
Computing Primer
for

Applied Linear
Regression, Third Edition

Using R and S-Plus

Sanford Weisberg
University of Minnesota

School of Statistics
February 8, 2010

c©2005, Sanford Weisberg

Home Website: www.stat.umn.edu/alr

Contents

Introduction 1
0.1 Organization of this primer 4
0.2 Data files 5

0.2.1 Documentation 5
0.2.2 R data files and a package 6
0.2.3 Two files missing from the R library 6
0.2.4 S-Plus data files and library 7
0.2.5 Getting the data in text files 7
0.2.6 An exceptional file 7

0.3 Scripts 7
0.4 The very basics 8

0.4.1 Reading a data file 8
0.4.2 Reading Excel Files 9
0.4.3 Saving text output and graphs 10
0.4.4 Normal, F , t and χ2 tables 11

0.5 Abbreviations to remember 12
0.6 Packages/Libraries for R and S-Plus 12
0.7 Copyright and Printing this Primer 13

1 Scatterplots and Regression 13

v

vi CONTENTS

1.1 Scatterplots 13
1.2 Mean functions 16
1.3 Variance functions 16
1.4 Summary graph 16
1.5 Tools for looking at scatterplots 16
1.6 Scatterplot matrices 16

2 Simple Linear Regression 19
2.1 Ordinary least squares estimation 19
2.2 Least squares criterion 19
2.3 Estimating σ2 20
2.4 Properties of least squares estimates 20
2.5 Estimated variances 20
2.6 Comparing models: The analysis of variance 21
2.7 The coefficient of determination, R2 22
2.8 Confidence intervals and tests 23
2.9 The Residuals 26

3 Multiple Regression 27
3.1 Adding a term to a simple linear regression model 27
3.2 The Multiple Linear Regression Model 27
3.3 Terms and Predictors 27
3.4 Ordinary least squares 28
3.5 The analysis of variance 30
3.6 Predictions and fitted values 31

4 Drawing Conclusions 33
4.1 Understanding parameter estimates 33

4.1.1 Rate of change 34
4.1.2 Sign of estimates 34
4.1.3 Interpretation depends on other terms in the mean function 34
4.1.4 Rank deficient and over-parameterized models 34

4.2 Experimentation versus observation 34
4.3 Sampling from a normal population 34
4.4 More on R2 34
4.5 Missing data 34
4.6 Computationally intensive methods 36

CONTENTS vii

5 Weights, Lack of Fit, and More 41
5.1 Weighted Least Squares 41

5.1.1 Applications of weighted least squares 42
5.1.2 Additional comments 42

5.2 Testing for lack of fit, variance known 42
5.3 Testing for lack of fit, variance unknown 43
5.4 General F testing 44
5.5 Joint confidence regions 45

6 Polynomials and Factors 47
6.1 Polynomial regression 47

6.1.1 Polynomials with several predictors 48
6.1.2 Using the delta method to estimate a minimum or a maximum 49
6.1.3 Fractional polynomials 51

6.2 Factors 51
6.2.1 No other predictors 53
6.2.2 Adding a predictor: Comparing regression lines 53

6.3 Many factors 54
6.4 Partial one-dimensional mean functions 54
6.5 Random coefficient models 56

7 Transformations 59
7.1 Transformations and scatterplots 59

7.1.1 Power transformations 59
7.1.2 Transforming only the predictor variable 59
7.1.3 Transforming the response only 62
7.1.4 The Box and Cox method 64

7.2 Transformations and scatterplot matrices 64
7.2.1 The 1D estimation result and linearly related predictors 66
7.2.2 Automatic choice of transformation of the predictors 66

7.3 Transforming the response 68
7.4 Transformations of non-positive variables 68

8 Regression Diagnostics: Residuals 69
8.1 The residuals 69

8.1.1 Difference between ê and e 69
8.1.2 The hat matrix 69
8.1.3 Residuals and the hat matrix with weights 70

viii CONTENTS

8.1.4 The residuals when the model is correct 70
8.1.5 The residuals when the model is not correct 70
8.1.6 Fuel consumption data 70

8.2 Testing for curvature 71
8.3 Nonconstant variance 72

8.3.1 Variance Stabilizing Transformations 72
8.3.2 A diagnostic for nonconstant variance 72
8.3.3 Additional comments 73

8.4 Graphs for model assessment 73
8.4.1 Checking mean functions 73
8.4.2 Checking variance functions 74

9 Outliers and Influence 75
9.1 Outliers 75

9.1.1 An outlier test 75
9.1.2 Weighted least squares 76
9.1.3 Significance levels for the outlier test 76
9.1.4 Additional comments 76

9.2 Influence of cases 76
9.2.1 Cook’s distance 77
9.2.2 Magnitude of Di 77
9.2.3 Computing Di 77
9.2.4 Other measures of influence 77

9.3 Normality assumption 77

10 Variable Selection 79
10.1 The Active Terms 79

10.1.1 Collinearity 80
10.1.2 Collinearity and variances 80

10.2 Variable selection 80
10.2.1 Information criteria 80
10.2.2 Computationally intensive criteria 80
10.2.3 Using subject-matter knowledge 81

10.3 Computational methods 81
10.3.1 Subset selection overstates significance 86

10.4 Windmills 86
10.4.1 Six mean functions 86
10.4.2 A computationally intensive approach 86

CONTENTS ix

11 Nonlinear Regression 87
11.1 Estimation for nonlinear mean functions 87
11.2 Inference assuming large samples 87
11.3 Bootstrap inference 91
11.4 References 92

12 Logistic Regression 93
12.1 Binomial Regression 93

12.1.1 Mean Functions for Binomial Regression 93
12.2 Fitting Logistic Regression 93

12.2.1 One-predictor example 94
12.2.2 Many Terms 95
12.2.3 Deviance 96
12.2.4 Goodness of Fit Tests 97

12.3 Binomial Random Variables 97
12.3.1 Maximum likelihood estimation 97
12.3.2 The Log-likelihood for Logistic Regression 97

12.4 Generalized linear models 97

Appendix A 99
A.1 Web site 99
A.2 Means and variances of random variables 99

A.2.1 E notation 99
A.2.2 Var notation 99
A.2.3 Cov notation 99
A.2.4 Conditional moments 99

A.3 Least squares for simple regression 99
A.4 Means and variances of least squares estimates 99
A.5 Estimating E(Y |X) using a smoother 99
A.6 A brief introduction to matrices and vectors 101

A.6.1 Addition and subtraction 101
A.6.2 Multiplication by a scalar 101
A.6.3 Matrix multiplication 101
A.6.4 Transpose of a matrix 101
A.6.5 Inverse of a matrix 101
A.6.6 Orthogonality 101
A.6.7 Linear dependence and rank of a matrix 101

A.7 Random vectors 101

x CONTENTS

A.8 Least squares using matrices 101
A.8.1 Properties of estimates 101
A.8.2 The residual sum of squares 101
A.8.3 Estimate of variance 101

A.9 The QR factorization 101
A.10 Maximum likelihood estimates 103
A.11 The Box-Cox method for transformations 103

A.11.1 Univariate case 103
A.11.2 Multivariate case 103

A.12 Case deletion in linear regression 103

References 105

Index 107

0
Introduction

This computer primer supplements the book Applied Linear Regression (alr),
third edition, by Sanford Weisberg, published by John Wiley & Sons in 2005.
It shows you how to do the analyses discussed in alr using one of several
general-purpose programs that are widely available throughout the world. All
the programs have capabilities well beyond the uses described here. Different
programs are likely to suit different users. We expect to update the primer
periodically, so check www.stat.umn.edu/alr to see if you have the most recent
version. The versions are indicated by the date shown on the cover page of
the primer.

Our purpose is largely limited to using the packages with alr, and we will
not attempt to provide a complete introduction to the packages. If you are
new to the package you are using you will probably need additional reference
material.

There are a number of methods discussed in alr that are not (as yet)
a standard part of statistical analysis, and some methods are not possible
without writing your own programs to supplement the package you choose.
The exceptions to this rule are R and S-Plus. For these two packages we have
written functions you can easily download and use for nearly everything in the
book.

Here are the programs for which primers are available.

R is a command line statistical package, which means that the user types
a statement requesting a computation or a graph, and it is executed
immediately. You will be able to use a package of functions for R that

1

2 INTRODUCTION

will let you use all the methods discussed in alr; we used R when writing
the book.

R also has a programming language that allows automating repetitive
tasks. R is a favorite program among academic statisticians because
it is free, works on Windows, Linux/Unix and Macintosh, and can be
used in a great variety of problems. There is also a large literature
developing on using R for statistical problems. The main website for
R is www.r-project.org. From this website you can get to the page for
downloading R by clicking on the link for CRAN, or, in the US, going to
cran.us.r-project.org.

Documentation is available for R on-line, from the website, and in several
books. We can strongly recommend two books. The book by Fox (2002)
provides a fairly gentle introduction to R with emphasis on regression.
We will from time to time make use of some of the functions discussed in
Fox’s book that are not in the base R program. A more comprehensive
introduction to R is Venables and Ripley (2002), and we will use the
notation vr[3.1], for example, to refer to Section 3.1 of that book.
Venables and Ripley has more computerese than does Fox’s book, but
its coverage is greater and you will be able to use this book for more than
linear regression. Other books on R include Verzani (2005), Maindonald
and Braun (2002), Venables and Smith (2002), and Dalgaard (2002). We
used R Version 2.0.0 on Windows and Linux to write the package. A
new version of R is released twice a year, so the version you use will
probably be newer. If you have a fast internet connection, downloading
and upgrading R is easy, and you should do it regularly.

