

Travelers Analytics: U of M Stats 8053 Insurance Modeling Problem

October 30th, 2013

Nathan Hubbell, FCAS Shengde Liang, Ph.D.

Agenda

- Travelers: Who Are We & How Do We Use Data?
- Insurance 101
 - Basic business terminology
- Insurance Modeling Problem
 - Introduction
 - Exploratory Data Analysis
 - Assignment Walk-through

How is data used at Travelers?

• Loss, Premium, and Financial Data

Research & Development

Unstructured

- Traditional Actuarial Usage
 - Univariate analysis
- Includes external data
 - Multivariate analysis
 - <u>Example</u>: GLMs allow for a nonlinear approach in predictive modeling.
- Future development
 - Continued use of sophisticated statistical methods

Insurance 101

Basics of Insurance

Insurance companies sell insurance policies, which are the promise to pay in the event that a customer experiences a loss.

The unique challenge in insurance is that we don't know what the cost of insuring a customer is when we sell the policy.

Example: The cost to insure an auto customer

It's impossible to predict if someone is going to

- Get into an accident
- The type of accident (hit a telephone pole, hit another vehicle, bodily injury)
- How bad (cost) the accident will be

Business Impact of Loss Experience

To estimate the cost of insuring policyholders, we must predict losses

Two fundamental questions we must answer are:

- **1.** Ratemaking: looking to the future
 - Setting rates for policies
 - How much do we need to charge customers for a policy in order to reach our target profit? *Basic idea: price = cost + profit*
- 2. Reserving: looking at the impact of past experience
 - Setting aside reserve money
 - How much money do we need to set aside to pay for claims?

Note: We cannot precisely predict losses for each individual or business. However, if we group our customers together, we can build statistical models to predict average loss over a group.

Model Building

- Generalized Linear Models (GLMs)
 - Potential response variables:
 - Claims Frequency (# claims / exposure) (e.g. Poisson, Negative Binomial)
 - Loss Severity (loss \$ / claim) (e.g. Gamma, Inverse Gaussian)
 - **Pure Premium** = Frequency * Severity = loss \$ / exposure
 - A common **link function** is g(x) = ln(x).
 - Probability distribution: Tweedie
 - Compound distribution of a **Poisson** claim #
 - And a **Gamma** claim size distribution
 - Large spike at 0 for policies with no claims
 - Wide range of amount in the claims
- Challenges include:
 - Variable selection
 - Bias-variance trade-off

So what is an example of an actual modeling problem in insurance?

What questions do you have about:

- Travelers?
- Insurance?
- Statistics at Travelers?

Business Problem

- Refer to the one page hand out "Kangaroo Auto Insurance Company Modeling Problem" for more details
- You, as a statistician, work for Kangaroo Insurance, an Australian insurance company
- The underwriter in your company would like you to build a pricing model (pure premium) for the auto insurance product.
- The pricing needs to be <u>competitive</u>.
 - accurately reflect the risk your company is taking.
 - enough segmentation among customers.
- The data from policies written in 2004 and 2005 is provided.

Data Information

- Losses for each vehicle from policies written in 2004 and 2005.
- Each policy was written as one-year originally.
- There are 67,856 policies (vehicles) in the data.
- Ten (10) variables in the data.

veh_value	exposure	clm	numclaims	claimcst0	veh_body	veh_age	gender	area	agecat	_OBST	AT_		
1.06	0.303901	0	0	0	HBACK	3	F	С	2	01101	0	0	0
1.03	0.648871	0	0	0	HBACK	2	F	А	4	01101	0	0	0
3.26	0.569473	0	0	0	UTE	2	F	E	2	01101	0	0	0
4.14	0.317591	0	0	0	STNWG	2	F	D	2	01101	0	0	0
1.38	0.854209	0	0	0	HBACK	2	Μ	А	2	01101	0	0	0
1.22	0.854209	0	0	0	HBACK	3	Μ	С	4	01101	0	0	0
1	0.492813	0	0	0	HBACK	2	F	С	4	01101	0	0	0
7.04	0.314853	0	0	0	STNWG	1	Μ	А	5	01101	0	0	0
1.66	0.4846	1	1	669.51	SEDAN	3	Μ	В	6	01101	0	0	0
2.35	0.391513	0	0	0	SEDAN	2	Μ	С	4	01101	0	0	0
1.51	0.99384	1	1	806.61	SEDAN	3	F	F	4	01101	0	0	0
0.76	0.539357	1	1	401.8055	HBACK	3	М	С	4	01101	0	0	0
1.89	0.654346	1	2	1811.71	STNWG	3	М	F	2	01101	0	0	0

• vehicle value, in \$10,000s, a numerical variable.

• The covered period, in years, a numerical variable (always between 0 and 1) - The amount of time a vehicle was "exposed" to potential accidents.

- An indicator whether the vehicle/driver had at least one claim during the covered period, 0=No, 1=Yes.
- 4,624/67,856 had at least one claim.

- Number of claims during covered period, integer values.
- 4,624/67,856 had at least one claim.

271

18

2

• The total amount of the claims, in dollars, numeric values.

• The age group of insured vehicle, coded as 1, 2, 3, and 4, with 1 being the youngest.

• The gender of driver, F (female) or M (male)

y

38,603

29,253

• Driver's age category, coded as 1, 2, 3, 4, 5 and 6, with 1 being the youngest.

Questions May Be Asked

- What models did you fit?
 - what is your assumption(s)?
 - is your assumption reasonable?
 - how do you check your assumption(s)?
- What is the impact of each variable?
 - are all variables equally important?
 - if not, which ones are more important? How do you measure it?
- How do you check your model actually works (genaralizability)?

What questions do you have about the "Kangaroo Insurance Company Modeling Problem"?

- Contacts
 - Nathan Hubbell <u>NHUBBELL@travelers.com</u>
 - Shengde Liang <u>SLIANG@travelers.com</u>
- Travelers Careers
 - http://www.travelers.com/careers
 - Actuarial and Analytics Research Internship and Full Time
- A Practitioner's Guide to Generalized Linear Models
 - <u>http://www.towerswatson.com/assets/pdf/2380/Anderson_et_al_Ed_ition_3.pdf</u>

