Stat 8053: Factor Analysis, rev. November 18, 2013

(Notation is from Chapter 10 of Hardle and Simar.)
F is a k x 1 vector of unobservable, or latent common factor variables. In the normal factor analysis model, we assume
F o Ny(0,1) M
The dimension k is also unknown.

X is a p x 1 vector of observable or manifest variables. The factor analysis model specifies the conditional distribution of
Y|F as

X|F ~ Ny(u+ QF, ) (2)

where () is a p X k matrix of factor loadings and W is assumed to be a diagonal matrix with nonnegative entries. Thus the
model assumes that the manifest variables X have a linear regression on the latent variables F'.

Standard calculations based (1)—(2) give

X ~ Ny(p, QQ" + V) (3)
so g is the unconditional mean of X, and ¥ = QQ’ + V is the covariance matrix. The goal is to learn about @, k, and ¥ based
on (3).

An alternative representation of the normal factor analysis model is the single equation
X=QF+U+p (4)

This introduces a new quantity U ~ N, (0, ¥) often called the vector of specific factors, and F is distributed as in (1). This differs
by our understanding of the data generating mechanism. For (1)—(3) we have a two-step process of generating first a subject at
random with latent value F', and then given F' we generate X, while in (4) we envision F' and U generated simultaneously to
produce the manifest variables x. In either, only X is observable.

Estimation The only estimates we consider are maximum likelihood, assuming X7, ..., X, are iid copies from the distribution
in (3). The likelihood was derived in class, and is given in the textbook. The data will consist of the n x p matrix of manifest
variables X, each of whose rows satisfies (3). The sufficient statistic for Q and ¥, is the sample correlation matrix, which has
p(p + 1)/2 unique elements. All parameters of interest are in . The factor loading matrix @) has pk parameters for a k-factor
solution, while ¥ has p parameters. Additional constraints on the parameters are introduced to get a unique solution, and these
introduce an additional k(k — 1)/2 parameters (see the textbook for details). Estimation is possible as long as the number of
unique elements in the correlation matrix exceeds the number of parameters and constraints.
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US Company Data

We continue with the US Companies data. As suggested in the last handout, all but two of the variables are converted to
log-scale using the transform function in R. I will choose to keep all companies including 38 and 40 in the data. We create a
new variable called sector which represents the type of company, as described in the textbook.

loc <- "http://www.stat.umn.edu/ sandy/courses/8053/Data/uscompl.dat"

uscomp <- read.table(url(loc),header=TRUE)

uscomp <- transform(uscomp, Assets=log(Assets), Sales=log(Sales),
MarketValue=log(MarketValue), Employees=log(Employees))

head (uscomp)

Assets Sales MarketValue Profits CashFlow Employees

1 9.893 9.114 9.272 1092.9 2576.8 4.374
2 8.532 7.847 7.545 239.9 578.3 3.086
3 9.519 8.486 8.428 485.0 898.9 3.153
4 7.018 6.945 6.170 59.7 91.7 1.335
5 7.398 6.553 6.521 74.3 135.9 1.030
6 8.640 7.134 7.602 310.7 407.9 1.825

snames <-c("Com", "Enr", "Fin", "HiTch", "Manu", "Med", "Oth", "Ret", "Tran")
sector <- rep(1:9, c(2 ,15, 17, 8, 10, 4, 7, 10, 6))
print (R <- cor(uscomp), digits=3)

Assets Sales MarketValue Profits CashFlow Employees

Assets 1.000 0.582 0.501 0.355 0.411 0.465
Sales 0.582 1.000 0.727 0.394 0.468 0.899
MarketValue 0.501 0.727 1.000 0.576 0.623 0.733
Profits 0.355 0.394 0.576 1.000 0.989 0.351
CashFlow 0.411 0.468 0.623 0.989 1.000 0.410
Employees 0.465 0.899 0.733 0.351 0.410 1.000

After fitting, @@’ + U should be “close” to R. In particular we want to reproduce the large correlations in this matrix, between
Employees and Sales, and between Profits and Cash Flow. Each of these will require a separate factor (column of the ) matrix),
so a solution of at least two factors is probably needed, and we will try a two-factor solution®.

