Missing Data

EM Algorithm and Multiple Imputation

Aaron Molstad, Dootika Vats, Li Zhong

University of Minnesota
School of Statistics

December 4, 2013

Overview

(1) EM Algorithm
(2) Multiple Imputation

Incomplete Data

- Consider two sample spaces \mathscr{Y} and \mathscr{X}
- The observed data y are a realization from \mathscr{Y}
- The corresponding x in \mathscr{X} is not observable
- A map $\mathbf{F}: \mathscr{Y} \longrightarrow \mathscr{X}$
- The preimage $\mathbf{F}^{-1}(y)$ is called the germ at y
- x includes data and parameters

EM Algorithm

- $f(x \mid \phi)$ is a family of sampling densities, and

$$
g(y \mid \phi)=\int_{\mathbf{F}^{-1}(y)} f(x \mid \phi) d x
$$

- The EM algorithm aims to find a ϕ that maximizes $g(y \mid \phi)$ given an observed y, while making essential use of $f(x \mid \phi)$
- Each iteration includes two steps:
- The expectation step (E-step) uses current estimate of the parameter to find (expectation of) complete data
- The maximization step (M-step) uses the updated data from the E-step to find a maximum likelihood estimate of the parameter
- Stop the algorithm when change of estimated parameter reaches a preset threshold.

A Multinomial Example

Consider data from Rao(1965) with 197 animals multinomially distributed in four categories:

$$
\mathbf{y}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=(125,18,20,34)
$$

A genetic model specifies cell probabilities:

$$
\begin{gathered}
\left(\frac{1}{2}+\frac{1}{4} \pi, \frac{1}{4}(1-\pi), \frac{1}{4}(1-\pi), \frac{1}{4} \pi\right) \\
\left.g(\mathbf{y} \mid \pi)=\frac{\left(y_{1}+y_{2}+y_{3}+y_{4}\right)!}{y_{1}!y_{2}!y_{3}!y_{4}!}\left(\frac{1}{2}+\frac{1}{4} \pi\right)^{y_{1}}\left(\frac{1}{4}-\frac{1}{4} \pi\right)^{y_{2}}\left(\frac{1}{4}-\frac{1}{4} \pi\right)\right)^{y_{3}}\left(\frac{1}{4} \pi\right)^{y_{4}}
\end{gathered}
$$

A Multinomial Example: continued

Complete data: a multinomial population

$$
\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)
$$

Cell probabilities:

$$
\begin{gathered}
\left(\frac{1}{2}, \frac{1}{4} \pi, \frac{1}{4}(1-\pi), \frac{1}{4}(1-\pi), \frac{1}{4} \pi\right) \\
\left.f(\mathbf{x} \mid \pi)=\frac{\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right)!}{x_{1}!x_{2}!x_{3}!x_{4}!x_{5}!}\left(\frac{1}{2}\right)^{x_{1}}\left(\frac{1}{4} \pi\right)^{x_{2}}\left(\frac{1}{4}-\frac{1}{4} \pi\right)^{x_{3}}\left(\frac{1}{4}-\frac{1}{4} \pi\right)\right)^{x_{4}}\left(\frac{1}{4} \pi\right)^{x_{5}}
\end{gathered}
$$

Next we will show how EM algorithm works in this example.

A Multinomial Example: E-step

- Let $\pi^{(p)}$ be the value of π after p iterations.
- $\left(x_{3}, x_{4}, x_{5}\right)$ are fixed in this example.
- $x_{1}+x_{2}=y_{1}=125$ and $\pi=\pi^{(p)}$ gives

$$
x_{1}^{(p)}=125 \cdot \frac{\frac{1}{2}}{\frac{1}{2}+\frac{1}{4} \pi^{(p)}}, \quad x_{2}^{(p)}=125 \cdot \frac{\frac{1}{4} \pi^{(p)}}{\frac{1}{2}+\frac{1}{4} \pi^{(p)}}
$$

- The next step will use the complete data estimated in this step.

A Multinomial Example: M-step

We use $\left(x_{1}^{(p)}, x_{2}^{(p)}, 18,20,34\right)$ as if these estimated data were the observed data, and find the maximum likelihood estimate of π, denoted $\pi^{(p+1)}$.

$$
\pi^{(p+1)}=\frac{x_{2}^{(p)}+34}{x_{2}^{(p)}+34+18+20}
$$

And we go back to the E-step to complete the $(p+1)$-th iteration.

