td>
<td></td>
</tr>
</tbody>
</table>
The following example was presented by Lawley and Maxwell, concerning a correlation of exam scores for Intelligence on these, company 1.

The two analyses are remarkably similar: Factor 1 provides the discrimination among companies, while factor 2 separates out the few remaining companies that either have low profits and cash flow (47, and 22) and the one remaining company that is high on these, company 1.

Intelligence

The following example was presented by Lawley and Maxwell, concerning a correlation of exam scores for \(n = 220 \) male students.

```
loc<"http://www.stat.umn.edu/~sandy/courses/8053/Data/LM.rda"
load(url(loc))
LM
```
We provide without comment three solutions: PC (eigen decomposition), two-factor solution with no rotation, and two-factor solution with the varimax rotation.

\[
\text{print(f0 <- eigen(LM), digits=3)}
\]

\[
\text{\$values}
\]
\[
[1] 2.733 1.130 0.615 0.601 0.525 0.396
\]

\[
\text{\$vectors}
\]
\[
[1,] -0.398 -0.422 0.237880 0.447 0.621 -0.1473
[2,] -0.416 -0.273 0.649785 -0.406 -0.370 0.1676
[3,] -0.313 -0.600 -0.671347 -0.099 -0.286 -0.0222
[4,] -0.447 0.389 -0.000831 0.232 -0.352 -0.6869
[5,] -0.450 0.353 -0.136085 0.402 -0.122 0.6910
[6,] -0.410 0.334 -0.227961 -0.640 0.508 -0.0205
\]

\[
(f1 <- factanal(factors=2, covmat=LM, n.obs=280, rotation="none"))
\]

Call:
\[
\text{factanal(factors = 2, covmat = LM, n.obs = 280, rotation = "none")}
\]

Uniquenesses:
\[
\text{Gaelic English History Arithmetic Algebra Geometry}
\]
\[
0.510 0.594 0.644 0.377 0.431 0.628
\]

Loadings:
\[
\text{Factor1 Factor2}
\]
Gaelic 0.553 0.429
English 0.568 0.288
History 0.392 0.450
Arithmetic 0.740 -0.273
Algebra 0.724 -0.211
Geometry 0.595 -0.132

<table>
<thead>
<tr>
<th>Factor1</th>
<th>Factor2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS loadings</td>
<td>2.209</td>
</tr>
<tr>
<td>Proportion Var</td>
<td>0.368</td>
</tr>
<tr>
<td>Cumulative Var</td>
<td>0.368</td>
</tr>
</tbody>
</table>

Test of the hypothesis that 2 factors are sufficient.
The chi square statistic is 2.99 on 4 degrees of freedom.
The p-value is 0.56

(f2 <- update(f1, rotation="varimax"))

Call:
factanal(factors = 2, covmat = LM, n.obs = 280, rotation = "varimax")

Uniquenesses:

<table>
<thead>
<tr>
<th>Gaelic</th>
<th>English</th>
<th>History</th>
<th>Arithmetic</th>
<th>Algebra</th>
<th>Geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.510</td>
<td>0.594</td>
<td>0.644</td>
<td>0.377</td>
<td>0.431</td>
<td>0.628</td>
</tr>
</tbody>
</table>

Loadings:

<table>
<thead>
<tr>
<th>Gaelic</th>
<th>Factor1</th>
<th>Factor2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.235</td>
<td>0.659</td>
<td></td>
</tr>
<tr>
<td>English</td>
<td>0.323</td>
<td>0.549</td>
</tr>
<tr>
<td>History</td>
<td>0.590</td>
<td></td>
</tr>
<tr>
<td>Arithmetic</td>
<td>0.771</td>
<td>0.170</td>
</tr>
<tr>
<td>Algebra</td>
<td>0.724</td>
<td>0.213</td>
</tr>
<tr>
<td>Geometry</td>
<td>0.572</td>
<td>0.210</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Factor1</th>
<th>Factor2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS loadings</td>
<td>1.612</td>
</tr>
</tbody>
</table>
Proportion Var 0.269 0.201
Cumulative Var 0.269 0.469