!The four-factor solution cannot be fit as there are too many parameters relative to the number of variables. The three-factor model can be fit, but
but there are as many parameters are there are unique elements in R.



(f2 <- factanal(uscomp, factor=2, rotation="varimax"))

Call:
factanal (x = uscomp, factors = 2, rotation = "varimax")
Uniquenesses:

Assets Sales MarketValue Profits CashFlow

0.638 0.040 0.340 0.011 0.005
Loadings:
Factorl Factor2

Assets 0.544 0.258
Sales 0.961 0.194
MarketValue 0.681 0.443
Profits 0.215 0.971
CashFlow 0.294 0.953
Employees 0.904 0.154

Factorl Factor?
SS loadings 2.631 2.175
Proportion Var 0.438 0.363
Cumulative Var 0.438 0.801

Test of the hypothesis that 2 factors are sufficient.
The chi square statistic is 13.6 on 4 degrees of freedom.
The p-value is 0.00871

In the above output:

1. The first argument to factanal is in this case the name of a data frame, and by default all columns are used to define X. You
can also specify the columns using a one-sided formula, like © Assets + Sales + MarketValue + Profits + CashFlow
+ Employees, and then using a data=uscomp argument. By default the program will convert the sample covariance matrix
S to a correlation matrix before computing. If you want to override this behavior, you can choose the matrix yourself using
the covmat argument. If you do provide a covariance matrix the program appears to convert it to a correlation matrix.

2. The uniquenesses are the estimates of the diagonal elements of W. In the textbook, these are called specific variances. The
larger the specific variance, the less a particular variable is determined by the latent factors. If the uniquenesses are close to
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1, then that particular variable is not well “explained” by the common factors. In this example, Assets and MarketValue
are least well represented by the two common factors, while CashFlow, Sales and Profits are very well represented.

3. The loadings are an estimate of (), in this case computed as if £ = 2 factors were sufficient. Another bit of factor analysis
jargon is the communality, which is one minus the specific variance, is equal to ; qgj, and so gives the same information

as the specific variance. If any entries in @ are shown as blank, they are really just small: the default is to display a blank
if |¢jx] < .1. The factanal function does not compute standard errors for elements of ), although other programs do
compute standard errors.

The displayed Q\ depends on the argument rotation, since @ is unique only up to a rotation. The default in factanal
that we have used here is the varimax rotation, which attempts to make the first column of () as close to a vector of Os
and 1s as possible, so it maximizes

V x

J

k
(variance of squares of scaled factor loadings for factory)

=1

The choice rotation="none" selects @ so that Q'¥~1Q is a diagonal matrix. It’s hard for me to see why this would be a

meaningful choice of rotation.

4. At the foot of the loadings, the SS loadings are the column sum of squares ), qu, and this will depend on the rotation.
If we define tr(R) = p to be the total variance, then SS loadings/6 is the proportion of the total variance “explained”
by each factor, Proportion Var. The Cumulative Var will generally stay less then 1 because of the specific factors. The
Cumulative Var for all the factors does not depend on the rotation.

5. Finally a likelihood ratio test is given, with null hypothesis that two factors are sufficient versus the alternative that more
than two factors are required. The small p-value suggests that the two-factor model is not adequate. We could try the
three-factor model.

