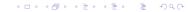
Missing Data EM Algorithm and Multiple Imputation

Aaron Molstad, Dootika Vats, Li Zhong

University of Minnesota School of Statistics

December 4, 2013



 \bullet Consider two sample spaces ${\mathscr Y}$ and ${\mathscr X}$

- \bullet Consider two sample spaces ${\mathscr Y}$ and ${\mathscr X}$
- The observed data y are a realization from ${\mathscr Y}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- \bullet Consider two sample spaces ${\mathscr Y}$ and ${\mathscr X}$
- The observed data y are a realization from ${\mathscr Y}$
- The corresponding x in ${\mathscr X}$ is not observable

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- \bullet Consider two sample spaces ${\mathscr Y}$ and ${\mathscr X}$
- The observed data y are a realization from ${\mathscr Y}$
- The corresponding x in \mathscr{X} is not observable

• A map
$$F: \mathscr{Y} \longrightarrow \mathscr{X}$$

• The preimage $\mathbf{F}^{-1}(y)$ is called the germ at y

- \bullet Consider two sample spaces ${\mathscr Y}$ and ${\mathscr X}$
- The observed data y are a realization from ${\mathscr Y}$
- The corresponding x in \mathscr{X} is not observable

• A map
$$F: \mathscr{Y} \longrightarrow \mathscr{X}$$

• The preimage $\mathbf{F}^{-1}(y)$ is called the germ at y

• x includes data and parameters

• $f(x|\phi)$ is a family of sampling densities, and

$$g(y|\phi) = \int_{\mathbf{F}^{-1}(y)} f(x|\phi) \ dx$$

• $f(x|\phi)$ is a family of sampling densities, and

$$g(y|\phi) = \int_{\mathbf{F}^{-1}(y)} f(x|\phi) \ dx$$

The EM algorithm aims to find a φ that maximizes g(y|φ) given an observed y, while making essential use of f(x|φ)

• $f(x|\phi)$ is a family of sampling densities, and

$$g(y|\phi) = \int_{\mathbf{F}^{-1}(y)} f(x|\phi) \ dx$$

- The EM algorithm aims to find a φ that maximizes g(y|φ) given an observed y, while making essential use of f(x|φ)
- Each iteration includes two steps:

• $f(x|\phi)$ is a family of sampling densities, and

$$g(y|\phi) = \int_{\mathbf{F}^{-1}(y)} f(x|\phi) \ dx$$

- The EM algorithm aims to find a φ that maximizes g(y|φ) given an observed y, while making essential use of f(x|φ)
- Each iteration includes two steps:
- The expectation step (E-step) uses current estimate of the parameter to find (expectation of) complete data

• $f(x|\phi)$ is a family of sampling densities, and

$$g(y|\phi) = \int_{\mathbf{F}^{-1}(y)} f(x|\phi) \ dx$$

- The EM algorithm aims to find a φ that maximizes g(y|φ) given an observed y, while making essential use of f(x|φ)
- Each iteration includes two steps:
- The expectation step (E-step) uses current estimate of the parameter to find (expectation of) complete data
- The maximization step (M-step) uses the updated data from the E-step to find a maximum likelihood estimate of the parameter

• $f(x|\phi)$ is a family of sampling densities, and

$$g(y|\phi) = \int_{\mathbf{F}^{-1}(y)} f(x|\phi) \ dx$$

- The EM algorithm aims to find a φ that maximizes g(y|φ) given an observed y, while making essential use of f(x|φ)
- Each iteration includes two steps:
- The expectation step (E-step) uses current estimate of the parameter to find (expectation of) complete data
- The maximization step (M-step) uses the updated data from the E-step to find a maximum likelihood estimate of the parameter
- Stop the algorithm when change of estimated parameter reaches a preset threshold.