Test of the hypothesis that 2 factors are sufficient.
The chi square statistic is 2.99 on 4 degrees of freedom.
The p-value is 0.56

Officer ratings

This example consists of 14 ratings of 103 police officers by their superiors including an “overall” rating, presumably not just the average of the other 13 ratings. The data come from the Getting Started page of the SAS help files for SAS proc factor.

loc<="http://www.stat.umn.edu/~sandy/courses/8053/Data/officerratings.csv"
data <- read.csv(url(loc),header=TRUE)

The column names in this data frame are very long, and to improve readability of the output, we will rename them with short names.

(names <- data.frame(vname=paste("Q", 1:14, sep=""),
description=names(data)))

<table>
<thead>
<tr>
<th>vname</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Q1 Communication.Skills</td>
</tr>
<tr>
<td>2</td>
<td>Q2 Problem.Solving</td>
</tr>
<tr>
<td>3</td>
<td>Q3 Learning.Ability</td>
</tr>
<tr>
<td>4</td>
<td>Q4 Judgment.Under.Pressure</td>
</tr>
<tr>
<td>5</td>
<td>Q5 Observational.Skills</td>
</tr>
<tr>
<td>6</td>
<td>Q6 Willingness.to.Confront.Problems</td>
</tr>
<tr>
<td>7</td>
<td>Q7 Interest.in.People</td>
</tr>
<tr>
<td>8</td>
<td>Q8 Interpersonal.Sensitivity</td>
</tr>
<tr>
<td>9</td>
<td>Q9 Desire.for.Self.Improvement</td>
</tr>
<tr>
<td>10</td>
<td>Q10 Appearance</td>
</tr>
<tr>
<td>11</td>
<td>Q11 Dependability</td>
</tr>
<tr>
<td>12</td>
<td>Q12 Physical.Ability</td>
</tr>
<tr>
<td>13</td>
<td>Q13 Integrity</td>
</tr>
<tr>
<td>14</td>
<td>Q14 Overall.Rating</td>
</tr>
</tbody>
</table>
The likely goal of this analysis is to convert the 13 questions into a small number of interpretable scales.

Let's look first at the correlation matrix:

```r
colnames(data) <- names$vname

print(R <- cor(data), digits=2)
```