We try a 3-factor solution:

(£3 <-factanal (uscomp, factor=3, rotation="varimax", scores="regression"))

Call:
factanal (x = uscomp, factors = 3, scores = "regression", rotation = "varimax")
Uniguenesses:

Assets Sales MarketValue Profits CashFlow Employees



0.513 0.091 0.321 0.008 0.005 0.005

Loadings:
Factorl Factor?2 Factor3

Assets 0.337 0.217 0.571
Sales 0.809 0.187 0.468
MarketValue 0.628 0.433 0.312
Profits 0.179 0.969 0.146
CashFlow 0.227 0.944 0.229
Employees 0.968 0.156 0.184

Factorl Factor2 Factor3
SS loadings 2.183 2.123 0.750
Proportion Var 0.364 0.354 0.125
Cumulative Var 0.364 0.718 0.843

The degrees of freedom for the model is 0 and the fit was 0.0058

We get an exact fit because the three-factor model has as many free parameters as does a general >. The two-factor solution
is not the first two columns of the three-factor solution. The uniqueness for Assets is smaller, but still relatively large. The
cumulative variance increases from about 80% to about 84%, so it is not clear that a three-factor solution is much better than
the two-factor solution.

Factor scores For each unit in the data there is a vector F' of factor scores. Since F' is a random variable, we would speak
of predicting F' rather than estimating it, as with mixed models. Now

X—p\) [(E2=QQ+V¥Y Q
w(55)- (7
and so regression prediction, which is justified by multivariate normality of X and F', of the factor score is
E(F|X) =Q'S; (X —7)

where S, is the sample covariance (usually, correlation) matrix. We get the estimated factor scores by the argument scores =
"regression" on the call to factanal. Here is a scatterplot:

library(car)
scatterplotMatrix(f3$scores, diagonal="none", reg.line=FALSE, smooth=FALSE, id.n=4)
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Factor 1 appears to be successful at assorting the companies, but factor 2 seems to only serve to distinguish companies 38 and
40 from the others. These companies had enormous profits and cash flow relative to the other companies. Let’s delete these two:

(f4 <-factanal(uscomp[-c(38, 40), ], factor=3, rotation="varimax", scores="regression"))

Call:
factanal (x = uscomp[-c (38, 40), ], factors = 3, scores = "regression", rotation = "varimax"
Uniquenesses:
Assets Sales MarketValue Profits CashFlow Employees
0.592 0.100 0.396 0.070 0.062 0.005

Loadings:
Factorl Factor2 Factor3

Assets 0.281 0.128 0.559
Sales 0.801 0.502
MarketValue 0.616 0.379 0.286
Profits 0.962

CashFlow 0.219 0.900 0.284
Employees 0.975 0.190



Factorl Factor2 Factor3
SS loadings 2.103 1.910 0.763
Proportion Var 0.351 0.318 0.127
Cumulative Var 0.351 0.669 0.796

The degrees of freedom for the model is 0 and the fit was 0.0021

scatterplotMatrix(f4$scores, diagonal="none", reg.line=FALSE, smooth=FALSE, id.n=4)
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The two analyses are remarkably similar: Factor 1 provides the discrimination among companies, while factor 2 separates out
the few remaining companies that either have low profits and cash flow (47, and 22) and the one remaining company that is high
on these, company 1.

Intelligence

The following example was presented by Lawley and Maxwell, concerning a correlation of exam scores for n = 220 male students.

loc<-"http://www.stat.umn.edu/ sandy/courses/8053/Data/LM.rda"
load(url(loc))
LM



Gaelic English History Arithmetic Algebra Geometry

Gaelic 1.000 0.439 0.410 0.288 0.329 0.248
English 0.439 1.000 0.351 0.354 0.320 0.329
History 0.410 0.351 1.000 0.164 0.190 0.181
Arithmetic 0.288 0.354 0.164 1.000 0.595 0.470
Algebra 0.329 0.320 0.190 0.595 1.000 0.464
Geometry 0.248 0.329 0.181 0.470 0.464 1.000

We provide without comment three solutions: PC (eigen decomposion), two-factor solution with no rotation, and two-factor
solution with the varimax rotation.

print (f0 <- eigen(LM), digits=3)