Consider data from Rao(1965) with 197 animals multinomially distributed in four categories:

$$\mathbf{y} = (y_1, y_2, y_3, y_4) = (125, 18, 20, 34)$$

A genetic model specifies cell probabilities:

$$(\frac{1}{2} + \frac{1}{4}\pi, \frac{1}{4}(1-\pi), \frac{1}{4}(1-\pi), \frac{1}{4}\pi)$$

Consider data from Rao(1965) with 197 animals multinomially distributed in four categories:

$$\mathbf{y} = (y_1, y_2, y_3, y_4) = (125, 18, 20, 34)$$

A genetic model specifies cell probabilities:

$$(\frac{1}{2} + \frac{1}{4}\pi, \frac{1}{4}(1 - \pi), \frac{1}{4}(1 - \pi), \frac{1}{4}\pi)$$
$$g(\mathbf{y}|\pi) = \frac{(y_1 + y_2 + y_3 + y_4)!}{y_1!y_2!y_3!y_4!}(\frac{1}{2} + \frac{1}{4}\pi)^{y_1}(\frac{1}{4} - \frac{1}{4}\pi)^{y_2}(\frac{1}{4} - \frac{1}{4}\pi))^{y_3}(\frac{1}{4}\pi)^{y_4}$$

$$\mathbf{x} = (x_1, x_2, x_3, x_4, x_5)$$

(ロ)、(型)、(E)、(E)、 E) の(の)

$$\mathbf{x} = (x_1, x_2, x_3, x_4, x_5)$$

Cell probabilities:

$$(\frac{1}{2}, \frac{1}{4}\pi, \frac{1}{4}(1-\pi), \frac{1}{4}(1-\pi), \frac{1}{4}\pi)$$

$$\mathbf{x} = (x_1, x_2, x_3, x_4, x_5)$$

Cell probabilities:

$$(\frac{1}{2}, \frac{1}{4}\pi, \frac{1}{4}(1-\pi), \frac{1}{4}(1-\pi), \frac{1}{4}\pi)$$
$$f(\mathbf{x}|\pi) = \frac{(x_1 + x_2 + x_3 + x_4 + x_5)!}{x_1! x_2! x_3! x_4! x_5!} (\frac{1}{2})^{x_1} (\frac{1}{4}\pi)^{x_2} (\frac{1}{4} - \frac{1}{4}\pi)^{x_3} (\frac{1}{4} - \frac{1}{4}\pi)^{x_4} (\frac{1}{4}\pi)^{x_5}$$

$$\mathbf{x} = (x_1, x_2, x_3, x_4, x_5)$$

Cell probabilities:

$$(\frac{1}{2}, \frac{1}{4}\pi, \frac{1}{4}(1-\pi), \frac{1}{4}(1-\pi), \frac{1}{4}\pi)$$
$$f(\mathbf{x}|\pi) = \frac{(x_1 + x_2 + x_3 + x_4 + x_5)!}{x_1! x_2! x_3! x_4! x_5!} (\frac{1}{2})^{x_1} (\frac{1}{4}\pi)^{x_2} (\frac{1}{4} - \frac{1}{4}\pi)^{x_3} (\frac{1}{4} - \frac{1}{4}\pi))^{x_4} (\frac{1}{4}\pi)^{x_5}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Next we will show how EM algorithm works in this example.

- Let $\pi^{(p)}$ be the value of π after p iterations.
- (x_3, x_4, x_5) are fixed in this example.

•
$$x_1 + x_2 = y_1 = 125$$
 and $\pi = \pi^{(p)}$ gives

- Let $\pi^{(p)}$ be the value of π after p iterations.
- (x_3, x_4, x_5) are fixed in this example.

•
$$x_1 + x_2 = y_1 = 125$$
 and $\pi = \pi^{(p)}$ gives

$$x_1^{(p)} = 125 \cdot \frac{\frac{1}{2}}{\frac{1}{2} + \frac{1}{4}\pi^{(p)}}, \qquad x_2^{(p)} = 125 \cdot \frac{\frac{1}{4}\pi^{(p)}}{\frac{1}{2} + \frac{1}{4}\pi^{(p)}}$$

- Let $\pi^{(p)}$ be the value of π after p iterations.
- (x_3, x_4, x_5) are fixed in this example.

