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Consider two sample spaces % and 2~

@ The observed data y are a realization from %

The corresponding x in 2 is not observable
e AmapF. % — &

The preimage F~1(y) is called the germ at y

x includes data and parameters
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EM Algorithm

e f(x|¢) is a family of sampling densities, and

g0lo) = [ f(xlo) ox
F=1(y)
@ The EM algorithm aims to find a ¢ that maximizes g(y|¢) given an
observed y, while making essential use of f(x|¢)
@ Each iteration includes two steps:

@ The expectation step (E-step) uses current estimate of the parameter
to find (expectation of) complete data

@ The maximization step (M-step) uses the updated data from the
E-step to find a maximum likelihood estimate of the parameter

@ Stop the algorithm when change of estimated parameter reaches a
preset threshold.
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A Multinomial Example

Consider data from Rao(1965) with 197 animals multinomially distributed

in four categories:

y = (y1,¥2, 3, ya) = (125,18, 20, 34)

A genetic model specifies cell probabilities:

(% + %ﬂ-? %(1 - 7T)7 %(1 - 7T)7 %7‘(’)

(1 +y2+y3+ya)
(3 + Fm)P(F — 37)2(5 — §m))2 (G )

T) = =
g(y/) yi'ly2lyslya! 2



A Multinomial Example: continued

Complete data: a multinomial population

x = (x1, X2, X3, X4, X5)



A Multinomial Example: continued

Complete data: a multinomial population
x = (x1, X2, X3, X4, Xs5)
Cell probabilities:

(%7 %ﬂ-a %(1 - 7T)a %(1 - 7T)7 %77)



A Multinomial Example: continued

Complete data: a multinomial population
x = (x1, %2, X3, X4, X5)
Cell probabilities:
(%, %ﬂ', %(1 —7), %(1 —7), %77)

(x1 +x2+ x3+ xa + x5)!

Iy (l yxo(l 1 yx3(l__1_\yxa(l \x
113 x| (2)1(47r)2(4 47T)3(4 471')) (47r)5
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A Multinomial Example: continued

Complete data: a multinomial population
x = (x1, %2, X3, X4, X5)
Cell probabilities:
(%, %ﬂ', %(1 —7), %(1 —7), %77)

(x1 +x2+ x3+ xa + x5)!
x1!x0!1x31x4 1 x5!

f(x|m) = () (qm)ye(s—am) (3 —3m)* (gm)°

Next we will show how EM algorithm works in this example.
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A Multinomial Example: E-step

o Let 7(P) be the value of 7 after p iterations.
o (x3, x4, xs) are fixed in this example.

® x1+x =y =125 and 7 = 7(P) gives

1-(p)
X](_p) =125 Xép) =125- ﬁ
2T am

@ The next step will use the complete data estimated in this step.
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A Multinomial Example: M-step

We use (xfp),xz(p), 18,20, 34) as if these estimated data were the observed
data, and find the maximum likelihood estimate of 7, denoted mlp+1)

W(P‘f’l) _ X2(p) + 34
P 434 418 420

And we go back to the E-step to complete the (p + 1)-th iteration.



We start with 7(%) = 0.5, and the algorithm converges in eight steps:

P Prat: ot — % (Pt — ) (9] %)
0 0500000000 0-126821498 0-1465

| 0608247423 0-018574075 0-1346

2 (-624321051 0-002500447 01330

3 (626488879 0-000332619 0-1328

4 0-626777323 0-000044176 0-1328

3 0-626815632 0000005866 0-1328

6 0-62682071% 0-000000779 —

7 0-626821395 0-000000104 —_

8 0-626321484 0-00000001 4 =

At each step we use 7(P) = 7* and 7(PT1) = 7* to solve for * as the

maximum-likelihood estimate of 7 .
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Applications of EM algorithm

@ Missing Data

e Multinomial sampling
e Normal linear model
e Multivariate normal sampling

Grouping

Censoring and Truncation
Finite Mixtures
Hyperparameter Estimation

Iteratively Reweighted Least Squares

Factor Analysis



Example: Old Faithful

Waiting time between eruptions and the duration of the eruption for the
Old Faithful geyser in Yellowstone National Park, Wyoming.
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Old Faithful: EM Setup