Svalues
[1] 2.733 1.130 0.615 0.601 0.525 0.396

Svectors

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] -0.398 -0.422 0.237880 0.447 0.621 -0.1473
[2,] -0.416 -0.273 0.649785 -0.406 -0.370 0.1676
[3,] -0.313 -0.600 -0.671347 -0.099 -0.286 —-0.0222
[4,] -0.447 0.389 -0.000831 0.232 -0.352 -0.6869
[5,] -0.450 0.353 -0.136085 0.402 -0.122 0.6910
[6,] -0.410 0.334 -0.227961 -0.640 0.508 -0.0205

(f1 <- factanal(factors=2, covmat=LM, n.obs=280, rotation="none"))

Call:
factanal (factors = 2, covmat = LM, n.obs = 280, rotation = "none")
Uniquenesses:
Gaelic English History Arithmetic Algebra Geometry
0.510 0.594 0.644 0.377 0.431 0.628
Loadings:

Factorl Factor?2



Gaelic 0.553 0.429
English 0.568 0.288
History 0.392 0.450
Arithmetic 0.740 -0.273
Algebra 0.724 -0.211
Geometry 0.595 -0.132

Factorl Factor?2
SS loadings 2.209 0.606
Proportion Var 0.368 0.101
Cumulative Var 0.368 0.469

Test of the hypothesis that 2 factors are sufficient.
The chi square statistic is 2.99 on 4 degrees of freedom.
The p-value is 0.56

(f2 <- update(fl, rotation="varimax"))

Call:
factanal (factors = 2, covmat = LM, n.obs = 280, rotation = "varimax")
Uniquenesses:

Gaelic English History Arithmetic Algebra Geometry

0.510 0.594 0.644 0.377 0.431 0.628
Loadings:
Factorl Factor?2

Gaelic 0.235 0.659
English 0.323 0.549
History 0.590
Arithmetic 0.771 0.170
Algebra 0.724 0.213
Geometry 0.572 0.210

Factorl Factor2
SS loadings 1.612 1.203



Proportion Var 0.269 0.201
Cumulative Var 0.269 0.469

Test of the hypothesis that 2 factors are sufficient.
The chi square statistic is 2.99 on 4 degrees of freedom.
The p-value is 0.56

Officer ratings

This example consists of 14 ratings of 103 police officers by their superiors including an “overall” rating, presumably not just the
average of the other 13 ratings. The data come from the Getting Started page of the SAS help files for SAS proc factor.

loc<-"http://www.stat.umn.edu/ sandy/courses/8053/Data/officerratings.csv"
data <- read.csv(url(loc) ,header=TRUE)

The column names in this data frame are very long, and to improve readability of the output, we will rename them with short
names.

(names <- data.frame(vname=paste("Q", 1:14, sep=""),
description=names (data)))

vname description
1 Q1 Communication.Skills
2 Q2 Problem.Solving
3 Q3 Learning.Ability
4 Q4 Judgment .Under.Pressure
5 05 Observational.Skills
6 Q6 Willingness.to.Confront.Problems
7 Q7 Interest.in.People
8 Q8 Interpersonal.Sensitivity
9 Q9 Desire.for.Self.Improvement
10 Q10 Appearance
11 Q11 Dependability
12 Q12 Physical.Ability
13 Q13 Integrity
14 Q14 Overall.Rating
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colnames(data) <- names$vname

The likely goal of this analysis is to convert the 13 questions into a small number of interpretable scales.
Let’s look first at the correlation matrix:

print (R <- cor(data), digits=2)