S-Plus is very similar to R, and most commands that work in R also work in
S-Plus. Both are variants of a statistical language called “S” that was
written at Bell Laboratories before the breakup of AT&T. Unlike R, S-

Plus is a commercial product, which means that it is not free, although
there is a free student version available at elms03.e-academy.com/splus.
The website of the publisher is www.insightful.com/products/splus. A
library of functions very similar to those for R is also available that will
make S-Plus useful for all the methods discussed in alr.

S-Plus has a well-developed graphical user interface or GUI. Many new
users of S-Plus are likely to learn to use this program through the GUI,
not through the command-line interface. In this primer, however, we
make no use of the GUI.

If you are using S-Plus on a Windows machine, you probably have the
manuals that came with the program. If you are using Linux/Unix, you
may not have the manuals. In either case the manuals are available
online; for Windows see the Help→Online Manuals, and for Linux/Unix
use

> cd ‘Splus SHOME‘/doc

3

> ls

and see the pdf documents there. Chambers and Hastie (1993) provides
the basics of fitting models with S languages like S-Plus and R. For a
more general reference, we again recommend Fox (2002) and Venables
and Ripley (2002), as we did for R. We used S-Plus Version 6.0 Release
1 for Linux, and S-Plus 6.2 for Windows. Newer versions of both are
available.

SAS is the largest and most widely distributed statistical package in both
industry and education. SAS also has a GUI. While it is possible to do
some data analysis using the SAS GUI, the strength of this program is in
the ability to write SAS programs, in the editor window, and then submit
them for execution, with output returned in an output window. We will
therefore view SAS as a batch system, and concentrate mostly on writing
SAS commands to be executed. The website for SAS is www.sas.com.

SAS is very widely documented, including hundreds of books available
through amazon.com or from the SAS Institute, and extensive on-line
documentation. Muller and Fetterman (2003) is dedicated particularly
to regression. We used Version 9.1 for Windows. We find the on-line
documentation that accompanies the program to be invaluable, although
learning to read and understand SAS documentation isn’t easy.

Although SAS is a programming language, adding new functionality can
be very awkward and require long, confusing programs. These programs
could, however, be turned into SAS macros that could be reused over and
over, so in principle SAS could be made as useful as R or S-Plus. We have
not done this, but would be delighted if readers would take on the chal-
lenge of writing macros for methods that are awkward with SAS. Anyone
who takes this challenge can send us the results (sandy@stat.umn.edu)
for inclusion in later revisions of the primer.

We have, however, prepared script files that give the programs that will
produce all the output discussed in this primer; you can get the scripts
from www.stat.umn.edu/alr.

JMP is another product of SAS Institute, and was designed around a clever
and useful GUI. A student version of JMP is available. The website is
www.jmp.com. We used JMP Version 5.1 on Windows.

Documentation for the student version of JMP, called JMP-In, comes
with the book written by Sall, Creighton and Lehman (2005), and we will
write jmp-start[3] for Chapter 3 of that book, or jmp-start[P360] for
page 360. The full version of JMP includes very extensive manuals; the
manuals are available on CD only with JMP-In. Fruend, Littell and
Creighton (2003) discusses JMP specifically for regression.

JMP has a scripting language that could be used to add functionality
to the program. We have little experience using it, and would be happy

4 INTRODUCTION

to hear from readers on their experience using the scripting language to
extend JMP to use some of the methods discussed in alr that are not
possible in JMP without scripting.

SPSS evolved from a batch program to have a very extensive graphical user
interface. In the primer we use only the GUI for SPSS, which limits
the methods that are available. Like SAS, SPSS has many sophisticated
tools for data base management. A student version is available. The
website for SPSS is www.spss.com. SPSS offers hundreds of pages of
documentation, including SPSS (2003), with Chapter 26 dedicated to
regression models. In mid-2004, amazon.com listed more than two thou-
sand books for which “SPSS” was a keyword. We used SPSS Version
12.0 for Windows. A newer version is available.

This is hardly an exhaustive list of programs that could be used for re-
gression analysis. If your favorite package is missing, please take this as a
challenge: try to figure out how to do what is suggested in the text, and write
your own primer! Send us a PDF file (sandy@stat.umn.edu) and we will add
it to our website, or link to yours.

One program missing from the list of programs for regression analysis is
Microsoft’s spreadsheet program Excel. While a few of the methods described
in the book can be computed or graphed in Excel, most would require great
endurance and patience on the part of the user. There are many add-on
statistics programs for Excel, and one of these may be useful for comprehensive
regression analysis; we don’t know. If something works for you, please let us
know!

A final package for regression that we should mention is called Arc. Like
R, Arc is free software. It is available from www.stat.umn.edu/arc. Like JMP

and SPSS it is based around a graphical user interface, so most computations
are done via point-and-click. Arc also includes access to a complete computer
language, although the language, lisp, is considerably harder to learn than the
S or SAS languages. Arc includes all the methods described in the book. The
use of Arc is described in Cook and Weisberg (1999), so we will not discuss it
further here; see also Weisberg (2005).

0.1 ORGANIZATION OF THIS PRIMER

The primer often refers to specific problems or sections in alr using notation
like alr[3.2] or alr[A.5], for a reference to Section 3.2 or Appendix A.5,
alr[P3.1] for Problem 3.1, alr[F1.1] for Figure 1.1, alr[E2.6] for an equa-
tion and alr[T2.1] for a table. Reference to, for example, “Figure 7.1,” would
refer to a figure in this primer, not to alr. Chapters, sections, and homework
problems are numbered in this primer as they are in alr. Consequently, the
section headings in primer refers to the material in alr, and not necessarily
the material in the primer. Many of the sections in this primer don’t have any

DATA FILES 5

material because that section doesn’t introduce any new issues with regard to
computing. The index should help you navigate through the primer.

There are four versions of this primer, one for R and S-Plus, and one for
each of the other packages. All versions are available for free as PDF files at
www.stat.umn.edu/alr.

Anything you need to type into the program will always be in this font.
Output from a program depends on the program, but should be clear from
context. We will write File to suggest selecting the menu called “File,” and
Transform→Recode to suggest selecting an item called “Recode” from a menu
called “Transform.” You will sometimes need to push a button in a dialog,
and we will write “push ok” to mean “click on the button marked ‘OK’.” For
non-English versions of some of the programs, the menus may have different
names, and we apologize in advance for any confusion this causes.

R and S-Plus Most of the graphs and computer output in alr were produced
with R. The computer code we give in this primer may not reproduce the
graphs exactly, since we have tweaked some of the graphs to make them look
prettier for publication, and the tweaking arguments work a little differently
in R and S-Plus. If you want to see the tweaks we used in R, look at the
scripts, Section 0.3.

0.2 DATA FILES

0.2.1 Documentation

Documentation for nearly all of the data files is contained in alr; look
in the index for the first reference to a data file. Separate documenta-
tion can be found in the file alr3data.pdf in PDF format at the web site
www.stat.umn.edu/alr.

The data are available in a package for R, in a library for S-Plus and for SAS,
and as a directory of files in special format for JMP and SPSS. In addition,
the files are available as plain text files that can be used with these, or any
other, program. Table 0.1 shows a copy of one of the smallest data files called
htwt.txt, and described in alr[P3.1]. This file has two variables, named Ht
and Wt, and ten cases, or rows in the data file. The largest file is wm5.txt with
62,040 cases and 14 variables. This latter file is so large that it is handled
differently from the others; see Section 0.2.6.

A few of the data files have missing values, and these are generally indicated
in the file by a place-holder in the place of the missing value. For example, for
R and S-Plus, the placeholder is NA, while for SAS it is a period “.” Different
programs handle missing values a little differently; we will discuss this further
when we get to the first data set with a missing value in Section 4.5.

6 INTRODUCTION

Table 0.1 The data file htwt.txt.

Ht Wt

169.6 71.2

166.8 58.2

157.1 56

181.1 64.5

158.4 53

165.6 52.4

166.7 56.8

156.5 49.2

168.1 55.6

165.3 77.8

0.2.2 R data files and a package

All the data files and a few additional functions that automate methods dis-
cussed in alr are collected into an R package named alr3. We recommend
that you install the package on your computer. You can simply start R and
type

> install.packages("alr3")

Follow the on-screen instructions to select a mirror site close to your home,
and then select alr3 from the list of available packages.

Once you have installed the package, two commands are required to access
a data file. First, the command

> library(alr3)

(or library(alr3,lib.loc="mylib/") if you installed your own Linux/Unix li-
brary) to load the package opens the package for your use. To read a particular
file, say forbes.txt, for example, type

> data(forbes)

without the “.txt” suffix that is shown in alr. This will create a data frame
with the name forbes. If you then type simply forbes, the data will be listed.
You can add a new variable to the data frame by typing, for example

> forbes$logTemp <- log(forbes$Temp,2)

to add the base-two logarithm of Temperature to the data frame.
You can view the documentation for the data sets on-line. The most elegant

method is to enter the command help.start() into R. This will start your web
browser, if it is not already running. Click on “Packages,” and then on “alr3.”
You will then get an alphabetical listing of all the data files and functions in
the alr3 package, and you can select the one you want to see.

0.2.3 Two files missing from the R library

The two datafiles anscombe and longley are available, with those names, in
the datasets library that is part of R. For anscombe the variable names are

SCRIPTS 7

as described in the textbook on page 12. For longley the variable names are
slightly different from the names given on page 94; type ?longley to get the
variable names.

