Missing Data EM Algorithm and Multiple Imputation

Aaron Molstad, Dootika Vats, Li Zhong

University of Minnesota School of Statistics

December 4, 2013

- \bullet Consider two sample spaces ${\mathscr Y}$ and ${\mathscr X}$
- The observed data y are a realization from ${\mathscr Y}$
- The corresponding x in \mathscr{X} is not observable

• A map
$$F: \mathscr{Y} \longrightarrow \mathscr{X}$$

- The preimage $\mathbf{F}^{-1}(y)$ is called the germ at y
- x includes data and parameters

EM Algorithm

• $f(x|\phi)$ is a family of sampling densities, and

$$g(y|\phi) = \int_{\mathbf{F}^{-1}(y)} f(x|\phi) \ dx$$

- The EM algorithm aims to find a φ that maximizes g(y|φ) given an observed y, while making essential use of f(x|φ)
- Each iteration includes two steps:
- The expectation step (E-step) uses current estimate of the parameter to find (expectation of) complete data
- The maximization step (M-step) uses the updated data from the E-step to find a maximum likelihood estimate of the parameter
- Stop the algorithm when change of estimated parameter reaches a preset threshold.

Consider data from Rao(1965) with 197 animals multinomially distributed in four categories:

$$\mathbf{y} = (y_1, y_2, y_3, y_4) = (125, 18, 20, 34)$$

A genetic model specifies cell probabilities:

$$(\frac{1}{2} + \frac{1}{4}\pi, \frac{1}{4}(1 - \pi), \frac{1}{4}(1 - \pi), \frac{1}{4}\pi)$$
$$g(\mathbf{y}|\pi) = \frac{(y_1 + y_2 + y_3 + y_4)!}{y_1!y_2!y_3!y_4!}(\frac{1}{2} + \frac{1}{4}\pi)^{y_1}(\frac{1}{4} - \frac{1}{4}\pi)^{y_2}(\frac{1}{4} - \frac{1}{4}\pi))^{y_3}(\frac{1}{4}\pi)^{y_4}$$

Complete data: a multinomial population

$$\mathbf{x} = (x_1, x_2, x_3, x_4, x_5)$$

Cell probabilities:

$$(\frac{1}{2}, \frac{1}{4}\pi, \frac{1}{4}(1-\pi), \frac{1}{4}(1-\pi), \frac{1}{4}\pi)$$
$$f(\mathbf{x}|\pi) = \frac{(x_1 + x_2 + x_3 + x_4 + x_5)!}{x_1! x_2! x_3! x_4! x_5!} (\frac{1}{2})^{x_1} (\frac{1}{4}\pi)^{x_2} (\frac{1}{4} - \frac{1}{4}\pi)^{x_3} (\frac{1}{4} - \frac{1}{4}\pi)^{x_4} (\frac{1}{4}\pi)^{x_5}$$

Next we will show how EM algorithm works in this example.

- Let $\pi^{(p)}$ be the value of π after p iterations.
- (x_3, x_4, x_5) are fixed in this example.

•
$$x_1 + x_2 = y_1 = 125$$
 and $\pi = \pi^{(p)}$ gives

$$x_1^{(p)} = 125 \cdot \frac{\frac{1}{2}}{\frac{1}{2} + \frac{1}{4}\pi^{(p)}}, \qquad x_2^{(p)} = 125 \cdot \frac{\frac{1}{4}\pi^{(p)}}{\frac{1}{2} + \frac{1}{4}\pi^{(p)}}$$

• The next step will use the complete data estimated in this step.

We use $(x_1^{(p)}, x_2^{(p)}, 18, 20, 34)$ as if these estimated data were the observed data, and find the maximum likelihood estimate of π , denoted $\pi^{(p+1)}$.

$$\pi^{(p+1)} = \frac{x_2^{(p)} + 34}{x_2^{(p)} + 34 + 18 + 20}$$

And we go back to the E-step to complete the (p + 1)-th iteration.