01 Q2 Q3 04 05 Q6 Q7 08 Q9 010 011 Q12 Q13 Q14

Q1 1.00 0.63 0.55 0.55 0.54 0.53 0.44 0.50 0.56 0.49 0.55 0.22 0.51 0.68
02 0.63 1.00 0.57 0.62 0.43 0.50 0.40 0.44 0.41 0.39 0.45 0.32 0.38 0.58
03 0.55 0.57 1.00 0.49 0.62 0.52 0.27 0.19 0.57 0.40 0.51 0.23 0.31 0.59
Q4 0.55 0.62 0.49 1.00 0.37 0.40 0.62 0.61 0.48 0.23 0.55 0.35 0.59 0.66
Q5 0.54 0.43 0.62 0.37 1.00 0.73 0.26 0.17 0.60 0.42 0.56 0.43 0.39 0.58
Q6 0.53 0.50 0.52 0.40 0.73 1.00 0.22 0.13 0.53 0.48 0.49 0.49 0.33 0.59
Q7 0.44 0.40 0.27 0.62 0.26 0.22 1.00 0.81 0.49 0.27 0.61 0.38 0.75 0.61
08 0.50 0.44 0.19 0.61 0.17 0.13 0.81 1.00 0.37 0.26 0.54 0.22 0.69 0.58
Q9 0.56 0.41 0.57 0.48 0.60 0.53 0.49 0.37 1.00 0.45 0.60 0.38 0.57 0.67
Q10 0.49 0.39 0.40 0.23 0.42 0.48 0.27 0.26 0.45 1.00 0.51 0.38 0.41 0.57
Q11 0.55 0.45 0.51 0.55 0.56 0.49 0.61 0.54 0.60 0.51 1.00 0.45 0.65 0.77
Ql2 0.22 0.32 0.23 0.35 0.43 0.49 0.38 0.22 0.38 0.38 0.45 1.00 0.38 0.44
013 0.51 0.38 0.31 0.59 0.39 0.33 0.75 0.69 0.57 0.41 0.65 0.38 1.00 0.67
Ql4 0.68 0.58 0.59 0.66 0.58 0.59 0.61 0.58 0.67 0.57 0.77 0.44 0.67 1.00

This isn’t very helpful because there are too many numbers. One possibility is to imagine that the correlations are a sample
from a common distribution. Let’s look at a histogram and QQplot of the correlations.

r <- R[lower.tri(R)]

par (mfrow=c(1, 2))

hist(r, main="Sample Correlations", xlab="r")
box ()

require(car)

z <= 0.5 % log((1 + r)/(1 - 1))

qqPlot(z, main="Fisher's z-transform")
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If all the population correlations are equal to some value p, and the estimates are independent, then the Fisher’s z-transforms
should be like a random sample from N(.5log[(1 + p)/(1 — p)],1/(n — 3)). The observed sd of the Fisher z-transforms is 0.196,
as compared to \/1/(n — 3) = 0.107. From the qg-plot we might conclude that a few of the correlations are larger than would
be expected if the correlations were an iid sample (a test is also possible here; how would you do it?). This is also consistent
with the observed sd of the correlations larger than the theoretical sd.

If all the correlations were equal and p > 0, then

R=p11"+(1—p)I

This has the form of the factor analysis variance matrix with @ with a single column given by /p1, and ¥ = (1 — p)I, and with
specific variances all equal to 1 — p. The eigenvalues of R are k — (k —1)(1 — p) = 14 — 13(1 — 7) = 7.24 with multiplicity 1 and
1 — p =~ 0.52 with multiplicity k& — 1. The eigenvector corresponding to the first eigenvalue is proportional to 1, and the other
eigenvectors are arbitrary vectors orthogonal to 1.

ev <-eigen(R)
print (ev$values, digits=2)

(1] 7.33 1.77 1.01 0.75 0.68 0.45 0.39 0.31 0.29 0.26 0.25 0.20 0.18 0.14

12



The largest eigenvalue is as expected, but there appears to be a second eigenvalue that might be too large for this model to be
acceptable.

print (ev$vectors[1, ], digits=2)

[1] 0.286 -0.054 -0.330 -0.210 -0.181 -0.429 0.144 -0.166 0.456 0.447 -0.019 -0.193
[13] -0.207 0.089

Without a test and/or standard errors, it’s hard to judge if this is proportional to a vector of 1s or not.
Let’s try factor analysis.