0.2.4 S-Plus data files and library

The S-Plus data files are also available as a library; see www.stat.umn.edu/alr

for instructions on downloading and installing1.
In S-Plus, you don’t need the data command to access a data set in a

library; indeed, the data command doesn’t exist in S-Plus. To use the Forbes
data set, for example, you can use the following commands

> library(alr3)

> f <- forbes

> f$logTemp <- logb(f$Temp,2)

> f

This will load the library, and make f be a local copy of the data set forbes.
In S-Plus, you need to make a local copy of the data set if you want to change
it, as we have done here by adding a new variable. In S-Plus, the command
log computes natural logs; we need to use logb to compute logs to some other
base. The final command prints f in the text window.

0.2.5 Getting the data in text files

You can download the data as a directory of plain text files, or as individual
files; see www.stat.umn.edu/alr/data. Missing values on these files are indi-
cated with a ?. If your program does not use this missing value character, you
may need to substitute a different character using an editor.

0.2.6 An exceptional file

The file wm5.txt is not included in any of the compressed files, or in
the libraries. This one file is nearly five megabytes long, requiring as much
space as all the other files combined. If you need this file, for alr[P10.12],
you can download it separately from www.stat.umn.edu/alr/data.

0.3 SCRIPTS

For R, S-Plus, and SAS, we have prepared script files that can be used while
reading this primer. For R and S-Plus, the scripts will reproduce nearly every
computation shown in alr; indeed, these scripts were used to do the calcu-

1A library in S-Plus is called a package in R.

8 INTRODUCTION

lations in the first place. For SAS, the scripts correspond to the discussion
given in this primer, but will not reproduce everything in alr. The scripts
can be downloaded from www.stat.umn.edu/alr for R, S-Plus or SAS.

Although both JMP and SPSS have scripting or programming languages, we
have not prepared scripts for these programs. Some of the methods discussed
in alr are not possible in these programs without the use of scripts, and so
we encourage readers to write scripts in these languages that implement these
ideas. Topics that require scripts include bootstrapping and computer inten-
sive methods, alr[4.6]; partial one-dimensional models, alr[6.4], inverse re-
sponse plots, alr[7.1, 7.3], multivariate Box-Cox transformations, alr[7.2],
Yeo-Johnson transformations, alr[7.4], and heteroscedasticity tests, alr[8.3.2].
There are several other places where usability could be improved with a script.

If you write scripts you would like to share with others, let me know
(sandy@stat.umn.edu) and I’ll make a link to them or add them to the web-
site.

0.4 THE VERY BASICS

Before you can begin doing any useful computing, you need to be able to read
data into the program, and after you are done you need to be able to save
and print output and graphs. All the programs are a little different in how
they handle input and output, and we give some of the details here.

0.4.1 Reading a data file

Reading data into a program is surprisingly difficult. We have tried to ease
this burden for you, at least when using the data files supplied with alr, by
providing the data in a special format for each of the programs. There will
come a time when you want to analyze real data, and then you will need to
be able to get your data into the program. Here are some hints on how to do
it.

R and S-Plus If you have installed the R or S-Plus library and want to read
one of the data files described in alr, you can follow the instructions in
Section 0.2.2–0.2.4. If you have not installed the library, or you want to read
a different file, use the command read.table to read a plain data file. The
general form of this command is:

> d <- read.table("filename", header=TRUE, na.strings="?")

THE VERY BASICS 9

The filename is a quoted string, like "C:/My Documents/data.txt", giving the
name of the data file and its path2. The argument header=TRUE indicates that
the first line of the file has variable names (you would say header=FALSE if
this were not so, and then the program would assign variable names like X1,
X2 and so on), and the na.strings="?" indicates that missing values, if any,
are indicated by a question mark rather than the default of NA used by R and
S-Plus. read.table has many more options; type help(read.table) to learn
about them. R has a package called foreign that can be used to read files of
other types. Similar tools are available for S-Plus as well.

Suppose that the file C:\My Documents\mydata\htwt.txt gave the data in
Table 0.1. This file is read by

> d <- read.table("C:/My Documents/mydata/htwt.txt", header=TRUE)

With Windows, always replace the backslashes \ by forward slashes /. While
this replacement may not be necessary in all versions of R and S-Plus, the
forward slashes always work. The na.strings argument can be omitted be-
cause this file has no missing data. As a result of this command, a data.frame,
roughly like a matrix, is created named d. The two columns of d are called
d$Ht and d$Wt, with the column names read from the first row of the file
because header=TRUE.

In R, you can also read the data directly from the internet:

> d <-read.table(url("http://www.stat.umn.edu/alr/data/htwt.txt"),

header=TRUE)

You can get any data file in the book in this way by substituting the file’s
name, and using the rest of the web address shown.

Both R and S-Plus are case sensitive, which means that a variable called
weight is different from Weight, which in turn is different from WEIGHT. Also,
the command read.table would be different from READ.TABLE. Path names
are case-sensitive on Linux, but not on Windows.

0.4.2 Reading Excel Files

In S-Plus, the command importData can be used to read a file created by
Microsoft Excel (as well as files in many other standard formats). For example,
if you have created an Excel file called “ais.xls” with (1) variable names in
the first row and (2) data in all the following rows, then the S-Plus statement

> data <- importData("ais.xls")

will read the file and and import it as a data frame called data. You will
need to replace the name of the file by the complete pathname if the file is

2Getting the path right can be frustrating. If you are using R, select File→Change dir, and
then use browse to select the directory that includes your data file. In read.table you
can then specify just the file name without the path.

10 INTRODUCTION

not in the directory from which you started S-Plus. This command has many
options; see help(importData) for more information.

R is less friendly in working with Excel files3, and you must start in Excel
by saving the file as a “.csv” file, which is a plain text file, with the items in
each row of the file separated by commas. You can then read the “.csv” file
with the command read.cvs,

> data <- read.csv("ais.csv",header=TRUE)

where once again the complete path to the file is required.

0.4.3 Saving text output and graphs

All the programs have many ways of saving text output and graphs. We will
make no attempt to be comprehensive here.

R and S-Plus When using R or a command-line interface for S-Plus, the eas-
iest way to save printed output is to select it, copy to the clipboard, and paste
it into an editor or word processing program. Be sure to use a monospaced-
font like Courier so columns line up properly. In R on Windows, you can
select File→ Save to file to save the contents of the text window to a file.

The easiest way to save a graph in R on Windows or Macintosh is via a
menu item. The plot has its own menus, and select File→ Save as→ filetype,
where filetype is the format of the graphics file you want to use. In both
R and S-Plus, you can copy a graph to the clipboard with a menu item, and
then paste it into a word processing document.

In all versions of R and S-Plus, you can also save files using a relatively
complex method of defining a device for the graph. For example,

> postscript("myhist.eps", horizontal=FALSE,height=5,width=5)

> hist(rnorm(100))

> dev.off()

defines a device of type postscript to be saved in the file “myhist.eps” in
the current directory. It will consist of a histogram of 100 normal random
numbers. This device remains active until the dev.off command closes the
device. The default with postscript is to save the file in “landscape,” or
horizontal mode to fill the page. The argument horizontal=FALSE orients the
graph vertically, and height and width to 5 makes the plotting region a 5
inches by 5 inches square.

R has many devices available, including pdf, postscript, jpeg and others;
S-Plus has different devices. In either system, see help(Devices) for a list
of devices, and then, for example, help(postscript) for a list of the (many)
arguments to the postscript command. See also vr[4.1].

3Experienced users can read about, and install the the dcom package for using R with Excel;
see cran.r-project.org/contrib/extra/dcom/.

THE VERY BASICS 11

0.4.4 Normal, F , t and χ2 tables

alr does not include tables for looking up critical values and significance
levels for standard distributions like the t, F and χ2. Although these values
can be computed with any of the programs we discuss in the primers, doing
so is easy only with R and S-Plus. Also, the computation is fairly easy with
Microsoft Excel. Table 0.2 shows the functions you need using Excel.

Table 0.2 Functions for computing p-values and critical values using Microsoft Excel.
The definitions for these functions are not consistent, sometimes corresponding to
two-tailed tests, sometimes giving upper tails, and sometimes lower tails. Read the
definitions carefully. The algorithms used to compute probability functions in Excel
are of dubious quality, but for the purpose of determining p-values or critical values,
they should be adequate; see Knüsel (2005) for more discussion.

Function What it does

normsinv(p) Returns a value q such that the area to the left of q for
a standard normal random variable is p.

normsdist(q) The area to the left of q. For example, normsdist(1.96)
equals 0.975 to three decimals.

tinv(p,df) Returns a value q such that the area to the left of −|q|
and the area to the right of +|q| for a t(df) distribution
equals q. This gives the critical value for a two-tailed
test.

tdist(q,df,tails) Returns p, the area to the left of q for a t(df) distri-
bution if tails = 1, and returns the sum of the areas
to the left of −|q| and to the right of +|q| if tails = 2,
corresponding to a two-tailed test.

finv(p,df1,df2) Returns a value q such that the area to the right of
q on a F (df1, df2) distribution is p. For example,
finv(.05,3,20) returns the 95% point of the F (3, 20)
distribution.

fdist(q,df1,df2) Returns p, the area to the right of q on a F (df1, df2)
distribution.

chiinv(p,df) Returns a value q such that the area to the right of q
on a χ2(df) distribution is p.

chidist(q,df) Returns p, the area to the right of q on a χ2(df) distri-
bution.