<table>
<thead>
<tr>
<th></th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q5</th>
<th>Q6</th>
<th>Q7</th>
<th>Q8</th>
<th>Q9</th>
<th>Q10</th>
<th>Q11</th>
<th>Q12</th>
<th>Q13</th>
<th>Q14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>1.00</td>
<td>0.63</td>
<td>0.55</td>
<td>0.54</td>
<td>0.53</td>
<td>0.44</td>
<td>0.50</td>
<td>0.56</td>
<td>0.49</td>
<td>0.55</td>
<td>0.22</td>
<td>0.51</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td>0.63</td>
<td>1.00</td>
<td>0.57</td>
<td>0.62</td>
<td>0.43</td>
<td>0.50</td>
<td>0.40</td>
<td>0.44</td>
<td>0.41</td>
<td>0.39</td>
<td>0.45</td>
<td>0.32</td>
<td>0.38</td>
<td>0.58</td>
</tr>
<tr>
<td>Q3</td>
<td>0.55</td>
<td>0.57</td>
<td>1.00</td>
<td>0.49</td>
<td>0.62</td>
<td>0.52</td>
<td>0.27</td>
<td>0.19</td>
<td>0.57</td>
<td>0.40</td>
<td>0.51</td>
<td>0.23</td>
<td>0.31</td>
<td>0.59</td>
</tr>
<tr>
<td>Q4</td>
<td>0.55</td>
<td>0.62</td>
<td>1.00</td>
<td>0.37</td>
<td>0.40</td>
<td>0.62</td>
<td>0.61</td>
<td>0.48</td>
<td>0.23</td>
<td>0.55</td>
<td>0.35</td>
<td>0.59</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>Q5</td>
<td>0.54</td>
<td>0.43</td>
<td>0.62</td>
<td>1.00</td>
<td>0.73</td>
<td>0.26</td>
<td>0.19</td>
<td>0.57</td>
<td>0.40</td>
<td>0.42</td>
<td>0.56</td>
<td>0.43</td>
<td>0.39</td>
<td>0.58</td>
</tr>
<tr>
<td>Q6</td>
<td>0.53</td>
<td>0.50</td>
<td>0.52</td>
<td>0.40</td>
<td>0.73</td>
<td>1.00</td>
<td>0.22</td>
<td>0.13</td>
<td>0.53</td>
<td>0.48</td>
<td>0.49</td>
<td>0.49</td>
<td>0.33</td>
<td>0.59</td>
</tr>
<tr>
<td>Q7</td>
<td>0.44</td>
<td>0.40</td>
<td>0.27</td>
<td>0.62</td>
<td>0.26</td>
<td>0.22</td>
<td>1.00</td>
<td>0.81</td>
<td>0.49</td>
<td>0.27</td>
<td>0.61</td>
<td>0.38</td>
<td>0.75</td>
<td>0.61</td>
</tr>
<tr>
<td>Q8</td>
<td>0.50</td>
<td>0.44</td>
<td>0.19</td>
<td>0.61</td>
<td>0.17</td>
<td>0.13</td>
<td>0.81</td>
<td>1.00</td>
<td>0.37</td>
<td>0.26</td>
<td>0.54</td>
<td>0.22</td>
<td>0.69</td>
<td>0.58</td>
</tr>
<tr>
<td>Q9</td>
<td>0.56</td>
<td>0.41</td>
<td>0.57</td>
<td>0.48</td>
<td>0.60</td>
<td>0.53</td>
<td>0.49</td>
<td>0.37</td>
<td>1.00</td>
<td>0.45</td>
<td>0.60</td>
<td>0.38</td>
<td>0.57</td>
<td>0.67</td>
</tr>
<tr>
<td>Q10</td>
<td>0.49</td>
<td>0.39</td>
<td>0.40</td>
<td>0.23</td>
<td>0.42</td>
<td>0.48</td>
<td>0.27</td>
<td>0.26</td>
<td>0.45</td>
<td>1.00</td>
<td>0.51</td>
<td>0.38</td>
<td>0.41</td>
<td>0.57</td>
</tr>
<tr>
<td>Q11</td>
<td>0.55</td>
<td>0.45</td>
<td>0.51</td>
<td>0.55</td>
<td>0.56</td>
<td>0.49</td>
<td>0.61</td>
<td>0.54</td>
<td>0.60</td>
<td>0.51</td>
<td>1.00</td>
<td>0.45</td>
<td>0.65</td>
<td>0.77</td>
</tr>
<tr>
<td>Q12</td>
<td>0.22</td>
<td>0.32</td>
<td>0.23</td>
<td>0.35</td>
<td>0.43</td>
<td>0.49</td>
<td>0.38</td>
<td>0.22</td>
<td>0.38</td>
<td>0.38</td>
<td>0.45</td>
<td>1.00</td>
<td>0.38</td>
<td>0.44</td>
</tr>
<tr>
<td>Q13</td>
<td>0.51</td>
<td>0.38</td>
<td>0.31</td>
<td>0.59</td>
<td>0.39</td>
<td>0.33</td>
<td>0.75</td>
<td>0.69</td>
<td>0.57</td>
<td>0.41</td>
<td>0.65</td>
<td>0.38</td>
<td>1.00</td>
<td>0.67</td>
</tr>
<tr>
<td>Q14</td>
<td>0.68</td>
<td>0.58</td>
<td>0.59</td>
<td>0.66</td>
<td>0.58</td>
<td>0.59</td>
<td>0.61</td>
<td>0.58</td>
<td>0.67</td>
<td>0.57</td>
<td>0.77</td>
<td>0.44</td>
<td>0.67</td>
<td>1.00</td>
</tr>
</tbody>
</table>