X = Waiting time between eruptions.
p = Probability that eruption is of a shorter waiting time
0= (P, M1, 12,01, 02)

fx (x|0) = pN(u1, 01) + (1 = p)N(p2, 02)
Define:
~J1 X has shorter waiting time
" 10 X has longer waiting time

Yi: ~ Bern(p) and Y; is missing data



Old Faithful: E step

Yi|X;:, 0% ~ Bin(1, p{)
where

k) pIN(l, o89)

p; "= t X
PN, 000 1 (1= pNGP, o0y

Thus,
E(Yi|X;. 600) = o



Old Faithful: M step

L(BIX,Y) = HP (n1.01)]7 (1 = p) Y1 IN(p2, 02)] 7

Take log and replace Y; with p,( ), then maximize for 6.

plk+1) — Z (k)
n k n k k+1
(k1) _ P e _ S A6 — Yy
1 = n (K 1 = n (K
>ie 1P( : Py 1P( )

RTINS o/ LSy L) RS ID wrc e 0 1C, Bt i)
2 - n > =
St p) S (1 p¥)




Old Faithful: Starting Values
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Estimates

em <- function(W,s){
T <= ablotiomn@, 5P, mEeGEI)/ iter <- function(W, s){
(s[1]*dnorm(W, s[2], sqrt(s[4]1))+ &1 <= ape)

(1-s[1])*dnorm(W, s[3], sqrt(s[51))) cutoff <- rep(.0001,5)
if (sum(s-s1>cutoff) > 0){

£[1] <- mean(Ep) 3 = gl

s[2] <- sum(Ep*W) / sum(Ep) iter(W,s)

s[3] <- sum((1-Ep)*W) / sum(1-Ep) b

s[4] <- sum(Ep*(W-s[21)°2) / sum(Ep) clze @i

s[5] <- sum((1-Ep)*(W-s[3])"2) / sum(1-Ep) }

S

} v

Implementation

> W <- faithful$waiting

> s <- c(0.5, 52, 82, 16, 16)

> iter(W,s)

[1] 0.3608866 54.6148747 80.0910812 34.4714038 34.4301694




Estimated Distribution
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Multiple Imputation Overview

@ Imputation is 'filling in" missing data with plausible values

@ Rubin (1987) conceived a method, known as multiple imputation, for
valid inferences using the imputed data
e Multiple Imputation is a Monte Carlo method where missing values are
imputed m > 1 separate times (typically 3 < m < 10)

o Multiple Imputation is a three step procedure:

o Imputation: Impute the missing entries in the data m seperate times
o Analysis: Analyze each of the m complete data sets seperately
e Pooling: Combine the m analysis results into a final result



@ Q@ is some statistic of scientific interest in the population
e Could be population means, regression coefficients, population
variances, etc.
o @ cannot depend on the particular sample

o We estimate Q by @ or @ along with a valid estimate of its
uncertainty
o @ is the estimate from complete data
Q accounts from sampling uncertainty

Q is a pooled estimate
Q® accounts for sampling and missing data uncertainty



o @ is our estimate from the i-th imputation

o Q; has k parameters
e @i k x 1 column vector

e To compute @ we simply average over all m imputations

Q=130
i=1



Within /Between Imputation Variance

@ Let U be the squared standard error of Q

o We estimate U by U
° U,- is the covariance matrix of @,-, our estimate from the j-th imputation

i=1
o Notice: U,- is the variance within the estimate @,-

@ Let B be the variance between the m complete-data estimates:



Total Variance

@ Let T denote the total variance of Q
e TAU+B

@ T is computed by:

B

where = is simulation error.



o T=U+(1+21)B

@ The intuition for T is as follows:
U is the variance in Q caused by the fact that we are using a sample.
B is the variance caused by the fact that there were missing values in

our sample _
% is the simulation variance from the fact that Q is based on a finite

m.



Tests and Confidence Intervals

@ For multiple imputation to be valid, we must first assume, that with
complete data

(Q—Q)/\/U'\“/V(Oal)

would be appropriate

@ Then, after our multiple imputation steps, tests and confidence
intervals are based on a Student's t-approximation

(O_Q)/ﬁwtv

U 2
e

v=m=1) 1+1)B




Imputation Step

@ The validity of inference relies on how imputations are generated.