(f3 <- factanal(™ ., data=data, factors=3, rotation="varimax"))
Call:

factanal(x = ~., factors = 3, data = data, rotation = "varimax")
Uniquenesses:

Q1 Q2 Q3 Q4 05 Q6 Q7 08 Q9 Q10 Q11 Q12 Q13 Q14
0.371 0.285 0.407 0.364 0.304 0.332 0.196 0.157 0.407 0.623 0.305 0.689 0.267 0.204

Loadings:
Factorl Factor2?2 Factor3

Q1 0.449 0.357 0.548
Q2 0.295 0.261 0.748
Q3 0.583 0.497
Q4 0.267 0.554 0.508
Q5 0.791 0.255
Q6 0.744 0.337
Q7 0.189 0.864 0.148
08 0.875 0.279
Q9 0.645 0.367 0.204
Q10 0.544 0.213 0.190
Q011 0.599 0.549 0.185
Q12 0.4091 0.258

013 0.381 0.760

Q14 0.616 0.535 0.361
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Factorl FactorZ2 Factor3
SS loadings 3.751 3.439 1.898
Proportion Var 0.268 0.246 0.136
Cumulative Var 0.268 0.514 0.649

Test of the hypothesis that 3 factors are sufficient.
The chi square statistic is 73.98 on 52 degrees of freedom.
The p-value is 0.0242

(f4 <- factanal(™ ., data=data, factors=4, rotation="varimax"))
Call:

factanal(x = ~., factors = 4, data = data, rotation = "varimax")
Uniquenesses:

01 Q2 Q3 Q4 05 Q6 Q7 Q8 Q9 Q10 011 Q12 Q13

014

0.244 0.369 0.408 0.224 0.311 0.321 0.174 0.148 0.418 0.512 0.305 0.581 0.276 0.200

Loadings:
Factorl Factor2?2 Factor3 Factor4
01 0.324 0.213 0.606 0.488

Q2 0.278 0.227 0.695 0.140
Q3 0.472 0.562 0.219
Q4 0.574 0.266 0.603 -0.112
Q5 0.693 0.347 0.290
Q6 0.676 0.403 0.243
Q7 0.873 0.204 0.143

08 0.874 0.246 0.158
Q9 0.344 0.541 0.286 0.300
Q10 0.181 0.397 0.166 0.520
Q11 0.530 0.519 0.225 0.307
Q12 0.269 0.586

Q13 0.742 0.328 0.134 0.220
014 0.515 0.498 0.410 0.346

Factorl Factor2 Factor3 Factor4d
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SS loadings 3.367 2.790 2.242 1.111
Proportion Var 0.240 0.199 0.160 0.079
Cumulative Var 0.240 0.440 0.600 0.679

Test of the hypothesis that 4 factors are sufficient.
The chi square statistic is 53.61 on 41 degrees of freedom.
The p-value is 0.0897

The three-factor solution is inadequate, while the four-factor solution provides a reasonable approximation to the correlation
matrix, explaining about 70% of the variability.

One interpretation of the loadings comes from computing the correlation between X and F:
Cov(X,F)=Cov(QF + U, F) =Q

With X in correlation scale, @ estimates correlations. At least with this rotation the overall rating Q14, has correlation of about
.5 or less with each of the factors. correlates with any of the individual ratings.