This isn’t very helpful because there are too many numbers. One possibility is to imagine that the correlations are a sample from a common distribution. Let’s look at a histogram and QQplot of the correlations.

```r
r <- R[lower.tri(R)]
par(mfrow=c(1, 2))
hist(r, main="Sample Correlations", xlab="r")
box()
require(car)
z <- 0.5 * log((1 + r)/(1 - r))
qqPlot(z, main="Fisher’s z-transform")
```
If all the population correlations are equal to some value ρ, and the estimates are independent, then the Fisher’s z-transforms should be like a random sample from $N(0.5 \log[(1 + \rho)/(1 - \rho)], 1/(n - 3))$. The observed sd of the Fisher z-transforms is 0.196, as compared to $\sqrt{1/(n - 3)} = 0.107$. From the qq-plot we might conclude that a few of the correlations are larger than would be expected if the correlations were an iid sample (a test is also possible here; how would you do it?). This is also consistent with the observed sd of the correlations larger than the theoretical sd.

If all the correlations were equal and $\rho > 0$, then

$$R = \rho 1' + (1 - \rho)I$$

This has the form of the factor analysis variance matrix with Q with a single column given by $\sqrt{\rho}1$, and $\Psi = (1 - \rho)I$, and with specific variances all equal to $1 - \rho$. The eigenvalues of R are $k - (k - 1)(1 - \rho) \approx 14 - 13(1 - \bar{r}) = 7.24$ with multiplicity 1 and $1 - \rho \approx 0.52$ with multiplicity $k - 1$. The eigenvector corresponding to the first eigenvalue is proportional to 1, and the other eigenvectors are arbitrary vectors orthogonal to 1.

```r
ev <- eigen(R)
print(ev$values, digits=2)
```

```
[1]  7.33  1.77  1.01  0.75  0.68  0.45  0.39  0.31  0.29  0.26  0.25  0.20  0.18  0.14
```
The largest eigenvalue is as expected, but there appears to be a second eigenvalue that might be too large for this model to be acceptable.

```r
print(ev$vectors[1,], digits=2)

[1] 0.286 -0.054 -0.330 -0.210 -0.181 -0.429 0.144 -0.166 0.456 0.447 -0.019 -0.193
[13] -0.207 0.089
```

Without a test and/or standard errors, it’s hard to judge if this is proportional to a vector of 1s or not.

Let’s try factor analysis.

```r
(f3 <- factanal(~ ., data=data, factors=3, rotation="varimax"))
```

Call:
`factanal(x = ~., factors = 3, data = data, rotation = "varimax")`

Uniquenesses:

<table>
<thead>
<tr>
<th></th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q5</th>
<th>Q6</th>
<th>Q7</th>
<th>Q8</th>
<th>Q9</th>
<th>Q10</th>
<th>Q11</th>
<th>Q12</th>
<th>Q13</th>
<th>Q14</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.371</td>
<td>0.285</td>
<td>0.407</td>
<td>0.364</td>
<td>0.304</td>
<td>0.332</td>
<td>0.196</td>
<td>0.157</td>
<td>0.407</td>
<td>0.623</td>
<td>0.305</td>
<td>0.689</td>
<td>0.267</td>
<td>0.204</td>
</tr>
</tbody>
</table>

Loadings:

<table>
<thead>
<tr>
<th></th>
<th>Factor1</th>
<th>Factor2</th>
<th>Factor3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>0.449</td>
<td>0.357</td>
<td>0.548</td>
</tr>
<tr>
<td>Q2</td>
<td>0.295</td>
<td>0.261</td>
<td>0.748</td>
</tr>
<tr>
<td>Q3</td>
<td>0.583</td>
<td></td>
<td>0.497</td>
</tr>
<tr>
<td>Q4</td>
<td>0.267</td>
<td>0.554</td>
<td>0.508</td>
</tr>
<tr>
<td>Q5</td>
<td>0.791</td>
<td></td>
<td>0.255</td>
</tr>
<tr>
<td>Q6</td>
<td>0.744</td>
<td></td>
<td>0.337</td>
</tr>
<tr>
<td>Q7</td>
<td>0.189</td>
<td>0.864</td>
<td>0.148</td>
</tr>
<tr>
<td>Q8</td>
<td></td>
<td>0.875</td>
<td>0.279</td>
</tr>
<tr>
<td>Q9</td>
<td>0.645</td>
<td>0.367</td>
<td>0.204</td>
</tr>
<tr>
<td>Q10</td>
<td>0.544</td>
<td>0.213</td>
<td>0.190</td>
</tr>
<tr>
<td>Q11</td>
<td>0.599</td>
<td>0.549</td>
<td>0.185</td>
</tr>
<tr>
<td>Q12</td>
<td>0.491</td>
<td>0.258</td>
<td></td>
</tr>
<tr>
<td>Q13</td>
<td>0.381</td>
<td>0.760</td>
<td></td>
</tr>
<tr>
<td>Q14</td>
<td>0.616</td>
<td>0.535</td>
<td>0.361</td>
</tr>
</tbody>
</table>
Test of the hypothesis that 3 factors are sufficient.
The chi square statistic is 73.98 on 52 degrees of freedom.
The p-value is 0.0242

(f4 <- factanal(~ ., data=data, factors=4, rotation="varimax"))

Call:
factanal(x = ~., factors = 4, data = data, rotation = "varimax")

Uniquenesses:
 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14
Q1 0.244 0.369 0.408 0.224 0.311 0.321 0.174 0.148 0.418 0.512 0.305 0.581 0.276 0.200
Loadings:

 Factor1 Factor2 Factor3 Factor4
Q1 0.324 0.213 0.606 0.488
Q2 0.278 0.227 0.695 0.140
Q3 0.472 0.562 0.219
Q4 0.574 0.266 0.603 -0.112
Q5 0.693 0.347 0.290
Q6 0.676 0.403 0.243
Q7 0.873 0.204 0.143
Q8 0.874 0.246 0.158
Q9 0.344 0.541 0.286 0.300
Q10 0.181 0.397 0.166 0.520
Q11 0.530 0.519 0.225 0.307
Q12 0.269 0.586
Q13 0.742 0.328 0.134 0.220
Q14 0.515 0.498 0.410 0.346
SS loadings 3.367 2.790 2.242 1.111
Proportion Var 0.240 0.199 0.160 0.079
Cumulative Var 0.240 0.440 0.600 0.679

Test of the hypothesis that 4 factors are sufficient.
The chi square statistic is 53.61 on 41 degrees of freedom.
The p-value is 0.0897

The three-factor solution is inadequate, while the four-factor solution provides a reasonable approximation to the correlation matrix, explaining about 70% of the variability.

One interpretation of the loadings comes from computing the correlation between X and F:

$$\text{Cov}(X, F) = \text{Cov}(QF + U, F) = Q$$

With X in correlation scale, Q estimates correlations. At least with this rotation the overall rating Q14, has correlation of about .5 or less with each of the factors. correlates with any of the individual ratings.

As an exercise, let’s refit omitting Q14, the overall score, and look at a scatterplot matrix of Q14 and the factor scores for the 4-factor solution:

```r
f5 <- factanal(~ . - Q14, data, factors=4, scores="regression")
pairs(cbind(Q14=data$Q14, f5$scores))
```
summary(lm(data$Q14 ~ f5$scores))

Call:
 lm(formula = data$Q14 ~ f5$scores)

Residuals:
 Min 1Q Median 3Q Max
-2.0447 -0.5038 0.0656 0.5447 2.0988

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.0000 0.0751 93.25 < 2e-16
f5$scoresFactor1 0.9356 0.0820 11.41 < 2e-16
f5$scoresFactor2 0.8460 0.0793 10.67 < 2e-16
f5$scoresFactor3 0.3658 0.0853 4.29 4.3e-05
f5$scoresFactor4 0.2068 0.0779 2.65 0.0093