R and S-Plus Table 0.3 lists the six commands that are used to compute
significance levels and critical values for t, F and χ2 random variables. For
example, to find the significance level for a test with value −2.51 that has a
t(17) distribution, type into the text window

> pt(-2.51,17)

12 INTRODUCTION

[1] 0.011241

which returns the area to the left of the first argument. Thus the lower-tailed
p-value is 0.011241, the upper tailed p-value is 1 − .012241 = .98876, and the
two-tailed p-value is 2 × .011241 = .022482.

Table 0.3 Functions for computing p-values and critical values using R and S-Plus.
These functions may have additional arguments useful for other purposes.

Function What it does

qnorm(p) Returns a value q such that the area to the left of q for a
standard normal random variable is p.

pnorm(q) Returns a value p such that the area to the left of q on a
standard normal is p.

qt(p,df) Returns a value q such that the area to the left of q on a
t(df) distribution equals q.

pt(q,df) Returns p, the area to the left of q for a t(df) distribution
qf(p,df1,df2) Returns a value q such that the area to the left of q on

a F (df1, df2) distribution is p. For example, qf(.95,3,20)

returns the 95% points of the F (3, 20) distribution.
pf(q,df1,df2) Returns p, the area to the left of q on a F (df1, df2) distri-

bution.
qchisq(p,df) Returns a value q such that the area to the left of q on a

χ2(df) distribution is p.
pchisq(q,df) Returns p, the area to the left of q on a χ2(df) distribution.

0.5 ABBREVIATIONS TO REMEMBER

alr refers to the textbook, Weisberg (2005). vr refers to Venables and Ripley
(2002), our primary reference for R and S-Plus. jmp-start refers to Sall,
Creighton and Lehman (2005), the primary reference for JMP. Information
typed by the user looks like this. References to menu items looks like File

or Transform→Recode. The name of a button to push in a dialog uses this
font.

0.6 PACKAGES/LIBRARIES FOR R AND S-Plus

The alr3 package described previously includes several new commands in
addition to the data sets that will make many of the computations easier. We
will also make use of a few other packages that others have written that will be
helpful for working through alr. The packages are all described in Table 0.4.
Since all the packages are free, we recommend that you obtain and install

COPYRIGHT AND PRINTING THIS PRIMER 13

them immediately. In particular, instructors should be sure the packages are
installed for their students using a Unix/Linux system where packages need
to be installed by a superuser.

Table 0.4 R/S-Plus that are useful with alr. All the R packages are available from
CRAN, cran.us.r-project.org; sources are given for the S-Plus versions.

alr3 Contains all the data files used in the book, and additional commands
that implement ideas in the book that are not already part of these pro-
grams. The R version is available from CRAN; for the S-Plus version, see
www.stat.umn.edu/alr.

MASS MASS is a companion to Venables and Ripley (2002), and is included in
the distribution of R, so there is nothing to download. For S-Plus, see
www.stats.ox.ac.uk/pub/MASS3/Software.html

car The companion to Fox (2002), it is available from CRAN for R and from
socserv.mcmaster.ca/jfox/Books/Companion/car.html for both R

and S-Plus.
nlme This library fits linear and nonlinear mixed-effects models, which are

briefly discussed in Section 6.5. This package is included with the base
distribution of both R and S-Plus; with S-Plus, it may be called nlme4,
or some other last digit. This library is described by Pinheiro and Bates
(2000).

sm This is a library for local linear smoothing, and used only in Chapter 12.
The R version is available from CRAN, and the S-Plus version is available
from www.stats.gla.ac.uk/~adrian/sm/.

Libraries for S-Plus only

resample Bootstrapping and other resampling methods, available from
www.insightful.com/downloads/libraries/. Similar methods, al-
though not as elegant, are part of the alr3 package for R.

missing This package includes helpful commands for working with data
files that have missing values, meaning that the values for some
variables are not observed for some cases, also available from
www.insightful.com/downloads/libraries/.

0.7 COPYRIGHT AND PRINTING THIS PRIMER

Copyright c© 2005, by Sanford Weisberg. Permission is granted to download
and print this primer. Bookstores, educational institutions, and instructors
are granted permission to download and print this document for student use.
Printed versions of this primer may be sold to students for cost plus a rea-
sonable profit. The website reference for this primer is www.stat.umn.edu/alr.
Newer versions may be available from time to time.

1
Scatterplots and

Regression

1.1 SCATTERPLOTS

A principal tool in regression analysis is the two-dimensional scatterplot. All
statistical packages can draw these plots. We concentrate mostly on the basics
of drawing the plot. Most programs have options for modifying the appearance
of the plot. For these, you should consult documentation for the program you
are using.

R and S-Plus R and S-Plus scatterplots can be drawn using the function
plot. A simple application of the function will draw alr[F1.1]:

> library(alr3)

> data(heights) # R only, not needed in S-Plus

> attach(heights)

> plot(Mheight,Dheight,xlim=c(55,75),ylim=c(55,75),pch=20)

The library command loads the alr3 library that contains all the data sets
discussed in alr. The data command tells R to load the data frame called
heights; this command is not needed (and may cause an error message to
appear) with S-Plus. The function attach allows reference to the variables in
heights without specifying the data frame, so we can type Mheight rather than
heights$Mheight. The first argument to plot is the quantity to be plotted on
the horizontal axis, followed by the quantity on the vertical axis. These are
the only two required arguments; all the remaining arguments modify the way
the plot looks, and you can skip them.

13

14 SCATTERPLOTS AND REGRESSION

The arguments xlim and ylim give the limits on the horizontal and vertical
axes, respectively. In the example, both have been set to range from 55 to
75. The statement c(55,75) should be read as collect the values 55 and 75
into a vector. The argument pch selects the plotting character. Here we have
use character 20, which is a small filled circle in R and a plus sign in S-Plus.
vr[4.2] give a listing of all the characters available. You can also plot a letter,
for example pch="f" would use a lower-case “f” as the plotting character. The
argument cex=.3 controls the size of the plotting symbol, here .3 times the
default size. This graph has many points, so a very small symbol is desirable.
vr[4.2] discusses most of the other settings for a scatterplot; we will introduce
others as we use them. The documentation in R/S-Plus for the function par

describes many of the arguments that control the appearance of a plot. The
arguments are not all the same in R and S-Plus.

Figure alr[F1.2] is obtained from alr[F1.1] by deleting most of the
points. Some packages may allow the user to remove/restore points inter-
actively, but this is not so in R/S-Plus. You need to redraw the figure, after
selecting the points you want to appear:

> sel <- (57.5 < Mheight) & (Mheight <= 58.5) |

(62.5 < Mheight) & (Mheight <= 63.5) |

(67.5 < Mheight) & (Mheight <= 68.5)

> plot(Mheight[sel],Dheight[sel],xlim=c(55,75),ylim=c(55,75),

pty="s",pch=20,cex=.3,xlab="Mheight",ylab="Dheight")

The variable sel that results from the first calculation is a vector of values
equal to either TRUE and FALSE. It is equal to TRUE if either 57.5 <
Mheight ≤ 58.5, or 62.5 < Mheight ≤ 63.5 or 67.5 < Mheight ≤ 68.5. The
vertical bar | is the logical “or” operator; type help("|") to get the syntax
for other logical operators. Mheight[sel] selects the elements of Mheight with
sel equal to TRUE1. The xlab and ylab labels are used to label the axes, or
else the label for the x-axis would have been, for example, Mheight[sel].

alr[F1.3] adds several new features to scatterplots. First, two graphs are
drawn in one window. This is done using the par function, which sets global
parameters for graphical windows,

> par(mfrow=c(1,2))

meaning that the graphical window will hold an array of graphs with one row
and two columns. This choice for the window will be kept until either the
graphical window is closed or it is reset using another par command.

To draw alr[F1.3] we need to find the equation of the line to be drawn,
and this is done using the lm command, the workhorse in R/S-Plus for fitting
linear regression models. We will discuss this at much greater length in the
next two chapters beginning in Section 2.4, but for now we will simply use
the function.

1Although not used in the example, Mheight[!sel] would select the elements of Mheight
with sel equal to FALSE.

SCATTERPLOTS 15

> data(forbes) # R only

> attach(forbes)

> m0 <- lm(Pressure~Temp)

> plot(Temp,Pressure,xlab="Temperature",ylab="Pressure")

> abline(m0)

> plot(Temp,residuals(m0), xlab="Temperature", ylab="Residuals")

> abline(a=0,b=0,lty=2)

First, forbes is accessed and attached. Then, the ols fit is computed using the
lm function and named m0. The first plot draws the scatterplot of Pressure
versus Temp. We add the regression line with the function abline. When
the argument to abline is the name of a regression model, the function gets
the information needed from the model to draw the ols line. The second
plot draws the second graph, this time of the residuals from model m0 on the
vertical axis versus Temp on the horizontal axis. A horizontal dashed line is
added to this graph by specifying intercept a equal to zero and slope b equal
to zero. The argument lty=2 specifies a dashed line; lty=1 would have given
a solid line.

alr[F1.5] has two lines added to it, the ols line and the line joining the
mean for each value of Age. Here are the commands that draw this graph:

> data(wblake) # R-only

> attach(wblake)

> plot(Age,Length)

> abline(lm(Length~Age))

> lines(1:8,tapply(Length,Age,mean),lty=2)

There are a few new features here. First, the call to lm is combined with abline

into a single command. The lines command adds lines to an existing plot,
joining the points specified. The points have horizontal coordinates 1:8, the
integers from one to eight for the Age groups, and vertical coordinates given
by the mean Length at each Age. The function tapply can be read “apply the
function mean to the variable Length separately for each value of Age.”

alr[F1.7] adds two new features: a separate plotting character for each of
the groups, and a legend or key. Here is how this was drawn in R:

> data(turkey) # R only

> attach(turkey)

> plot(A,Gain,pch=S, xlab="Amount(percent of diet)",

col=S, ylab="Weight gain, g")

> legend(.02,780,legend=c("1","2","3"),pch=1:3,cex=.6)

S is a variable in the data frame with the values 1, 2, or 3, so setting pch=S

sets the plotting character to be a “1,” “2” or “3” depending on the value
of S. Similarly, setting col=S will set the color of the plotted points to be
different for each of the three groups. The first two arguments to the legend

set its upper left corner, the argument legend= is a list of text to show in the
legend, and the pch argument tells to show the plotting characters. There are
many other options; see the help page for legend or vr[4.3].