As an exercise, let’s refit omitting Q14, the overall score, and look at a scatterplot matrix of Q14 and the factor scores for
the 4-factor solution:

f5 <- factanal(™ . - Q14, data, factors=4, scores="regression")

pairs(cbind(Ql4=data$Q14, f5$scores))
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summary (Im(data$Q14 ~ f5$scores))

Call:
Im(formula = data$Ql4 ~ f5Sscores)

Residuals:
Min 10 Median 30 Max
-2.0447 -0.5038 0.0656 0.5447 2.0988

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 7.0000 0.0751 93.25 < 2e-16
f5$scoresFactorl 0.9356 0.0820 11.41 < 2e-16
f5SscoresFactor?2 0.8460 0.0793 10.67 < 2e-16
f5SscoresFactor3 0.3658 0.0853 4.29 4.3e-05
f5SscoresFactor4 0.2068 0.0779 2.65 0.0093

Residual standard error: 0.762 on 98 degrees of freedom
Multiple R-squared: 0.751, Adjusted R-squared: 0.74
F-statistic: 73.7 on 4 and 98 DF, p-value: <2e-16

Here is a simulation for comparison:

r <- 0.48

p <- 14

S <- r x outer(rep(l, p), rep(1l, p)) + diag(rep(l-r, p))
library (MASS)

set.seed(44)

X <- mvrnorm(163, rep(0, p), S)

r <- R[lower.tri(R)]

par (mfrow=c(1, 2))

hist(r, main="Sample Correlations, Simulation", xlab="r")
box ()

z <= 0.5 % log((1 + r)/(1 - 1))

qqPlot(z, main="Fisher's z-transform, Simulation")
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Sample Correlations, Simulation Fisher's z-transform, Simulation
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esim <- eigen(R)
esim$values

[1] 7.3322 1.7730 1.0053 0.7510 0.6783 0.4525 0.3876 0.3078 0.2852 0.2634 0.2458 0.2009
[13] 0.1762 0.1407

esim$vectors([, 1]

[1] 0.2865 0.2601 0.2512 0.2776 0.2593 0.2519 0.2621 0.2401 0.2828 0.2258 0.3041 0.1998
[13] 0.2818 0.3321

(f3 <- factanal (X, data=X, factors=1, rotation="varimax"))

Call:
factanal (x = X, factors = 1, data = X, rotation = "varimax")

Uniquenesses:
[1] 0.558 0.386 0.512 0.432 0.474 0.485 0.387 0.473 0.431 0.452 0.544 0.465 0.475 0.474
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Loadings:

Factorl

[1,] 0.665
[2,] 0.784
[3,] 0.699
[4,] 0.753
[5,1 0.725
[6,]1 0.718
[7,] 0.783
[8,]1 0.726
[9,]1 0.754
[10,] 0.740
[11,] 0.676
[12,] 0.731
[13,] 0.725
[14,] 0.725

Factorl

SS loadings 7.452

Proportion Var 0.532

Test of the hypothesis that 1 factor is sufficient.
The chi square statistic is 66.73 on 77 degrees of freedom.
The p-value is 0.792

(f4 <- factanal (X, data=X, factors=2, rotation="varimax"))

Call:
factanal (x = X, factors = 2, data = X, rotation = "varimax")

Uniquenesses:
[1] 0.460 0.385 0.502 0.414 0.453 0.486 0.378 0.378 0.423 0.453 0.532 0.457 0.448 0.452

Loadings:
Factorl Factor?2
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[1,] 0.329 0.657
[2,] 0.639 0.455
[3,] 0.474 0.523
[4,] 0.666 0.378
[5,] 0.649 0.356
[6,] 0.542 0.469
[7,] 0.661 0.431
[8,] 0.382 0.690
[9,] 0.639 0.410
[10,]1 0.585 0.453
[11,] 0.453 0.513
[12,] 0.625 0.391
[13,] 0.660 0.340
[14,] 0.466 0.575

~

Factorl Factor2
SS loadings 4.482 3.297
Proportion Var 0.320 0.236
Cumulative Var 0.320 0.556

Test of the hypothesis that 2 factors are sufficient.

The chi square statistic is 46.63 on 64 degrees of freedom.
The p-value is 0.95

19



