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Incomplete Data

Consider two sample spaces Y and X

The observed data y are a realization from Y

The corresponding x in X is not observable

A map F: Y −→X

The preimage F−1(y) is called the germ at y

x includes data and parameters
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EM Algorithm

f (x |φ) is a family of sampling densities, and

g(y |φ) =

∫
F−1(y)

f (x |φ) dx

The EM algorithm aims to find a φ that maximizes g(y |φ) given an
observed y , while making essential use of f (x |φ)

Each iteration includes two steps:

The expectation step (E-step) uses current estimate of the parameter
to find (expectation of) complete data

The maximization step (M-step) uses the updated data from the
E-step to find a maximum likelihood estimate of the parameter

Stop the algorithm when change of estimated parameter reaches a
preset threshold.
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A Multinomial Example

Consider data from Rao(1965) with 197 animals multinomially distributed
in four categories:

y = (y1, y2, y3, y4) = (125, 18, 20, 34)

A genetic model specifies cell probabilities:

( 1
2 + 1

4π,
1
4 (1− π), 1

4 (1− π), 1
4π)

g(y|π) =
(y1 + y2 + y3 + y4)!

y1!y2!y3!y4!
( 1

2 + 1
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4 −
1
4π)y2( 1

4 −
1
4π))y3( 1

4π)y4
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A Multinomial Example: continued

Complete data: a multinomial population

x = (x1, x2, x3, x4, x5)

Cell probabilities:

( 1
2 ,

1
4π,

1
4 (1− π), 1

4 (1− π), 1
4π)

f (x|π) =
(x1 + x2 + x3 + x4 + x5)!

x1!x2!x3!x4!x5!
( 1

2 )x1( 1
4π)x2( 1

4−
1
4π)x3( 1

4−
1
4π))x4( 1

4π)x5

Next we will show how EM algorithm works in this example.
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A Multinomial Example: E-step

Let π(p) be the value of π after p iterations.

(x3, x4, x5) are fixed in this example.

x1 + x2 = y1 = 125 and π = π(p) gives

x
(p)
1 = 125 ·

1
2

1
2 + 1

4π
(p)
, x

(p)
2 = 125 ·

1
4π

(p)

1
2 + 1

4π
(p)

The next step will use the complete data estimated in this step.
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A Multinomial Example: M-step

We use (x
(p)
1 , x

(p)
2 , 18, 20, 34) as if these estimated data were the observed

data, and find the maximum likelihood estimate of π, denoted π(p+1) .

π(p+1) =
x

(p)
2 + 34

x
(p)
2 + 34 + 18 + 20

And we go back to the E-step to complete the (p + 1)-th iteration.
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We start with π(0) = 0.5, and the algorithm converges in eight steps:

At each step we use π(p) = π∗ and π(p+1) = π∗ to solve for π∗ as the
maximum-likelihood estimate of π .



Applications of EM algorithm

Missing Data

Multinomial sampling
Normal linear model
Multivariate normal sampling

Grouping

Censoring and Truncation

Finite Mixtures

Hyperparameter Estimation

Iteratively Reweighted Least Squares

Factor Analysis
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Example: Old Faithful

Waiting time between eruptions and the duration of the eruption for the
Old Faithful geyser in Yellowstone National Park, Wyoming.



Old Faithful: EM Setup

X = Waiting time between eruptions.
p = Probability that eruption is of a shorter waiting time
θ = (p, µ1, µ2, σ1, σ2)

fX (x |θ) = pN(µ1, σ1) + (1− p)N(µ2, σ2)

Define:

Yi =

{
1 Xi has shorter waiting time

0 Xi has longer waiting time

Yi ∼ Bern(p) and Yi is missing data



Old Faithful: E step

Yi |Xi , θ
(k) ∼ Bin(1, p

(k)
i )

where

p
(k)
i =

p(k)N(µ
(k)
1 , σ

(k)
1 )

p(k)N(µ
(k)
1 , σ

(k)
1 ) + (1− p(k))N(µ

(k)
2 , σ

(k)
2 )

at Xi

Thus,
E(Yi |Xi , θ

(k)) = p
(k)
i



Old Faithful: M step

L(θ|X ,Y ) =
n∏

i=1

pYi [N(µ1, σ1)]Yi (1− p)1−Yi [N(µ2, σ2)]1−Yi

Take log and replace Yi with p
(k)
i , then maximize for θ.