16 SCATTERPLOTS AND REGRESSION

Changing plotting symbols or colors is more tedious in S-Plus because you
can only have one plotting symbol at a time:

> # S-Plus version

> plot(turkey$A[turkey$S==1],turkey$Gain[turkey$S==1],pch="O",

+ xlab="Amount (percent of diet)", ylab="Weight gain, g")

> points(turkey$A[turkey$S==2],turkey$Gain[turkey$S==2],pch="+")

> points(turkey$A[turkey$S==3],turkey$Gain[turkey$S==3],pch="*")

> legend(.02,780,legend=c("1","2","3"),pch="O+*")

The plot command only draws the graph for the points with S = 1, and it
uses the symbol equivalent to a capital “O”. The points for the other groups
are added with points helpers. The format of the legend is a little different,
too. In S-Plus, the pch argument must be given as a character string, rather
than as a vector for R. While the points and plot commands will work in
both R and S-Plus, the two legend commands are different.

1.2 MEAN FUNCTIONS

1.3 VARIANCE FUNCTIONS

1.4 SUMMARY GRAPH

1.5 TOOLS FOR LOOKING AT SCATTERPLOTS

R and S-Plus alr[F1.10] adds a smoother to alr[F1.1]. R/S-Plus have a
great variety of smoothers available, and all can be added to a scatterplot.
Here is how to add a loess smooth using the lowess function.

> data(heights) # R only

> attach(heights)

> plot(Dheight~Mheight,cex=.1,pch=20)

> abline(lm(Dheight~Mheight),lty=1)

> lines(lowess(Dheight~Mheight,f=6/10,iter=1),lty=2)

The lowess specifies the response and predictor in the same way as lm. It
also requires a smoothing parameter, which we have set to 0.6. The argument
iter also controls the behavior of the smoother; we prefer to set iter=1, not
the default value of 3.

1.6 SCATTERPLOT MATRICES

R and S-Plus R and S-Plus include at least two functions for obtaining scat-
terplot matrices, pairs and splom; we will only use pairs. To reproduce an
approximation to alr[F1.11], we must first transform the data to get the

SCATTERPLOT MATRICES 17

variables that are to be plotted, and then draw the plot. R and S-Plus are a
little different. Here is the code that will work for both:

> data(fuel2001) # R only

> f <- fuel2001 # Required in S-Plus, OK in R but not needed

> f$Dlic <- 1000*f$Drivers/f$Pop

> f$Fuel <- 1000*f$FuelC/f$Pop

> f$Income <- f$Income/1000

> f$logMiles <- logb(f$Miles,2)

> names(f)

[1] "Drivers" "FuelC" "Income" "Miles" "MPC" "Pop"

[7] "Tax" "State" "Dlic" "Fuel" "logMiles"

> attach(f)

> pairs(~Tax+Dlic+Income+logMiles+Fuel)

With R, we must first obtain the data from the library with the data command;
this is not necessary in S-Plus. The next line makes a local copy of fuel2001
called f. This is unnecessary with R, and necessary in S-Plus only if you plan
to add to the data frame, as is done here. Four new transformed variables
were added to the data frame. The syntax for the transformations is similar
to the language C. The variable Dlic = 1000 × Drivers/Pop is the fraction of
the population that has a driver’s license times 1000. The variable logMiles is
the base-two logarithm of Miles. The logb function in R/S-Plus can be used
to compute logarithms to any base, given by the second argument; the default
is natural logarithms. In R only, the command log is equivalent to logb, but
in S-Plus, log is used only for natural logarithms.

Typing names(f) gives variable names in the order they appear in the data
frame. Next, we used the attach command so we can refer to variables by
their names without preappending the name of the data frame; we can now
use Dlic rather than f$Dlic2. We specify the variables we want to appear in
the plot using a one-sided formula, which consists of a “∼” followed by the
variable names separated by + signs. In place of the one-sided formula, you
could also use a two-sided formula, putting the response Fuel to the left of
the ∼, but not on the right. Finally, you can replace the formula by a matrix
or data frame, so

> pairs(f[,c(7,9,3,11,10)])

would give the scatterplot matrix for columns 7, 9, 3, 11, 10 of the data frame
f, resulting in the same plot as before.

In R, the pairs command also has an argument data, which would allow us
to specify the name of the data frame in the call to pairs without the attach

command. This is not so in S-Plus; the command

2If you entered the attach command before doing the transformations, then the attached
data frame would include only the variables in the original data frame but not the trans-
formed variables. You would need to use attach again, after the transformations, to make
the transformed variables available without specifying the name of the data frame.

18 SCATTERPLOTS AND REGRESSION

> pairs(~Tax+Dlic+Income+logMiles+Fuel,data=f)

works fine in R, but gives an error in S-Plus.

Problems

1.1. Boxplots would be useful in a problem like this because they display level
(median) and variability (distance between the quartiles) simultaneously.

R and S-Plus The tapply can be used to get the standard deviations for each
value of Age. In R, the function sd computes the standard deviation. In S-Plus,
you need to do something more complicated: function(x) sqrt(var(x)).

In R, the command plot(Length as.factor(Age),data=wblake) will produce
the boxplot, while plot(Length Age,data=wblake) produces a scatterplot. the
as.factor command converts a numeric variable into a categorical variable.
1.2.

R and S-Plus You can resize a graph without redrawing it by using the
mouse to move the lower right corner on the graph.
1.3.

R and S-Plus Remember that logb(UN1$Fertility,2) gives the base-two log-
arithm.

2
Simple Linear Regression

2.1 ORDINARY LEAST SQUARES ESTIMATION

All the computations for simple regression depend on only a few summary
statistics; the formulas are given in the text, and in this section we show how
to do the computations step–by-step. All computer packages will do these
computations automatically, as we show in Section 2.6.

2.2 LEAST SQUARES CRITERION

R and S-Plus All the sample computations shown in alr are easily repro-
duced in R/S-Plus. First, get the right variables from the data frame, and
compute means. The computation is simpler in R:

> data(forbes) # R only

> # pick out the predictor (column 1) and the response (column 3)

> forbes1 <- forbes[,c(1,3)]

> fmeans<- mean(forbes1) ; fmeans # xbar and ybar

Temp Lpres

202.95294 139.60529

In S-Plus, you must explicitly get the mean for each column of the data frame:

> # S-Plus

> # pick out the predictor (column 1) and the response (column 3)

> forbes1 <- forbes[,c(1,3)]

> fmeans<- apply(forbes1,2,mean) ; fmeans # xbar and ybar

19

20 SIMPLE LINEAR REGRESSION

Temp Lpres

202.95294 139.60529

The apply is read as “apply to the matrix forbes1 on its dimension 2 (dimen-
sion 1 is rows, dimension 2 is columns) the function mean.” This also works
in R.

Next, we need the sums of squares and cross-products. Since the sample
covariance matrix is just (n − 1) times the matrix of sums of squares and
cross-products, we can use the function cov:

> (fcov <- (17-1) * var(forbes1))

Temp Lpres

Temp 530.78235 475.31224

Lpres 475.31224 427.79402

All the regression summaries depend only on the sample means and this ma-
trix. Assign names to the components, and do the computations in the book:

> xbar <- fmeans[1] ; ybar <- fmeans[2]

> SXX <- fcov[1,1]; SXY<- fcov[1,2]; SYY <- fcov[2,2]

> betahat1 <- SXY/SXX ; print(round(betahat1,3))

[1] 0.895

> betahat0 <- ybar - betahat1*xbar ; print(round(betahat0,3))

Lpres

-42.138

2.3 ESTIMATING σ2

R and S-Plus We can use the summary statistics computed previously to
get the RSS and the estimate of σ2:

> RSS <- SYY - SXY^2/SXX ; RSS

[1] 2.1549273

> sigmahat2 <- RSS/15 ; sigmahat2

[1] 0.14366182

> sigmahat <- sqrt(sigmahat2) ; sigmahat

[1] 0.37902746

2.4 PROPERTIES OF LEAST SQUARES ESTIMATES

2.5 ESTIMATED VARIANCES

The estimated variances of coefficient estimates are computed using the sum-
mary statistics we have already obtained. These will also be computed auto-
matically linear regression fitting methods, as shown in the next section.

COMPARING MODELS: THE ANALYSIS OF VARIANCE 21

2.6 COMPARING MODELS: THE ANALYSIS OF VARIANCE

Computing the analysis of variance and F test by hand requires only the value
of RSS and of SSreg = SYY − RSS. We can then follow the outline given in
alr[2.6].

R and S-Plus We show how the function lm can be used for getting all the
summaries in a simple regression model, and then the analysis of variance and
other summaries. lm is also described in vr[6.1].

The basic form of the lm function is

> lm(formula, data)

The argument formula describes the mean function to be used in fitting, and
is the only required argument. data gives the name of the data frame that
contains the variables in the formula, and may be ignored if the attach func-
tion has been used to specify the data frame. Other possible arguments will
be described as we need them.