We start with $\pi^{(0)} = 0.5$, and the algorithm converges in eight steps:

₽	$\pi^{(p)}$	$\pi^{(p)}-\pi^*$	$(\pi^{(p+1)} - \pi^*) \div (\pi^{(p)} - \pi^*)$
0	0-500000000	0.126821498	0.1465
1	0.608247423	0.018574075	0-1346
2	0.624321051	0.002500447	0.1330
3	0.626488879	0.000332619	0.1328
4	0.626777323	0.000044176	0.1328
5	0.626815632	0.000005866	0.1328
6	0-626820719	0.000000779	
7	0.626821395	0.000000104	
8	0-626821484	0.000000014	—

At each step we use $\pi^{(p)} = \pi^*$ and $\pi^{(p+1)} = \pi^*$ to solve for π^* as the maximum-likelihood estimate of π .

Missing Data

- Multinomial sampling
- Normal linear model
- Multivariate normal sampling
- Grouping
- Censoring and Truncation
- Finite Mixtures
- Hyperparameter Estimation
- Iteratively Reweighted Least Squares
- Factor Analysis

Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park, Wyoming.

Histogram

X = Waiting time between eruptions.

p = Probability that eruption is of a shorter waiting time $\theta = (p, \mu_1, \mu_2, \sigma_1, \sigma_2)$

$$f_X(x|\theta) = p \mathsf{N}(\mu_1, \sigma_1) + (1-p) \mathsf{N}(\mu_2, \sigma_2)$$

Define:

$$Y_i = \begin{cases} 1 & X_i \text{ has shorter waiting time} \\ 0 & X_i \text{ has longer waiting time} \end{cases}$$

 $Y_i \sim \text{Bern}(p)$ and Y_i is missing data

$$Y_i|X_i, \theta^{(k)} \sim \operatorname{Bin}(1, p_i^{(k)})$$

where

$$p_i^{(k)} = \frac{p^{(k)} \mathsf{N}(\mu_1^{(k)}, \sigma_1^{(k)})}{p^{(k)} \mathsf{N}(\mu_1^{(k)}, \sigma_1^{(k)}) + (1 - p^{(k)}) \mathsf{N}(\mu_2^{(k)}, \sigma_2^{(k)})} \text{ at } X_i$$

Thus,
$$\mathsf{E}(Y_i | X_i, \theta^{(k)}) = p_i^{(k)}$$

Old Faithful: M step

$$L(\theta|X,Y) = \prod_{i=1}^{n} p^{Y_i} [N(\mu_1,\sigma_1)]^{Y_i} (1-p)^{1-Y_i} [N(\mu_2,\sigma_2)]^{1-Y_i}$$

Take log and replace Y_i with $p_i^{(k)}$, then maximize for θ .

$$p^{(k+1)} = \frac{1}{n} \sum_{i=1}^{n} p_i^{(k)}$$

$$\mu_1^{(k+1)} = \frac{\sum_{i=1}^{n} p_i^{(k)} X_i}{\sum_{i=1}^{n} p_i^{(k)}} \qquad \sigma_1^{(k+1)^2} = \frac{\sum_{i=1}^{n} p_i^{(k)} (X_i - \mu_1^{(k+1)})^2}{\sum_{i=1}^{n} p_i^{(k)}}$$

$$\mu_2^{(k+1)} = \frac{\sum_{i=1}^{n} (1 - p_i^{(k)}) X_i}{\sum_{i=1}^{n} (1 - p_i^{(k)})} \qquad \sigma_2^{(k+1)^2} = \frac{\sum_{i=1}^{n} (1 - p_i^{(k)}) (X_i - \mu_1^{(k+1)})^2}{\sum_{i=1}^{n} (1 - p_i^{(k)})}$$

Old Faithful: Starting Values

$$p^{(0)} = 0.5, \mu_1^{(0)} = 52, \mu_2^{(0)} = 82, \sigma_1^{(0)} = 4, \sigma_2^{(0)} = 4$$

Estimates

```
em <- function(W,s){</pre>
```

```
Ep <- s[1]*dnorm(W, s[2], sqrt(s[4]))/
  (s[1]*dnorm(W, s[2], sqrt(s[4]))+
   (1-s[1])*dnorm(W, s[3], sqrt(s[5])))</pre>
```

```
s[1] <- mean(Ep)
s[2] <- sum(Ep*W) / sum(Ep)
s[3] <- sum((1-Ep)*W) / sum(1-Ep)
s[4] <- sum(Ep*(W-s[2])^2) / sum(Ep)
s[5] <- sum((1-Ep)*(W-s[3])^2) / sum(1-Ep)
s
}</pre>
```