•
$$x_1 + x_2 = y_1 = 125$$
 and $\pi = \pi^{(p)}$ gives

$$x_1^{(p)} = 125 \cdot \frac{\frac{1}{2}}{\frac{1}{2} + \frac{1}{4}\pi^{(p)}}, \qquad x_2^{(p)} = 125 \cdot \frac{\frac{1}{4}\pi^{(p)}}{\frac{1}{2} + \frac{1}{4}\pi^{(p)}}$$

• The next step will use the complete data estimated in this step.

We use $(x_1^{(p)}, x_2^{(p)}, 18, 20, 34)$ as if these estimated data were the observed data, and find the maximum likelihood estimate of π , denoted $\pi^{(p+1)}$.

We use $(x_1^{(p)}, x_2^{(p)}, 18, 20, 34)$ as if these estimated data were the observed data, and find the maximum likelihood estimate of π , denoted $\pi^{(p+1)}$.

$$\pi^{(p+1)} = \frac{x_2^{(p)} + 34}{x_2^{(p)} + 34 + 18 + 20}$$

◆□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We use $(x_1^{(p)}, x_2^{(p)}, 18, 20, 34)$ as if these estimated data were the observed data, and find the maximum likelihood estimate of π , denoted $\pi^{(p+1)}$.

$$\pi^{(p+1)} = \frac{x_2^{(p)} + 34}{x_2^{(p)} + 34 + 18 + 20}$$

And we go back to the E-step to complete the (p + 1)-th iteration.

We start with $\pi^{(0)} = 0.5$, and the algorithm converges in eight steps:

P	$\pi^{(p)}$	$\pi^{(p)}-\pi^*$	$(\pi^{(p+1)} - \pi^*) \div (\pi^{(p)} - \pi^*)$
0	0-500000000	0.126821498	0.1465
1	0.608247423	0.018574075	0-1346
2	0-624321051	0.002500447	0.1330
3	0.626488879	0.000332619	0.1328
4	0.626777323	0.000044176	0.1328
5	0.626815632	0.000005866	0.1328
6	0-626820719	0.000000779	
7	0.626821395	0.000000104	
8	0.626821484	0.000000014	—

At each step we use $\pi^{(p)} = \pi^*$ and $\pi^{(p+1)} = \pi^*$ to solve for π^* as the maximum-likelihood estimate of π .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Multinomial sampling
- Normal linear model
- Multivariate normal sampling

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Multinomial sampling
- Normal linear model
- Multivariate normal sampling

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Grouping

- Multinomial sampling
- Normal linear model
- Multivariate normal sampling

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Grouping
- Censoring and Truncation

- Multinomial sampling
- Normal linear model
- Multivariate normal sampling

- Grouping
- Censoring and Truncation
- Finite Mixtures

- Multinomial sampling
- Normal linear model
- Multivariate normal sampling

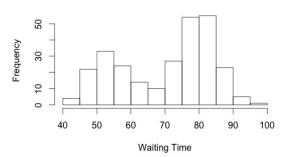
- Grouping
- Censoring and Truncation
- Finite Mixtures
- Hyperparameter Estimation

- Multinomial sampling
- Normal linear model
- Multivariate normal sampling
- Grouping
- Censoring and Truncation
- Finite Mixtures
- Hyperparameter Estimation
- Iteratively Reweighted Least Squares

- Multinomial sampling
- Normal linear model
- Multivariate normal sampling
- Grouping
- Censoring and Truncation
- Finite Mixtures
- Hyperparameter Estimation
- Iteratively Reweighted Least Squares

Factor Analysis

Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming.



Histogram

イロト 不得 トイヨト イヨト

э.