We start with $\pi^{(0)}=0.5$, and the algorithm converges in eight steps:

p	$\pi^{(p)}$	$\pi^{(p)}-\pi^{*}$	$\left(\pi^{(p+1)}-\pi^{*}\right) \div\left(\pi^{(p 1}-\pi^{*}\right)$
0	0.500000000	0.126821498	0.1465
1	0.608247423	0.018574075	0.1346
2	0.624321051	0.002500447	0.1330
3	0.626488879	0.000332619	0.1328
4	0.626777323	0.000044176	0.1328
5	0.626815632	0.000005866	0.1328
6	0.626820719	0.000000779	-
7	0.666821395	0.000000104	-
8	0.626821484	0.00000014	-

At each step we use $\pi^{(p)}=\pi^{*}$ and $\pi^{(p+1)}=\pi^{*}$ to solve for π^{*} as the maximum-likelihood estimate of π.

Applications of EM algorithm

- Missing Data
- Multinomial sampling
- Normal linear model
- Multivariate normal sampling
- Grouping
- Censoring and Truncation
- Finite Mixtures
- Hyperparameter Estimation
- Iteratively Reweighted Least Squares
- Factor Analysis

Example: Old Faithful

Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming.

Histogram

Old Faithful: EM Setup

$X=$ Waiting time between eruptions.
$p=$ Probability that eruption is of a shorter waiting time
$\theta=\left(p, \mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}\right)$

$$
f_{X}(x \mid \theta)=p \mathrm{~N}\left(\mu_{1}, \sigma_{1}\right)+(1-p) \mathrm{N}\left(\mu_{2}, \sigma_{2}\right)
$$

Define:

$$
Y_{i}= \begin{cases}1 & X_{i} \text { has shorter waiting time } \\ 0 & X_{i} \text { has longer waiting time }\end{cases}
$$

$Y_{i} \sim \operatorname{Bern}(p)$ and Y_{i} is missing data

Old Faithful: E step

$$
Y_{i} \mid X_{i}, \theta^{(k)} \sim \operatorname{Bin}\left(1, p_{i}^{(k)}\right)
$$

where

$$
p_{i}^{(k)}=\frac{p^{(k)} \mathrm{N}\left(\mu_{1}^{(k)}, \sigma_{1}^{(k)}\right)}{p^{(k)} \mathrm{N}\left(\mu_{1}^{(k)}, \sigma_{1}^{(k)}\right)+\left(1-p^{(k)}\right) \mathrm{N}\left(\mu_{2}^{(k)}, \sigma_{2}^{(k)}\right)} \text { at } X_{i}
$$

Thus,

$$
\mathrm{E}\left(Y_{i} \mid X_{i}, \theta^{(k)}\right)=p_{i}^{(k)}
$$

Old Faithful: M step

$$
L(\theta \mid X, Y)=\prod_{i=1}^{n} p^{Y_{i}}\left[\mathrm{~N}\left(\mu_{1}, \sigma_{1}\right)\right]^{Y_{i}}(1-p)^{1-Y_{i}}\left[\mathrm{~N}\left(\mu_{2}, \sigma_{2}\right)\right]^{1-Y_{i}}
$$

Take log and replace Y_{i} with $p_{i}^{(k)}$, then maximize for θ.

$$
\begin{aligned}
p^{(k+1)}= & \frac{1}{n} \sum_{i=1}^{n} p_{i}^{(k)} \\
\mu_{1}^{(k+1)} & =\frac{\sum_{i=1}^{n} p_{i}^{(k)} X_{i}}{\sum_{i=1}^{n} p_{i}^{(k)}} \\
\mu_{2}^{(k+1)} & =\frac{\sum_{i=1}^{n}\left(1-p_{i}^{(k)}\right) X_{i}}{\sum_{i=1}^{n}\left(1-p_{i}^{(k)}\right)}
\end{aligned} \sigma_{2}^{(k+1)^{2}}=\frac{\sum_{i=1}^{n} p_{i}^{(k)}\left(X_{i}-\mu_{1}^{(k+1)}\right)^{2}}{\sum_{i=1}^{n} p_{i}^{(k)}}=\frac{\sum_{i=1}^{n}\left(1-p_{i}^{(k)}\right)\left(X_{i}-\mu_{1}^{(k+1)}\right)^{2}}{\sum_{i=1}^{n}\left(1-p_{i}^{(k)}\right)} .
$$

Old Faithful: Starting Values

Histogram

$$
p^{(0)}=0.5, \mu_{1}^{(0)}=52, \mu_{2}^{(0)}=82, \sigma_{1}^{(0)}=4, \sigma_{2}^{(0)}=4
$$