Iterations

```
iter <- function(W, s){
    s1 <- em(W,s)
    cutoff <- rep(.0001,5)
    if(sum(s-s1>cutoff) > 0){
        s = s1
        iter(W,s)
    }
    else s1
    }
```

Implementation

```
> W <- faithful$waiting
> s <- c(0.5, 52, 82, 16, 16)
> iter(W,s)
[1] 0.3608866 54.6148747 80.0910812 34.4714038 34.4301694
```

Estimated Distribution

- Imputation is 'filling in' missing data with plausible values
- Rubin (1987) conceived a method, known as multiple imputation, for valid inferences using the imputed data
 - Multiple Imputation is a Monte Carlo method where missing values are imputed m > 1 separate times (typically 3 ≤ m ≤ 10)
- Multiple Imputation is a three step procedure:
 - Imputation: Impute the missing entries in the data m seperate times
 - Analysis: Analyze each of the *m* complete data sets seperately
 - **Pooling**: Combine the *m* analysis results into a final result

- Q is some statistic of scientific interest in the population
 - Could be population means, regression coefficients, population variances, etc.
 - Q cannot depend on the particular sample
- We estimate Q by \hat{Q} or \bar{Q} along with a valid estimate of its uncertainty
 - \hat{Q} is the estimate from complete data
 - \hat{Q} accounts from sampling uncertainty
 - \overline{Q} is a pooled estimate
 - \bar{Q} accounts for sampling and missing data uncertainty

• \hat{Q}_i is our estimate from the *i*-th imputation

- \hat{Q}_i has k parameters
- $\hat{Q}_i \ k \times 1$ column vector
- To compute \bar{Q} we simply average over all m imputations

$$\bar{Q} = rac{1}{m} \sum_{i=1}^{m} \hat{Q}_i$$

Within/Between Imputation Variance

- Let U be the squared standard error of Q
- We estimate U by \bar{U}
 - \hat{U}_i is the covariance matrix of \hat{Q}_i , our estimate from the *i*-th imputation

$$\bar{U} = \frac{1}{m} \sum_{i=1}^{m} \hat{U}_i$$

- Notice: \hat{U}_i is the variance **within** the estimate \hat{Q}_i
- Let *B* be the variance **between** the *m* complete-data estimates:

$$B = \frac{1}{m-1} \sum_{i=1}^m (\hat{Q}_i - \bar{Q}) (\hat{Q}_i - \bar{Q})^\intercal$$

- Let T denote the total variance of \overline{Q} • $T \neq \overline{U} + B$
- T is computed by:

$$egin{aligned} T &= ar{U} + B + rac{B}{m} \ &= ar{U} + (1 + rac{1}{m})B \end{aligned}$$

where $\frac{B}{m}$ is simulation error.

- $T = \overline{U} + (1 + \frac{1}{m})B$
- The intuition for T is as follows:
 - \overline{U} is the variance in \overline{Q} caused by the fact that we are using a sample.
 - *B* is the variance caused by the fact that there were missing values in our sample
 - $\frac{B}{m}$ is the simulation variance from the fact that \overline{Q} is based on a finite m.

• For multiple imputation to be valid, we must first assume, that with complete data

$$(\hat{Q}-Q)/\sqrt{U}\sim \mathscr{N}(0,1)$$

would be appropriate

• Then, after our multiple imputation steps, tests and confidence intervals are based on a Student's t-approximation

$$ig(ar{Q}-Qig)/\sqrt{T}\sim t_{v}$$
 $v=(m-1)\left[1+rac{ar{U}}{(1+rac{1}{m})B}
ight]^{2}$

- The validity of inference relies on how imputations are generated.
- Rubin proposed three conditions under which multiple imputation inference is "randomization-valid"

$$E(\bar{Q}|Y) = \hat{Q} \tag{1}$$

$$E(\bar{U}|Y) = U \tag{2}$$

$$(1+\frac{1}{m})E(B|Y) \ge V(\bar{Q}) \tag{3}$$

- **Result**: If the complete-data inference is randomization valid and the our imputation procedure satisfies the proceeding conditions, then our finite *m* multiple imputation inference is also randomization-valid.
 - Not always easy to get these conditions, often requires Bayesian approach