X = Waiting time between eruptions.

p = Probability that eruption is of a shorter waiting time $\theta = (p, \mu_1, \mu_2, \sigma_1, \sigma_2)$

$$f_X(x|\theta) = p\mathsf{N}(\mu_1, \sigma_1) + (1-p)\mathsf{N}(\mu_2, \sigma_2)$$

Define:

$$Y_i = \begin{cases} 1 & X_i \text{ has shorter waiting time} \\ 0 & X_i \text{ has longer waiting time} \end{cases}$$

 $Y_i \sim \text{Bern}(p)$ and Y_i is missing data

$$Y_i|X_i, \theta^{(k)} \sim \operatorname{Bin}(1, p_i^{(k)})$$

where

Thus,

$$p_i^{(k)} = \frac{p^{(k)} \mathsf{N}(\mu_1^{(k)}, \sigma_1^{(k)})}{p^{(k)} \mathsf{N}(\mu_1^{(k)}, \sigma_1^{(k)}) + (1 - p^{(k)}) \mathsf{N}(\mu_2^{(k)}, \sigma_2^{(k)})} \text{ at } X_i$$
$$\mathsf{E}(Y_i | X_i, \theta^{(k)}) = p_i^{(k)}$$

Old Faithful: M step

$$L(\theta|X,Y) = \prod_{i=1}^{n} p^{Y_i} [N(\mu_1,\sigma_1)]^{Y_i} (1-p)^{1-Y_i} [N(\mu_2,\sigma_2)]^{1-Y_i}$$

Take log and replace Y_i with $p_i^{(k)}$, then maximize for θ .

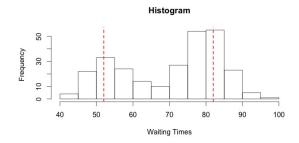
$$p^{(k+1)} = \frac{1}{n} \sum_{i=1}^{n} p_i^{(k)}$$

$$\mu_1^{(k+1)} = \frac{\sum_{i=1}^{n} p_i^{(k)} X_i}{\sum_{i=1}^{n} p_i^{(k)}} \qquad \sigma_1^{(k+1)^2} = \frac{\sum_{i=1}^{n} p_i^{(k)} (X_i - \mu_1^{(k+1)})^2}{\sum_{i=1}^{n} p_i^{(k)}}$$

$$\mu_2^{(k+1)} = \frac{\sum_{i=1}^{n} (1 - p_i^{(k)}) X_i}{\sum_{i=1}^{n} (1 - p_i^{(k)})} \qquad \sigma_2^{(k+1)^2} = \frac{\sum_{i=1}^{n} (1 - p_i^{(k)}) (X_i - \mu_1^{(k+1)})^2}{\sum_{i=1}^{n} (1 - p_i^{(k)})}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Old Faithful: Starting Values



$$p^{(0)} = 0.5, \mu_1^{(0)} = 52, \mu_2^{(0)} = 82, \sigma_1^{(0)} = 4, \sigma_2^{(0)} = 4$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

Estimates

```
em <- function(W,s){</pre>
```

```
Ep <- s[1]*dnorm(W, s[2], sqrt(s[4]))/
  (s[1]*dnorm(W, s[2], sqrt(s[4]))+
  (1-s[1])*dnorm(W, s[3], sqrt(s[5])))</pre>
```

```
s[1] <- mean(Ep)
s[2] <- sum(Ep*W) / sum(Ep)
s[3] <- sum((1-Ep)*W) / sum(1-Ep)
s[4] <- sum(Ep*(W-s[2])^2) / sum(Ep)
s[5] <- sum((1-Ep)*(W-s[3])^2) / sum(1-Ep)
s
}</pre>
```

Iterations

```
iter <- function(W, s){
    s1 <- em(W,s)
    cutoff <- rep(.0001,5)
    if(sum(s-s1>cutoff) > 0){
        s = s1
        iter(W,s)
    }
    else s1
    }
```

Implementation

```
> W <- faithful$waiting
> s <- c(0.5, 52, 82, 16, 16)
> iter(W,s)
[1] 0.3608866 54.6148747 80.0910812 34.4714038 34.4301694
```

Estimated Distribution



Waiting Time

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Imputation is 'filling in' missing data with plausible values
- Rubin (1987) conceived a method, known as multiple imputation, for valid inferences using the imputed data
 - Multiple Imputation is a Monte Carlo method where missing values are imputed m > 1 separate times (typically 3 ≤ m ≤ 10)
- Multiple Imputation is a three step procedure:
 - Imputation: Impute the missing entries in the data m seperate times

- Analysis: Analyze each of the *m* complete data sets seperately
- **Pooling**: Combine the *m* analysis results into a final result