@ Rubin proposed three conditions under which multiple imputation
inference is " randomization-valid”

E(QIY)
E(UIY)

Q
U (2)
V(Q) (3)

Y

(1+ EBIY)

@ Result: If the complete-data inference is randomization valid and the
our imputation procedure satisfies the proceeding conditions, then our
finite m multiple imputation inference is also randomization-valid.

o Not always easy to get these conditions, often requires Bayesian
approach



Simple Example in R

@ The mice package does multiple imputation in R

> library(mice)

> head(nhanes)

age bmi hyp chl
1 NA NA NA
2 22.7 1 187
1 NA 1 187
3 NA NA NA
1 20.4 1 113
3 NA NA 184

D O WN -

@ We're interested in the simple linear regression of BMI on Age
e Q = B from E(BMI|Age) = Bo + AgeT 1



Simple Example in R

@ The mice package has some nice functions that summarize our
missing data

> md.pattern(nhanes)
age hyp bmi chl

3 1 1 1 1 0

i 1 1 o0 1 1

3 1 1 1 0 1

i 1 0 O 1 2

T 1 0 0 0 3

0 8 9 10 27 )

@ Above, the output shows we have 13 complete rows, 1 missing only
BMI, 3 missing Cholesterol, 1 missing Hypertension and BMI, and 7
missing Hypertension, BMI, and Cholesterol.



Simple Example in R

> library(VIM)
> marginplot(nhanes[c(1,2)], col = c("blue", "red",

n n
orange"))
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Imputation Methods in mice

Method Description Scale type

pmm Predictive mean matching numeric

norm Bayesian linear regression numeric
norm.nob Linear regression, non-Bayesian numeric
norm.boot  Linear regression with bootstrap numeric

mean Unconditional mean imputation numeric
2L.norm Two-level linear model numeric

logreg Logistic regression factor, 2 levels
logreg.boot Logistic regression with bootstrap factor, 2 level
polyreg Multinomial logit model factor > 2 levels
polr Ordered logit model ordered, > 2 levels
Ida Linear discriminant analysis factor

sample Simple random sample any




Imputation Approaches

@ Except in trivial settings, the probability distributions that we draw
from to give 'proper’ multiple imputation tend to be complicated

Often requires MCMC

@ In our example, we will use an approach called Predictive Mean
Matching

Calculate Yopserved = {§i =xT B :i € Observed}

For ymissing, calculate \A/m,-ss,-ng ={§; =xB:j € Missing,i € Observed}
Among our Yobserved, locate the observation whose predicted value is
closet to ; for all j € Missing and impute that value

For m = n, impute random draws the from the n observations whose
predicted value is closest to ¥,
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mice() for Multiple Imputation

@ We use the mice() function to run multiple imputation using
predictive mean modeling

> imp.nhanes<-mice(nhanes,m=5,method="pmm",print=FALSE,seed=8053U

@ We can look at our imputed values for BMI and notice these are
sampled observed values

> imp.nhanes$imp$bmi

1 2 3 4 5
1 22.5 25.5 27.2 22.0 33.2
3 26.3 30.1 30.1 35.3 33.2
16 22.5 25.5 29.6 30.1 28.7
21 26.5 35.3 27.5 30.1 35.3

> na.omit(nhanes$bmi)
[1] 22.7 20.4 22.5 30.1 22.0 21.7 28.7 29.6 27.2 26.3
[11] 35.3 25.5 33.2 27.5 24.9 27.4




o We fit five separate linear regression models

> fit<-with(imp.nhanes, 1lm(bmi~age)) J

e We average our estimates using pool() from the mice package

> est<-pool(fit)

> est$gbar

(Intercept) age
30.24 -2.06




Inference

@ Using the mice() package, we can make valid inferences

> summary (est)

est se t df
(Intercept) 30.242705 2.944000 10.272659 4.719653
age -2.060628 1.288428 -1.599336 7.255069
Pr(>ltl) lo 95 hi 95 nmis
(Intercept) 0.0002086732 22.537686 37.9477244  NA
age 0.1522742652 -5.085695 0.9644395 0

fmi lambda
(Intercept) 0.7087166 0.6068631
age 0.5605660 0.4541020

@ p~ .15 = no age effect



Simple Example in R

Questions?
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