Estimates

```
em <- function(W,s){
Ep <- s[1]*dnorm(W, s[2], sqrt(s[4]))/
    (s[1]*dnorm(W, s[2], sqrt(s[4]))+
    (1-s[1])*dnorm(W, s[3], sqrt(s[5])))
    s[1] <- mean(Ep)
    s[2] <- sum(Ep*W) / sum(Ep)
    s[3] <- sum((1-Ep)*W) / sum(1-Ep)
    s[4] <- sum(Ep*(W-s[2])^2) / sum(Ep)
    s[5] <- sum((1-Ep)*(W-s[3])^2) / sum(1-Ep)
    s
}
```


Implementation

> W <- faithful\$waiting
$>\mathrm{s}<-\mathrm{c}(0.5,52,82,16,16)$
$>$ iter (W, s)
[1] $0.360886654 .6148747 \quad 80.0910812 \quad 34.4714038 \quad 34.4301694$

Estimated Distribution

Histogram

Multiple Imputation Overview

- Imputation is 'filling in' missing data with plausible values
- Rubin (1987) conceived a method, known as multiple imputation, for valid inferences using the imputed data
- Multiple Imputation is a Monte Carlo method where missing values are imputed $m>1$ separate times (typically $3 \leq m \leq 10$)
- Multiple Imputation is a three step procedure:
- Imputation: Impute the missing entries in the data m seperate times
- Analysis: Analyze each of the m complete data sets seperately
- Pooling: Combine the m analysis results into a final result

Theory

- Q is some statistic of scientific interest in the population
- Could be population means, regression coefficients, population variances, etc.
- Q cannot depend on the particular sample
- We estimate Q by \hat{Q} or \bar{Q} along with a valid estimate of its uncertainty
- \hat{Q} is the estimate from complete data
- \hat{Q} accounts from sampling uncertainty
- \bar{Q} is a pooled estimate
- \bar{Q} accounts for sampling and missing data uncertainty
- \hat{Q}_{i} is our estimate from the i-th imputation
- \hat{Q}_{i} has k parameters
- $\hat{Q}_{i} k \times 1$ column vector
- To compute \bar{Q} we simply average over all m imputations

$$
\bar{Q}=\frac{1}{m} \sum_{i=1}^{m} \hat{Q}_{i}
$$

Within/Between Imputation Variance

- Let U be the squared standard error of Q
- We estimate U by \bar{U}
- \hat{U}_{i} is the covariance matrix of \hat{Q}_{i}, our estimate from the i-th imputation

$$
\bar{U}=\frac{1}{m} \sum_{i=1}^{m} \hat{U}_{i}
$$

- Notice: \hat{U}_{i} is the variance within the estimate \hat{Q}_{i}
- Let B be the variance between the m complete-data estimates:

$$
B=\frac{1}{m-1} \sum_{i=1}^{m}\left(\hat{Q}_{i}-\bar{Q}\right)\left(\hat{Q}_{i}-\bar{Q}\right)^{\top}
$$

Total Variance

- Let T denote the total variance of \bar{Q}
- $T \neq \bar{U}+B$
- T is computed by:

$$
\begin{aligned}
T & =\bar{U}+B+\frac{B}{m} \\
& =\bar{U}+\left(1+\frac{1}{m}\right) B
\end{aligned}
$$

where $\frac{B}{m}$ is simulation error.

Summary

- $T=\bar{U}+\left(1+\frac{1}{m}\right) B$
- The intuition for T is as follows:
- \bar{U} is the variance in \bar{Q} caused by the fact that we are using a sample.
- B is the variance caused by the fact that there were missing values in our sample
- $\frac{B}{m}$ is the simulation variance from the fact that \bar{Q} is based on a finite m.

Tests and Confidence Intervals

- For multiple imputation to be valid, we must first assume, that with complete data

$$
(\hat{Q}-Q) / \sqrt{U} \sim \mathscr{N}(0,1)
$$

would be appropriate

- Then, after our multiple imputation steps, tests and confidence intervals are based on a Student's t-approximation

$$
\begin{gathered}
(\bar{Q}-Q) / \sqrt{T} \sim t_{v} \\
v=(m-1)\left[1+\frac{\bar{u}}{\left(1+\frac{1}{m}\right) B}\right]^{2}
\end{gathered}
$$

Imputation Step

- The validity of inference relies on how imputations are generated.
- Rubin proposed three conditions under which multiple imputation inference is "randomization-valid"

$$
\begin{align*}
E(\bar{Q} \mid Y) & =\hat{Q} \tag{1}\\
E(\bar{U} \mid Y) & =U \tag{2}\\
\left(1+\frac{1}{m}\right) E(B \mid Y) & \geq V(\bar{Q}) \tag{3}
\end{align*}
$$

- Result: If the complete-data inference is randomization valid and the our imputation procedure satisfies the proceeding conditions, then our finite m multiple imputation inference is also randomization-valid.
- Not always easy to get these conditions, often requires Bayesian approach