The formula is no more than a simplified version of the mean function. For
the Forbes example, the mean function is E(Lpres|Temp) = β0 +β1Temp, and
the corresponding formula is

Lpres ~ Temp

The left-hand side of the formula is the response variable. The “=” sign in the
mean function is replaced by “~”. In this and other formulas used with lm,
the terms in the mean function are specified, but the parameters are omitted.
Also, the intercept is included without being specified. You could put the
intercept in explicitly by typing

Lpres ~ 1 + Temp

Although not relevant for Forbes data, you could fit regression through the
origin by explicitly removing the term for the intercept,

Lpres ~ Temp - 1

You can also replace the variables in the mean function by transformations of
them. For example,

logb(Pressure,10) ~ Temp

is exactly the same mean function because Lpres is the base-ten logarithm of
Pressure. See vr[3.7] for a discussion of formulas.

The usual procedure for fitting a simple regression via ols is to fit using
lm, and assign the result a name:

> attach(forbes)

> m1 <- lm(Lpres~Temp)

The object m1 contains all the information about the regression that was
just fit. There are a number of helper functions that let you extract the

22 SIMPLE LINEAR REGRESSION

information, either for printing, plotting, or other computations. The print

function displays a brief summary of the fitted model. The summary function
displays a more complete summary:

> summary(m1)

Call:

lm(formula = Lpres ~ Temp)

Residuals:

Min 1Q Median 3Q Max

-0.322200 -0.144731 -0.066640 0.021836 1.359775

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -42.137779 3.340199 -12.615 2.176e-09

Temp 0.895494 0.016452 54.432 < 2.2e-16

Residual standard error: 0.37903 on 15 degrees of freedom

Multiple R-Squared: 0.99496, Adjusted R-squared: 0.99463

F-statistic: 2962.8 on 1 and 15 DF, p-value: < 2.22e-16

You can verify that the values shown here are the same as those obtained
by “hand” previously. The output contains a few items never discussed is in
alr, and these are edited out of the output shown in alr. These include the
quantiles of the residuals, and the “Adjusted R-Squared.” Neither of these
seem very useful. Be sure that you understand all the remaining numbers in
this output.

The helper function anova has several uses in R/S-Plus, and the simplest is
to get the analysis of variance described in alr[2.6],

> anova(m1)

Analysis of Variance Table

Response: Lpres

Df Sum Sq Mean Sq F value Pr(>F)

Temp 1 425.639 425.639 2962.79 < 2.22e-16

Residuals 15 2.155 0.144

We have just scratched the surface of the options for lm and for specifying
formulas. Stay tuned for more details later in this primer.

2.7 THE COEFFICIENT OF DETERMINATION, R2

R and S-Plus For simple regression, R2 can be computed as shown in the
book. Alternatively, the correlation can be computed directly using the cor

command:

> R2 <- SSreg/SYY ; R2

CONFIDENCE INTERVALS AND TESTS 23

[1] 0.9949627

> cor(forbes1)

Temp Lpres

Temp 1.00000000 0.99747817

Lpres 0.99747817 1.00000000

and 0.997478172 = 0.9949627. R2 is also printed by the summary method
shown in the last section.

2.8 CONFIDENCE INTERVALS AND TESTS

Confidence intervals and tests can be computed using the formulas in alr[2.8],
in much the same way as the previous computations were done.

R and S-Plus To use lm to compute confidence intervals, we need access to
the estimates, their standard errors (for predictions we might also need the
covariances between the estimates), and we also need to be able to compute
multipliers from the appropriate t distribution.

To get access to the coefficient estimates, use the helper function coef,

> betahat <- coef(m1) ; betahat

(Intercept) Temp

-42.1378 0.8955

In R, the command vcov can be used to get the matrix of variances and
covariances of the estimates:

> var <- vcov(m1) ; var

(Intercept) Temp

(Intercept) 11.156929 -0.05493134

Temp -0.054931 0.00027066

The estimated variance of the intercept β̂0, the square of the standard error, is
11.156929. The standard errors are the square roots of the diagonal elements

of this matrix, given by sqrt(diag(var)). The covariance between β̂0 and β̂1

is −0.05493134. The command vcov is not part of S-Plus, but if you have
loaded the alr3 library, it is available just as it is in R. Alternatively, you
would need to compute

> s1 <- summary(m1)

> var <- s1$sigma^2 * s1$cov.unscaled

to get the estimated covariance matrix. If you have loaded the alr3 library,
the sigma.hat helper function will return the estimator σ̂; without the library,
type

> sqrt(summary(m1)$sigma)

The last item we need to compute confidence intervals is the correct mul-
tiplier from the t distribution. For a 95% interval, the multiplier is

24 SIMPLE LINEAR REGRESSION

> tval <- qt(1-.05/2, m1$df) ;tval

[1] 2.1314

The qt command computes quantiles of the t-distribution; similar function
are available for the normal (qnorm), F (qF), and other distributions; see Sec-
tion 0.4.4. The function qt finds the value tval so that the area to the left of
tval is equal to the first argument to the function. The second argument is
the degrees of freedom, which can be obtained from m1 as shown above.

Finally, the confidence intervals for the two estimates are:

> data.frame(Est = betahat, lower=betahat-tval*sqrt(diag(var)),

+ upper=betahat+tval*sqrt(diag(var)))

Est lower upper

(Intercept) -42.1378 -49.25724 -35.01831

Temp 0.8955 0.86043 0.93056

By creating a data frame, the values get printed in a nice table.
The standard R includes a function called confint that computes the con-

fidence intervals for you. This function

> confint(m1, level=.95)

2.5% 97.5%

(Intercept) -49.25724 -35.01831

Temp 0.86043 0.93056

gives the same answer. In S-Plus, the alr3 library includes a function conf.interval

that gives similar output.

Prediction and fitted values

R and S-Plus The predict command is a very powerful helper function for
getting fitted and predictions from a model fit with lm, or, indeed, most other
models in R/S-Plus. This command has different arguments in R and S-Plus.
Here are the important arguments in R:

predict(object, newdata, se.fit = FALSE,

interval = c("none", "confidence", "prediction"),

level = 0.95)

The object argument is the name of the regression model that has already
been computed. In the simplest case, we have

> predict(m1)

1 2 3 4 5 6 7 8

132.04 131.86 135.08 135.53 136.42 136.87 137.77 137.95

9 10 11 12 13 14 15 16 17

138.21 138.13 140.18 141.08 145.47 144.66 146.54 147.62 147.89

returning the fitted values (or predictions) for each observation. If you want
predictions for particular values, say Temp = 210 and 220, use the command

CONFIDENCE INTERVALS AND TESTS 25

> predict(m1, newdata=data.frame(Temp=c(210,220)),

interval="prediction",level=.95)

fit lwr upr

1 145.92 145.05 146.78

2 154.87 153.85 155.89

The newdata argument is a powerful tool in using the predict command, as
it allows computing predictions at arbitrary points. The argument should
equal a data frame, with variables having the same names as the variables
used in the mean function. For the Forbes data, the only term beyond the
intercept is for Temp, and so only values for Temp must be provided. The
argument intervals="prediction" gives prediction intervals at the specified
level in addition to the point predictions; other intervals are possible, such as
for fitted values; see help(predict.lm) for more information.

Additional arguments to predict will compute additional quantities. For
example, se.fit will also return the standard errors of the fitted values (not
the standard error of prediction). For example,

> predvals <- predict(m1, newdata=data.frame(Temp=c(210,220)),

+ se.fit=TRUE)

> predvals

$fit

1 2

145.92 154.87

$se.fit

1 2

0.14796 0.29514

$df

[1] 15

$residual.scale

[1] 0.37903

You can do computations with these values. For example,

> (150 - predvals$fit)/predvals$se.fit

computes the difference between 150 and the fitted values, and then divides
each by its standard error of the fitted value. The predict helper function
does not compute the standard error of prediction, but you can compute it
using equation alr[E2.26],

se.pred <- sqrt(predvals$residual.scale^2 + predvals$se.fit^2)

In S-Plus 6, the key arguments of the predict command for linear models
are not the same as in R, and are given by

predict(object, newdata, se.fit = FALSE, conf.level = 0.95,

ci.fit=FALSE, pi.fit=FALSE, conf.type="p")

26 SIMPLE LINEAR REGRESSION

The argument ci.fit=TRUE would compute the confidence intervals for fitted
values. The argument pi.fit=TRUE computes confidence intervals for predic-
tions. The argument conf.type="p" computes the point-wise intervals dis-
cussed in alr[2.8.3–2.8.4], while conf.type="s" computes the simultaneous
intervals also discussed in alr[2.8.4] and displayed in alr[F1.11]. S-Plus 4
does not automatically compute confidence intervals, and you must use the
predictions, the standard errors of a fitted values, and the df for error in
alr[E2.26] and the first (unnumbered) equation in alr[2.8.4].

2.9 THE RESIDUALS

R and S-Plus The command residuals computes the residuals for a model.
A plot of residuals versus fitted values with a horizontal line at the origin is
given by

> plot(predict(m1), residuals(m1))

> abline(h=0,lty=2)

We will have more elaborate uses of residuals later in the primer. If you
apply the plot helper function to the regression model m1 by typing plot(m1),
you will also get the plot of residuals versus fitted values, along with a few
other plots. We will generally not use the plot methods for models in this
primer because it often includes plots not discussed in alr.

Problems

2.2.

R and S-Plus You need to fit the same model to both the forbes and hooker

data sets. You can then use the predict command to get the predictions for
Hooker’s data from the fit to Forbes’ data, and viceversa.
2.7.