p(k+1) =
1

n

n∑
i=1

p
(k)
i

µ
(k+1)
1 =

∑n
i=1 p

(k)
i Xi∑n

i=1 p
(k)
i

σ
(k+1)
1

2
=

∑n
i=1 p

(k)
i (Xi − µ

(k+1)
1 )2∑n

i=1 p
(k)
i

µ
(k+1)
2 =

∑n
i=1(1− p

(k)
i )Xi∑n

i=1(1− p
(k)
i )

σ
(k+1)
2

2
=

∑n
i=1(1− p

(k)
i )(Xi − µ

(k+1)
1 )2∑n

i=1(1− p
(k)
i )



Old Faithful: Starting Values

p(0) = 0.5, µ
(0)
1 = 52, µ

(0)
2 = 82, σ

(0)
1 = 4, σ

(0)
2 = 4



Estimates
em <- function(W,s){

Ep <- s[1]*dnorm(W, s[2], sqrt(s[4]))/

(s[1]*dnorm(W, s[2], sqrt(s[4]))+

(1-s[1])*dnorm(W, s[3], sqrt(s[5])))

s[1] <- mean(Ep)

s[2] <- sum(Ep*W) / sum(Ep)

s[3] <- sum((1-Ep)*W) / sum(1-Ep)

s[4] <- sum(Ep*(W-s[2])^2) / sum(Ep)

s[5] <- sum((1-Ep)*(W-s[3])^2) / sum(1-Ep)

s

}

Iterations

iter <- function(W, s){

s1 <- em(W,s)

cutoff <- rep(.0001,5)

if(sum(s-s1>cutoff) > 0){

s = s1

iter(W,s)

}

else s1

}

Implementation
> W <- faithful$waiting

> s <- c(0.5, 52, 82, 16, 16)

> iter(W,s)

[1] 0.3608866 54.6148747 80.0910812 34.4714038 34.4301694



Estimated Distribution



Multiple Imputation Overview

Imputation is ’filling in’ missing data with plausible values

Rubin (1987) conceived a method, known as multiple imputation, for
valid inferences using the imputed data

Multiple Imputation is a Monte Carlo method where missing values are
imputed m > 1 separate times (typically 3 ≤ m ≤ 10)

Multiple Imputation is a three step procedure:

Imputation: Impute the missing entries in the data m seperate times
Analysis: Analyze each of the m complete data sets seperately
Pooling: Combine the m analysis results into a final result



Theory

Q is some statistic of scientific interest in the population

Could be population means, regression coefficients, population
variances, etc.
Q cannot depend on the particular sample

We estimate Q by Q̂ or Q̄ along with a valid estimate of its
uncertainty

Q̂ is the estimate from complete data
Q̂ accounts from sampling uncertainty
Q̄ is a pooled estimate
Q̄ accounts for sampling and missing data uncertainty



Q̂ and Q̄

Q̂i is our estimate from the i-th imputation

Q̂i has k parameters
Q̂i k × 1 column vector

To compute Q̄ we simply average over all m imputations

Q̄ = 1
m

m∑
i=1

Q̂i



Within/Between Imputation Variance

Let U be the squared standard error of Q

We estimate U by Ū

Ûi is the covariance matrix of Q̂i , our estimate from the i-th imputation

Ū = 1
m

m∑
i=1

Ûi

Notice: Ûi is the variance within the estimate Q̂i

Let B be the variance between the m complete-data estimates:

B =
1

m − 1

m∑
i=1

(Q̂i − Q̄)(Q̂i − Q̄)ᵀ



Total Variance

Let T denote the total variance of Q̄

T 6= Ū + B

T is computed by:

T = Ū + B +
B

m

= Ū + (1 +
1

m
)B

where B
m is simulation error.



Summary

T = Ū + (1 + 1
m )B

The intuition for T is as follows:

Ū is the variance in Q̄ caused by the fact that we are using a sample.
B is the variance caused by the fact that there were missing values in
our sample
B
m is the simulation variance from the fact that Q̄ is based on a finite
m.



Tests and Confidence Intervals

For multiple imputation to be valid, we must first assume, that with
complete data

(Q̂ − Q)/
√
U ∼ N (0, 1)

would be appropriate

Then, after our multiple imputation steps, tests and confidence
intervals are based on a Student’s t-approximation

(Q̄ − Q)/
√
T ∼ tv

v = (m − 1)

[
1 +

Ū

(1 + 1
m

)B

]2



Imputation Step

The validity of inference relies on how imputations are generated.