- Q is some statistic of scientific interest in the population
 - Could be population means, regression coefficients, population variances, etc.
 - Q cannot depend on the particular sample
- We estimate Q by \hat{Q} or \bar{Q} along with a valid estimate of its uncertainty
 - \hat{Q} is the estimate from complete data
 - \hat{Q} accounts from sampling uncertainty
 - \overline{Q} is a pooled estimate
 - \bar{Q} accounts for sampling and missing data uncertainty

(日) (同) (三) (三) (三) (○) (○)

• \hat{Q}_i is our estimate from the *i*-th imputation

- \hat{Q}_i has k parameters
- $\hat{Q}_i \ k imes 1$ column vector
- ${\, \bullet \,}$ To compute \bar{Q} we simply average over all m imputations

$$\bar{Q} = rac{1}{m} \sum_{i=1}^{m} \hat{Q}_i$$

Within/Between Imputation Variance

- Let U be the squared standard error of Q
- We estimate U by \bar{U}
 - \hat{U}_i is the covariance matrix of \hat{Q}_i , our estimate from the *i*-th imputation

$$\bar{U} = \frac{1}{m} \sum_{i=1}^{m} \hat{U}_i$$

- Notice: \hat{U}_i is the variance **within** the estimate \hat{Q}_i
- Let *B* be the variance **between** the *m* complete-data estimates:

$$B=rac{1}{m-1}\sum_{i=1}^m (\hat{Q}_i-ar{Q})(\hat{Q}_i-ar{Q})^\intercal$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Let T denote the total variance of \overline{Q} • $T \neq \overline{U} + B$
- T is computed by:

$$egin{aligned} T &= ar{U} + B + rac{B}{m} \ &= ar{U} + (1 + rac{1}{m})B \end{aligned}$$

where $\frac{B}{m}$ is simulation error.

- $T = \overline{U} + (1 + \frac{1}{m})B$
- The intuition for T is as follows:
 - \overline{U} is the variance in \overline{Q} caused by the fact that we are using a sample.
 - *B* is the variance caused by the fact that there were missing values in our sample
 - $\frac{B}{m}$ is the simulation variance from the fact that \overline{Q} is based on a finite m.

 For multiple imputation to be valid, we must first assume, that with complete data

$$(\hat{Q}-Q)/\sqrt{U}\sim \mathscr{N}(0,1)$$

would be appropriate

• Then, after our multiple imputation steps, tests and confidence intervals are based on a Student's t-approximation

$$ig(ar{Q}-Qig)/\sqrt{T}\sim t_{V}$$
 $v=(m-1)\left[1+rac{ar{U}}{(1+rac{1}{m})B}
ight]^{2}$

- The validity of inference relies on how imputations are generated.
- Rubin proposed three conditions under which multiple imputation inference is "randomization-valid"

$$E(\bar{Q}|Y) = \hat{Q}$$
 (1)

$$E(\bar{U}|Y) = U \tag{2}$$

$$(1+\frac{1}{m})E(B|Y) \ge V(\bar{Q}) \tag{3}$$

- **Result**: If the complete-data inference is randomization valid and the our imputation procedure satisfies the proceeding conditions, then our finite *m* multiple imputation inference is also randomization-valid.
 - Not always easy to get these conditions, often requires Bayesian approach

Simple Example in R

• The mice package does multiple imputation in R

- > library(mice)
- > head(nhanes)

	age	bmi hyp		chl
1	1	NA	NA	NA
2	2	22.7	1	187
3	1	NA	1	187
4	3	NA	NA	NA
5	1	20.4	1	113
6	3	NA	NA	184

• We're interested in the simple linear regression of BMI on Age

• $Q = \beta_1$ from $E(BMI|Age) = \beta_0 + Age^{\intercal}\beta_1$

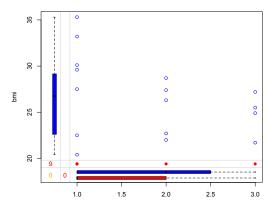
Simple Example in R

- The *mice* package has some nice functions that summarize our missing data
- > md.pattern(nhanes)
 age hyp bmi chl
 13 1 1 1 1 0
 1 1 1 0 1 1
 3 1 1 1 0 1
 1 1 0 0 1 2
 7 1 0 0 0 3
 0 8 9 10 27
 - Above, the output shows we have 13 complete rows, 1 missing only BMI, 3 missing Cholesterol, 1 missing Hypertension and BMI, and 7 missing Hypertension, BMI, and Cholesterol.