Simple Example in R

- The mice package does multiple imputation in R
> library (mice)
$>$ head (nhanes)
age bmi hyp chl
11 NA NA NA
$\begin{array}{lllll}2 & 2 & 22.7 & 1 & 187\end{array}$
$\begin{array}{lllll}3 & 1 & N A & 1 & 187\end{array}$
43 NA NA NA
$\begin{array}{lllll}5 & 1 & 20.4 & 1 & 113\end{array}$
63 NA NA 184
- We're interested in the simple linear regression of BMI on Age
- $\mathbf{Q}=\beta_{1}$ from $E(B M I \mid$ Age $)=\beta_{0}+$ Age $^{\top} \beta_{1}$

Simple Example in R

- The mice package has some nice functions that summarize our missing data

$>$ md.pattern(nhanes)					
age hyp					
13	1	1	1	1	0
1	1	1	0	1	1
3	1	1	1	0	1
1	1	0	0	1	2
7	1	0	0	0	3
	0	8	9	10	27

- Above, the output shows we have 13 complete rows, 1 missing only BMI, 3 missing Cholesterol, 1 missing Hypertension and BMI, and 7 missing Hypertension, BMI, and Cholesterol.

Simple Example in R

> library(VIM)
> marginplot(nhanes[c(1,2)], col = c("blue", "red", "orange"))

Imputation Methods in mice

Method	Description	Scale type
pmm	Predictive mean matching	numeric
norm	Bayesian linear regression	numeric
norm.nob	Linear regression, non-Bayesian	numeric
norm.boot	Linear regression with bootstrap	numeric
mean	Unconditional mean imputation	numeric
2L.norm	Two-level linear model	numeric
logreg	Logistic regression	factor, 2 levels
logreg.boot	Logistic regression with bootstrap	factor, 2 level
polyreg	Multinomial logit model	factor >2 levels
polr	Ordered logit model	ordered, >2 levels
Ida	Linear discriminant analysis	factor
sample	Simple random sample	any

Imputation Approaches

- Except in trivial settings, the probability distributions that we draw from to give 'proper' multiple imputation tend to be complicated
- Often requires MCMC
- In our example, we will use an approach called Predictive Mean Matching
- Calculate $\hat{Y}_{\text {observed }}=\left\{\hat{y}_{i}=x_{i}^{\top} \beta: i \in\right.$ Observed $\}$
- For $y_{\text {missing }}$, calculate $\hat{Y}_{\text {missing }}=\left\{\hat{y}_{j}=x_{i}^{\top} \beta: j \in\right.$ Missing, $i \in$ Observed $\}$
- Among our $\hat{Y}_{\text {observed, }}$, locate the observation whose predicted value is closet to \hat{y}_{j} for all $j \in$ Missing and impute that value
- For $m=n$, impute random draws the from the n observations whose predicted value is closest to \hat{y}_{m}

Predictive Mean Matching

mice() for Multiple Imputation

- We use the mice() function to run multiple imputation using predictive mean modeling

```
> imp.nhanes<-mice(nhanes,m=5,method="pmm",print=FALSE,seed=8053)
```

- We can look at our imputed values for BMI and notice these are sampled observed values
> imp.nhanes\$imp\$bmi

	1	2	3	4	5
1	22.5	25.5	27.2	22.0	33.2
3	26.3	30.1	30.1	35.3	33.2
16	22.5	25.5	29.6	30.1	28.7
21	25.5	35.3	27.5	30.1	35.3

> na.omit(nhanes\$bmi)

$$
\begin{array}{rlllllllllll}
{[1]} & 22.7 & 20.4 & 22.5 & 30.1 & 22.0 & 21.7 & 28.7 & 29.6 & 27.2 & 26.3 \\
\text { [11] } & 35.3 & 25.5 & 33.2 & 27.5 & 24.9 & 27.4
\end{array}
$$

- We fit five separate linear regression models
> fit<-with(imp.nhanes, lm(bmi~age))
- We average our estimates using pool() from the mice package
> est<-pool(fit)
> est\$qbar
(Intercept) age 30.24 -2.06

Inference

- Using the mice() package, we can make valid inferences

```
> summary (est)
```

	est	se	t	df
(Intercept)	30.242705	2.944000	10.272659	4.719653
age	-2.060628	1.288428	-1.599336	7.255069
	$\operatorname{Pr}(>\mid \mathrm{tl})$	lo	95	hi
(Intercept)	0.0002086732	22.537686	nmis	
(Ine	0.1522742652	-5.085695	0.9647244	NA
age	fmi	lambda		0
(Intercept)	0.7087166	0.6068631		
age	0.5605660	0.4541020		

- $p \approx .15 \Longrightarrow$ no age effect

Simple Example in R

Questions?