Residual standard error: 0.762 on 98 degrees of freedom
Multiple R-squared: 0.751, Adjusted R-squared: 0.74
F-statistic: 73.7 on 4 and 98 DF, p-value: <2e-16

Here is a simulation for comparison:

r <- 0.48
p <- 14
S <- r * outer(rep(1, p), rep(1, p)) + diag(rep(1-r, p))
library(MASS)
set.seed(44)
X <- mvrnorm(163, rep(0, p), S)
r <- R[lower.tri(R)]
par(mfrow=c(1, 2))
hist(r, main="Sample Correlations, Simulation", xlab="r")
box()
z <- 0.5 * log((1 + r)/(1 - r))
qqPlot(z, main="Fisher's z-transform, Simulation")
esim <- eigen(R)
esim$values

[1] 7.3322 1.7730 1.0053 0.7510 0.6783 0.4525 0.3876 0.3078 0.2852 0.2634 0.2458 0.2009
[13] 0.1762 0.1407

esim$vectors[, 1]

[1] 0.2865 0.2601 0.2512 0.2776 0.2593 0.2519 0.2621 0.2401 0.2828 0.2258 0.3041 0.1998
[13] 0.2818 0.3321

(f3 <- factanal(X, data=X, factors=1, rotation="varimax"))

Call:
factanal(x = X, factors = 1, data = X, rotation = "varimax")

Uniquenesses:
[1] 0.558 0.386 0.512 0.432 0.474 0.485 0.387 0.473 0.431 0.452 0.544 0.465 0.475 0.474
Factor 1

SS loadings 7.452
Proportion Var 0.532

Test of the hypothesis that 1 factor is sufficient.
The chi square statistic is 66.73 on 77 degrees of freedom.
The p-value is 0.792

(f4 <- factanal(X, data=X, factors=2, rotation="varimax"))

Call:
 factanal(x = X, factors = 2, data = X, rotation = "varimax")

Uniquenesses:
[1] 0.460 0.385 0.502 0.414 0.453 0.486 0.378 0.378 0.423 0.453 0.532 0.457 0.448 0.452

Loadings:
Factor1 Factor2
<table>
<thead>
<tr>
<th></th>
<th>Factor1</th>
<th>Factor2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.329</td>
<td>0.657</td>
</tr>
<tr>
<td>2</td>
<td>0.639</td>
<td>0.455</td>
</tr>
<tr>
<td>3</td>
<td>0.474</td>
<td>0.523</td>
</tr>
<tr>
<td>4</td>
<td>0.666</td>
<td>0.378</td>
</tr>
<tr>
<td>5</td>
<td>0.649</td>
<td>0.356</td>
</tr>
<tr>
<td>6</td>
<td>0.542</td>
<td>0.469</td>
</tr>
<tr>
<td>7</td>
<td>0.661</td>
<td>0.431</td>
</tr>
<tr>
<td>8</td>
<td>0.382</td>
<td>0.690</td>
</tr>
<tr>
<td>9</td>
<td>0.639</td>
<td>0.410</td>
</tr>
<tr>
<td>10</td>
<td>0.585</td>
<td>0.453</td>
</tr>
<tr>
<td>11</td>
<td>0.453</td>
<td>0.513</td>
</tr>
<tr>
<td>12</td>
<td>0.625</td>
<td>0.391</td>
</tr>
<tr>
<td>13</td>
<td>0.660</td>
<td>0.340</td>
</tr>
<tr>
<td>14</td>
<td>0.466</td>
<td>0.575</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Factor1</th>
<th>Factor2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS loadings</td>
<td>4.482</td>
<td>3.297</td>
</tr>
<tr>
<td>Proportion Var</td>
<td>0.320</td>
<td>0.236</td>
</tr>
<tr>
<td>Cumulative Var</td>
<td>0.320</td>
<td>0.556</td>
</tr>
</tbody>
</table>

Test of the hypothesis that 2 factors are sufficient.
The chi square statistic is 46.63 on 64 degrees of freedom.
The p-value is 0.95