Rubin proposed three conditions under which multiple imputation
inference is ”randomization-valid”

E (Q̄|Y ) = Q̂ (1)

E (Ū|Y ) = U (2)

(1 +
1

m
)E (B|Y ) ≥ V (Q̄) (3)

Result: If the complete-data inference is randomization valid and the
our imputation procedure satisfies the proceeding conditions, then our
finite m multiple imputation inference is also randomization-valid.

Not always easy to get these conditions, often requires Bayesian
approach



Simple Example in R

The mice package does multiple imputation in R

> library(mice)

> head(nhanes)

age bmi hyp chl

1 1 NA NA NA

2 2 22.7 1 187

3 1 NA 1 187

4 3 NA NA NA

5 1 20.4 1 113

6 3 NA NA 184

We’re interested in the simple linear regression of BMI on Age

Q = β1 from E (BMI |Age) = β0 + Ageᵀβ1



Simple Example in R

The mice package has some nice functions that summarize our
missing data

> md.pattern(nhanes)

age hyp bmi chl

13 1 1 1 1 0

1 1 1 0 1 1

3 1 1 1 0 1

1 1 0 0 1 2

7 1 0 0 0 3

0 8 9 10 27

Above, the output shows we have 13 complete rows, 1 missing only
BMI, 3 missing Cholesterol, 1 missing Hypertension and BMI, and 7
missing Hypertension, BMI, and Cholesterol.



Simple Example in R

> library(VIM)

> marginplot(nhanes[c(1,2)], col = c("blue", "red",

"orange"))

9
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Imputation Methods in mice

Method Description Scale type

pmm Predictive mean matching numeric
norm Bayesian linear regression numeric
norm.nob Linear regression, non-Bayesian numeric
norm.boot Linear regression with bootstrap numeric
mean Unconditional mean imputation numeric
2L.norm Two-level linear model numeric
logreg Logistic regression factor, 2 levels
logreg.boot Logistic regression with bootstrap factor, 2 level
polyreg Multinomial logit model factor > 2 levels
polr Ordered logit model ordered, > 2 levels
lda Linear discriminant analysis factor
sample Simple random sample any



Imputation Approaches

Except in trivial settings, the probability distributions that we draw
from to give ’proper’ multiple imputation tend to be complicated

Often requires MCMC

In our example, we will use an approach called Predictive Mean
Matching

Calculate Ŷobserved = {ŷi = xᵀi β : i ∈ Observed}
For ymissing , calculate Ŷmissing = {ŷj = xᵀi β : j ∈ Missing , i ∈ Observed}
Among our Ŷobserved , locate the observation whose predicted value is
closet to ŷj for all j ∈ Missing and impute that value
For m = n, impute random draws the from the n observations whose
predicted value is closest to ŷm



Predictive Mean Matching
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mice() for Multiple Imputation

We use the mice() function to run multiple imputation using
predictive mean modeling

> imp.nhanes<-mice(nhanes,m=5,method="pmm",print=FALSE,seed=8053)

We can look at our imputed values for BMI and notice these are
sampled observed values

> imp.nhanes$imp$bmi

1 2 3 4 5

1 22.5 25.5 27.2 22.0 33.2

3 26.3 30.1 30.1 35.3 33.2

16 22.5 25.5 29.6 30.1 28.7

21 25.5 35.3 27.5 30.1 35.3

> na.omit(nhanes$bmi)

[1] 22.7 20.4 22.5 30.1 22.0 21.7 28.7 29.6 27.2 26.3

[11] 35.3 25.5 33.2 27.5 24.9 27.4



Q̄

We fit five separate linear regression models

> fit<-with(imp.nhanes, lm(bmi~age))

We average our estimates using pool() from the mice package

> est<-pool(fit)

> est$qbar

(Intercept) age

30.24 -2.06



Inference

Using the mice() package, we can make valid inferences

> summary(est)

est se t df

(Intercept) 30.242705 2.944000 10.272659 4.719653

age -2.060628 1.288428 -1.599336 7.255069

Pr(>|t|) lo 95 hi 95 nmis

(Intercept) 0.0002086732 22.537686 37.9477244 NA

age 0.1522742652 -5.085695 0.9644395 0

fmi lambda

(Intercept) 0.7087166 0.6068631

age 0.5605660 0.4541020

p ≈ .15 =⇒ no age effect



Simple Example in R

Questions?
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