Simple Example in R

• The mice package does multiple imputation in R

- > library(mice)
- > head(nhanes)

	age	bmi	hyp	chl
1	1	NA	NA	NA
2	2	22.7	1	187
3	1	NA	1	187
4	3	NA	NA	NA
5	1	20.4	1	113
6	3	NA	NA	184

• We're interested in the simple linear regression of BMI on Age

• $Q = \beta_1$ from $E(BMI|Age) = \beta_0 + Age^{T}\beta_1$

Simple Example in R

- The *mice* package has some nice functions that summarize our missing data
- > md.pattern(nhanes)
 age hyp bmi chl
 13 1 1 1 1 0
 1 1 1 0 1 1
 3 1 1 1 0 1
 1 1 0 0 1 2
 7 1 0 0 0 3
 0 8 9 10 27
 - Above, the output shows we have 13 complete rows, 1 missing only BMI, 3 missing Cholesterol, 1 missing Hypertension and BMI, and 7 missing Hypertension, BMI, and Cholesterol.

Simple Example in R

> library(VIM)

```
> marginplot(nhanes[c(1,2)], col = c("blue", "red",
    "orange"))
```


Method	Description	Scale type
pmm	Predictive mean matching	numeric
norm	Bayesian linear regression	numeric
norm.nob	Linear regression, non-Bayesian	numeric
norm.boot	Linear regression with bootstrap	numeric
mean	Unconditional mean imputation	numeric
2L.norm	Two-level linear model	numeric
logreg	Logistic regression	factor, 2 levels
logreg.boot	Logistic regression with bootstrap	factor, 2 level
polyreg	Multinomial logit model	factor > 2 levels
polr	Ordered logit model	ordered, > 2 levels
lda	Linear discriminant analysis	factor
sample	Simple random sample	any

- Except in trivial settings, the probability distributions that we draw from to give 'proper' multiple imputation tend to be complicated
 Often requires MCMC
- In our example, we will use an approach called Predictive Mean Matching
 - Calculate $\hat{Y}_{observed} = \{\hat{y}_i = x_i^\mathsf{T}\beta : i \in Observed\}$
 - For $y_{missing}$, calculate $\hat{Y}_{missing} = \{\hat{y}_j = x_i^{\mathsf{T}}\beta : j \in Missing, i \in Observed\}$
 - Among our $\hat{Y}_{observed}$, locate the observation whose predicted value is closet to \hat{y}_j for all $j \in Missing$ and impute that value
 - For m = n, impute random draws the from the n observations whose predicted value is closest to \hat{y}_m

Predictive Mean Matching

age

mice() for Multiple Imputation

- We use the *mice()* function to run multiple imputation using predictive mean modeling
- > imp.nhanes<-mice(nhanes,m=5,method="pmm",print=FALSE,seed=8053)</pre>
 - We can look at our imputed values for BMI and notice these are sampled observed values
- > imp.nhanes\$imp\$bmi

	1	2	3	4	5
1	22.5	25.5	27.2	22.0	33.2
3	26.3	30.1	30.1	35.3	33.2
16	22.5	25.5	29.6	30.1	28.7
21	25.5	35.3	27.5	30.1	35.3

> na.omit(nhanes\$bmi)
[1] 22.7 20.4 22.5 30.1 22.0 21.7 28.7 29.6 27.2 26.3
[11] 35.3 25.5 33.2 27.5 24.9 27.4

- We fit five separate linear regression models
- > fit<-with(imp.nhanes, lm(bmi~age))</pre>
 - We average our estimates using *pool()* from the *mice* package

```
> est<-pool(fit)
```

> est\$qbar

(Intercept)	age
30.24	-2.06

• Using the mice() package, we can make valid inferences

> summary(est)

est se t df (Intercept) 30.242705 2.944000 10.272659 4.719653 age -2.060628 1.288428 -1.599336 7.255069 Pr(>|t|) lo 95 hi 95 nmis (Intercept) 0.0002086732 22.537686 37.9477244 NA age 0.1522742652 -5.085695 0.9644395 0 fmi lambda (Intercept) 0.7087166 0.6068631 age 0.5605660 0.4541020

• $p \approx .15 \implies$ no age effect

Questions?