Simple Example in R

> library(VIM)

> marginplot(nhanes[c(1,2)], col = c("blue", "red", "orange"))



age

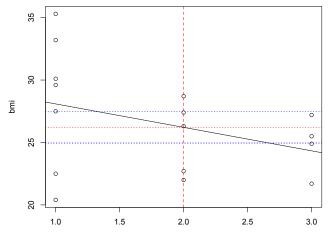
▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Method	Description	Scale type	
pmm	Predictive mean matching	numeric	
norm	Bayesian linear regression	numeric	
norm.nob	Linear regression, non-Bayesian	numeric	
norm.boot	Linear regression with bootstrap	numeric	
mean	Unconditional mean imputation	numeric	
2L.norm	Two-level linear model	numeric	
logreg	Logistic regression	factor, 2 levels	
logreg.boot	Logistic regression with bootstrap	factor, 2 level	
polyreg	Multinomial logit model	factor > 2 levels	
polr	Ordered logit model	ordered, > 2 levels	
lda	Linear discriminant analysis	factor	
sample	Simple random sample	any	

- Except in trivial settings, the probability distributions that we draw from to give 'proper' multiple imputation tend to be complicated
 Often requires MCMC
- In our example, we will use an approach called Predictive Mean Matching
 - Calculate $\hat{Y}_{observed} = \{\hat{y}_i = x_i^\mathsf{T}\beta : i \in Observed\}$
 - For $y_{missing}$, calculate $\hat{Y}_{missing} = \{\hat{y}_j = x_i^{\mathsf{T}}\beta : j \in Missing, i \in Observed\}$
 - Among our $\hat{Y}_{observed}$, locate the observation whose predicted value is closet to \hat{y}_j for all $j \in Missing$ and impute that value
 - For m = n, impute random draws the from the n observations whose predicted value is closest to \hat{y}_m

(日) (同) (三) (三) (三) (○) (○)

Predictive Mean Matching



age

- * ロ * * 個 * * 目 * * 目 * ・ 目 * つへで

mice() for Multiple Imputation

- We use the *mice()* function to run multiple imputation using predictive mean modeling
- > imp.nhanes<-mice(nhanes,m=5,method="pmm",print=FALSE,seed=8053)</pre>
 - We can look at our imputed values for BMI and notice these are sampled observed values
- > imp.nhanes\$imp\$bmi

	1	2	3	4	5
1	22.5	25.5	27.2	22.0	33.2
3	26.3	30.1	30.1	35.3	33.2
16	22.5	25.5	29.6	30.1	28.7
21	25.5	35.3	27.5	30.1	35.3

> na.omit(nhanes\$bmi)
[1] 22.7 20.4 22.5 30.1 22.0 21.7 28.7 29.6 27.2 26.3
[11] 35.3 25.5 33.2 27.5 24.9 27.4

- We fit five separate linear regression models
- > fit<-with(imp.nhanes, lm(bmi~age))</pre>
 - We average our estimates using pool() from the mice package

```
> est<-pool(fit)
> est$qbar
```

```
(Intercept) age
30.24 -2.06
```

• Using the mice() package, we can make valid inferences

> summary(est)

est se t df (Intercept) 30.242705 2.944000 10.272659 4.719653 age -2.060628 1.288428 -1.599336 7.255069 Pr(>|t|) lo 95 hi 95 nmis (Intercept) 0.0002086732 22.537686 37.9477244 NA age 0.1522742652 -5.085695 0.9644395 0 fmi lambda (Intercept) 0.7087166 0.6068631 age 0.5605660 0.4541020

• $p \approx .15 \implies$ no age effect

Questions?