R and S-Plus The formula for regression through the origin explicitly re-
moves the intercept, y~x-1.
2.10.

3
Multiple Regression

3.1 ADDING A TERM TO A SIMPLE LINEAR REGRESSION MODEL

R and S-Plus Fox (2002) has written a package for R and S-Plus called car, an
acronym for companion to applied regression. His package can be downloaded
an installed in the same way as the alr3 package described in Section 0.2.2.
The avp command in car will draw added variable plots after you have fit a
multiple linear regression model. We therefore defer discussing the plots until
after we have discussed using lm to fit multiple linear regression models.

3.2 THE MULTIPLE LINEAR REGRESSION MODEL

3.3 TERMS AND PREDICTORS

R and S-Plus Table 3.1 in alr[3.3] gives the “usual” summary statistics for
each of the interesting terms in a data frame. Oddly enough, the writers of
R and S-Plus don’t seem to think these are the standard summaries. Here is
what you get from R1:

> data(fuel2001) # \R\ only

> fuel2001$Dlic <- 1000*fuel2001$Drivers/fuel2001$Pop

> fuel2001$Fuel <- 1000*fuel2001$FuelC/fuel2001$Pop

> fuel2001$Income <- fuel2001$Income/1000

1See Section 1.6 to see how to do this in S-Plus.

27

28 MULTIPLE REGRESSION

> fuel2001$logMiles <- log(fuel2001$Miles,2)

> f <- fuel2001[,c(7,9,3,11,10)] # new data frame

> summary(f)

Tax Dlic Income logMiles Fuel

Min. : 7.5 Min. : 700 Min. :21.0 Min. :10.6 Min. :317

1st Qu.:18.0 1st Qu.: 864 1st Qu.:25.3 1st Qu.:15.2 1st Qu.:575

Median :20.0 Median : 909 Median :27.9 Median :16.3 Median :626

Mean :20.2 Mean : 904 Mean :28.4 Mean :15.7 Mean :613

3rd Qu.:23.3 3rd Qu.: 943 3rd Qu.:31.2 3rd Qu.:16.8 3rd Qu.:667

Max. :29.0 Max. :1075 Max. :40.6 Max. :18.2 Max. :843

Rather than giving the standard deviation for each variable, we get the first
and third quartiles. You can get the standard deviations easily enough, using

> apply(f,2,sd)

Tax Dlic Income logMiles Fuel

4.5447 72.8578 4.4516 1.4867 88.9600

The argument “2” in apply tells the program to apply the third argument,
the sd function, to the second dimension, or columns, of the matrix given
by the first argument. In S-Plus replace sd by stdev. Sample correlations,
alr[T3.2], are computed using the cor command,

> round(cor(f),4)

Tax Dlic Income logMiles Fuel

Tax 1.0000 -0.0858 -0.0107 -0.0437 -0.2594

Dlic -0.0858 1.0000 -0.1760 0.0306 0.4685

Income -0.0107 -0.1760 1.0000 -0.2959 -0.4644

logMiles -0.0437 0.0306 -0.2959 1.0000 0.4220

Fuel -0.2594 0.4685 -0.4644 0.4220 1.0000

3.4 ORDINARY LEAST SQUARES

R and S-Plus The sample covariance matrix is computed using either var or
cov, so

> cov(f)

Tax Dlic Income logMiles Fuel

Tax 20.65463 -28.4247 -0.21617 -0.29552 -104.894

Dlic -28.42470 5308.2591 -57.07045 3.31354 3036.591

Income -0.21617 -57.0705 19.81707 -1.95804 -183.913

logMiles -0.29552 3.3135 -1.95804 2.21032 55.817

Fuel -104.89439 3036.5905 -183.91257 55.81719 7913.881

We will compute the matrix (X′X)−1. To start we need the matrix X,
which has 51 rows, one column for each predictor, and one column for the
intercept. Here are the computations:

> f$Intercept <- rep(1,51) # a column of ones added to f

> X <- as.matrix(f[,c(6,1,2,3,4)]) # reorder and drop fuel

> xtx <- t(X) %*% X

ORDINARY LEAST SQUARES 29

> xtxinv <- solve(xtx)

> xty <- t(X) %*% f$Fuel

> print(xtxinv,digits=4)

Intercept Tax Dlic Income logMiles

Intercept 9.02151 -2.852e-02 -4.080e-03 -5.981e-02 -1.932e-01

Tax -0.02852 9.788e-04 5.599e-06 4.263e-05 1.602e-04

Dlic -0.00408 5.599e-06 3.922e-06 1.189e-05 5.402e-06

Income -0.05981 4.263e-05 1.189e-05 1.143e-03 1.000e-03

logMiles -0.19315 1.602e-04 5.402e-06 1.000e-03 9.948e-03

The first line added a column to the f data frame that consists of 51 copies
of the number 1. The function as.matrix converted the reordered data frame
into a matrix X. The next line computed X′X, using the function t to get
the transpose of a matrix, and %*% for matrix multiply. The solve function
returns the inverse of is argument; it is also used to solve linear equations of
the function has two arguments.

The estimates and other regression summaries can be be computed, based
on these sufficient statistics:

> xty <- t(X) %*% f$Fuel

> betahat <- xtxinv %*% xty ; betahat

[,1]

Intercept 154.19284

Tax -4.22798

Dlic 0.47187

Income -6.13533

logMiles 18.54527

As with simple regression the function lm is used to automate the fitting of
a multiple linear regression mean function. The only difference between the
simple and multiple regression is the formula:

> m1 <- lm(formula = Fuel ~ Tax + Dlic + Income + logMiles, data = f)

> summary(m1)

Call:

lm(formula = Fuel ~ Tax + Dlic + Income + logMiles, data = f)

Residuals:

Min 1Q Median 3Q Max

-163.1 -33.0 5.9 32.0 183.5

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 154.193 194.906 0.79 0.43294

Tax -4.228 2.030 -2.08 0.04287

Dlic 0.472 0.129 3.67 0.00063

Income -6.135 2.194 -2.80 0.00751

logMiles 18.545 6.472 2.87 0.00626

30 MULTIPLE REGRESSION

Residual standard error: 64.9 on 46 degrees of freedom

Multiple R-Squared: 0.51, Adjusted R-squared: 0.468

F-statistic: 12 on 4 and 46 DF, p-value: 9.33e-07

3.5 THE ANALYSIS OF VARIANCE

R and S-Plus The F -statistic printed at the bottom of the output for summary(m1)
shown above corresponds to alr[T3.4], testing all coefficients except the in-
tercept equal to zero versus the alternative that they are not all zero.

Following the logic in alr[3.5.2], we can get an F -test for the hypothesis
that β1 = 0 versus a general alternative by fitting two models, the larger one
we have already fit for the mean function under the alternative hypothesis,
and a smaller mean function under the null hypothesis. We can fit this second
mean function using the update command:

> m2 <- update(m1, ~.-Tax)

> anova(m2,m1)

Analysis of Variance Table

Model 1: Fuel ~ Dlic + Income + logMiles

Model 2: Fuel ~ Tax + Dlic + Income + logMiles

Res.Df RSS Df Sum of Sq F Pr(>F)

1 47 211964

2 46 193700 1 18264 4.34 0.043

update takes an existing object and updates it in some way, usually by chang-
ing the mean function or by changing the data. In this instance, we have
updated the mean function on the right-hand side by taking the existing
terms, indicated by the “.” and then removing Tax by putting it in the mean
function with a negative sign. We can then use the anova helper command
to compare the two mean functions. The information is equivalent to what is
shown in alr[3.5.2] after equation alr[E3.22], but in a somewhat different
layout; I find the output from anova to be confusing.

If you use the anova helper command with just one argument, you will get
a sequential Anova table, like alr[T3.5]. The terms are fit in the order you
specify them in the mean function, so anova applied to the following mean
functions

> m1 <- lm(formula = Fuel ~ Tax + Dlic + Income + logMiles, data = f)

> m2 <- update(m1, ~ Dlic + Tax + Income + logMiles)

> m3 <- update(m1, ~ Tax + Dlic + logMiles + Income)

all give different anova tables.

PREDICTIONS AND FITTED VALUES 31

3.6 PREDICTIONS AND FITTED VALUES

R and S-Plus Predictions and fitted values for multiple regression use the
predict command, just as for simple linear regression. If you want predictions
for new data, you must specify values for all the terms in the mean function,
apart from the intercept, so for example,

> predict(m1,newdata=data.frame(

Tax=c(20,35),Dlic=c(909,943),Income=c(16.3,16.8),

logMiles=c(626,667)))

will produce two predictions of future values.

Problems

R and S-Plus Several of these problems concern added-variable plots. These
are easy enough to compute using the following method for the added-variable
plot for a particular term X2 in a mean function given in m0 that you have
already fit.

1. Fit the model m1 that is the regression of the response on all terms except
for X2.

2. Fit the model m2 that is the regression of X2 on all the other predictors.

3. draw the added-variable plot, plot(residuals(m2),residuals(m1)).

You can actually combine all these into a single very complex, statement:

> plot(residuals(update(m0,~.-X2)),residuals(update(m0,X2~.-X2))

The plot above won’t have labels or other identifying information. To
automate printing added variable plots you can write your own function that
will do the regressions and draw the plot, or by using the function avp in the
car library. For the fuel data,

> avp(m0,one.page=TRUE,ask=FALSE,identify.points=FALSE)

will produce all added-variable plots in one window, including an added-
variable plot for the intercept. This function has several useful options, such
as identifying points, drawing some of the plots rather than all of them, and
so on. See Fox (2002), and type help(avp) after the car library has been
loaded. At least at first, I recommend setting both ask and identify.points

to be FALSE, but you may at some point decide to use these options. We
will discuss identifying points later in this primer.

4
Drawing Conclusions

The first three sections of this chapter do not introduce any new computational
methods; everything you need is based on what has been covered in previous
chapters. The last two sections, on missing data and on computationally
intensive methods introduce new computing issues.

4.1 UNDERSTANDING PARAMETER ESTIMATES

R and S-Plus In alr[T4.1], Model 3 is overparameterized. R and S-Plus will
print the missing value symbol NA for terms that are linear combinations of
the terms already fit in the mean function, so they are easy to identify from
the printed output.

If you are using the output of a regression as the input to some other
computation, you may want to check to see if the model was overparameterized
or not. If you have fit a model called, for example, m2, then the value of m2$rank
will be the number of terms actually fit in the mean function, including the
intercept, if any. It is also possible to determine which of the terms specified
in the mean function were actually fit, but the command for this is obscure:

> m2qrpivot[1:m2qrrank]

will return the indices of the terms, starting with the intercept, that were
estimated in fitting the model.

33

34 DRAWING CONCLUSIONS

4.1.1 Rate of change

4.1.2 Sign of estimates

4.1.3 Interpretation depends on other terms in the mean function

4.1.4 Rank deficient and over-parameterized models

S-Plus Over-parameterized models should cause few problems in modern
computer programs, usually substituting either NA or “aliased” for terms
that cannot be estimated.

S-Plus by default gives an error message if you attempt to fit an over-
parameterized model. For example, with the Berkeley Guidance Study exam-
ple discussed in alr[4.1.3],

> m2 <- lm(Soma~WT2+DW9+DW18+WT9+WT18)

Error in lm.fit.qr(x, y): computed fit is singular, rank 4

> m2 <- lm(Soma~WT2+DW9+DW18+WT9+WT18,singular.ok=TRUE)

> m2

Call:

lm(formula = Soma ~ WT2 + DW9 + DW18 + WT9 + WT18,

singular.ok = TRUE)

Coefficients: (2 not defined because of singularities)

(Intercept) WT2 DW9 DW18

1.592101 -0.01105652 0.1045862 0.0483385

We see that the argument singular.ok=TRUE will permit fitting the model.
Even here, however, the behavior is unexpected, since the variables that are
not used in the fit are simply dropped from the coefficient estimates, rather
than being given the value of NA, although a message warning that two co-
efficient were not estimated is printed in the output. This means that the
vector of coefficients may be shorter than you expect.

This behavior is specific to S-Plus and does not occur in R.

4.2 EXPERIMENTATION VERSUS OBSERVATION

4.3 SAMPLING FROM A NORMAL POPULATION

4.4 MORE ON R2

4.5 MISSING DATA

The data files that are included with alr use “NA” as a place holder for
missing values. Some packages may not recognize this as a missing value

MISSING DATA 35

indicator, and so you may need to change this character using an editor to
the appropriate character for your program.

R and S-Plus Both R and S-Plus indicate missing values as NA. If you have
a data file with some other missing data indicator, you can still read it into
one of the programs. Suppose, for example, you have a text file mydata.txt

that use a period “.” as the missing value indicator, with variable names in
the first row. You could read this file as follows

> data <- read.table("mydata.txt",header=TRUE,na.strings=".")

This will read the file, and covert the “.” to the missing value indicator.
There are several functions for working with missing value indicators. is.na

serves two purposes, to set elements of a vector or array to missing, and to test
each element of the vector or array to be missing, and return either TRUE or
FALSE.

> a <- 1:5 # set a to be the vector (1,2,3,4,5)

> is.na(a) <- c(1,5) # set elements 1 and 5 of a to NA

> a # print a

[1] NA 2 3 4 NA

> is.na(a) # for each element of a is a[j] = NA?

[1] TRUE FALSE FALSE FALSE TRUE

R has a function called complete.cases that returns a vector with the value
TRUE for all cases in a data frame with no missing values, and FALSE oth-
erwise. For example,

> complete.cases(sleep1)

[1] FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE

[11] TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE

[21] FALSE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE FALSE

[31] FALSE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE

[41] FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE

[51] TRUE TRUE FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE

[61] TRUE FALSE

This function does not exist in S-Plus; you can use the (rather cryptic) com-
mand

> !apply(is.na(sleep1),1,any)

to get the same list of TRUE and FALSE.
Many commands in R/S-Plus have an argument na.action that tells the

command what to do if missing data indicators are present. The usual default
is na.action=na.omit, which means delete all cases with missing data. Another
option that is always available is na.action=na.fail, which would prevent the
command from executing at all with missing data. In principle there could
be other actions, but none are commonly used. Other methods will have
an argument na.omit with default value FALSE. For example, the function
mean(X) will return NA if any of the elements of X are missing, while mean(X,

36 DRAWING CONCLUSIONS

na.omit=TRUE) will return the mean of the values actually observed. As a
warning, R and S-Plus are not always consistent on their use of arguments for
missing data, or on the defaults for those arguments. You can always consult
the help pages for the commands of interest to get the arguments right.

The na.action argument is available for lm. The default is na.action=na.fail
in S-Plus, and na.action=no.omit in R. For either program, explicitly including
the na.omit argument makes clear what you are doing:

> m1 <- lm(log(SWS)~log(BodyWt)+log(Life)+log(GP),data=sleep1,

na.action=na.omit)

which will delete 20 cases with missing values. If you then fit

> m2 <- lm(log(SWS)~log(BodyWt)+log(GP),data=sleep1,

na.action=na.omit)

omitting log(Life), you can’t actually compare the two fits via an analysis of
variance because only 18 cases are missing the remaining variables.

You can guarantee that all fits are based on the same cases using the subset

argument to lm. For example in R,

> m3 <- lm(log(SWS)~log(BodyWt)+log(Life)+log(GP),data=sleep1,

+ subset = complete.cases(sleep1))

will fit this model, and any other, to the 42 fully observed cases in the data
set.

Methods for examining the pattern of missing values, estimating using the
partially observed data by maximum likelihood, or multiple imputation are
available in S-Plus using the methods in the S-Plus library missing.1 Extensive
documentation for missing is part of the S-Plus installation of the library. On
Unix/Linux, you will find the documentation at

% ‘Splus SHOME‘/library/missing/Missing.pdf

4.6 COMPUTATIONALLY INTENSIVE METHODS

R and S-Plus R and S-Plus are well suited for the bootstrap and other com-
putationally intensive statistics. The books by Davison and Hinkley (1997)
and by Efron and Tibshirani (1993) both provide comprehensive introduc-
tions to the bootstrap, and both have packages for R and S-Plus for general
bootstrap calculations.

For S-Plus version 6.0 or later, there is a (free) library called resample. In
mid-2004, this library was at www.insightful.com/downloads/libraries/, but
future version of S-Plus may include this library by default. Instructions for
installing the library are also available on the webpage. For use with R, we
have provided a function called boot.case in the alr3 package.

1The R package norm includes some of these.

COMPUTATIONALLY INTENSIVE METHODS 37

In either program, performing the case-resampling bootstrap is very easy.
Using the transactions data discussed in alr[4.6.1], here is the approach
using R:

> data(transact) # R only

> m1 <- lm(Time~ T1 + T2, data=transact)

> betahat.boot <- boot.case(m1,B=999)

The call to boot.case has three arguments. In the example above, we have
used two of them, the name of the regression model, and the number of
bootstraps, B=999. The third argument is called f, the name of a function to
be evaluated on each bootstrap. The default is the generic function coef that
will return the coefficient estimates, and since we did not specify a value for
f, the default is used. On each bootstrap the coefficient estimates are saved.

At this point, betahat.boot is a matrix with B = 999 rows, one for each
bootstrap replication. The number of columns depends on the argument f and
for the default of the coefficient vector it has as many columns of regression
coefficients in the model. Usual R tools can be used to summarize these
bootstrap estimates:

> # bootstrap standard errors

> apply(betahat.boot,2,sd)

(Intercept) T1 T2

195.37481 0.68461 0.15242

> # bootstrap 95% confidence intervals

> cl <- function(x) quantile(x,c(.025,.975))

> apply(betahat.boot,2,cl)

(Intercept) T1 T2

2.5% -238.99 4.1314 1.7494

97.5% 532.43 6.7594 2.3321

> coef(m1)

(Intercept) T1 T2

144.3694 5.4621 2.0345

We applied the sd command to each column to give the bootstrap standard
errors. Given next is a short function we called cl that computes the 2.5- and
97.5-percentiles of a sample. We apply this to the columns of betahat.boot to
get percentile based confidence intervals for each of the coefficients. Finally,
we printed the coefficient estimates from the original data. We could have
looked at histograms, scatterplots or other summaries.

In S-Plus, we can do the equivalent computations using the bootstrap com-
mand:

> library(resample,first=TRUE)

> m1 <- lm(Time~ T1 + T2, data=transact)

> betahat.boot <- bootstrap(m1,coef,B=999)

The resample library must include the first=TRUE argument. The bootstrap

command has several arguments, but we display only the three equivalent to
the arguments for boot.case. Unlike R, the function to be computed must be

38 DRAWING CONCLUSIONS

specified as there is no default. Specified above is coef, which means that if a
bootstrap sample gives a fitted regression model m, then the function coef(m)

will be called to return the coefficients. You can have any function here whose
single argument is a regression model2.

At the completion of this computation, the quantity betahat.boot$replicates

is the same matrix returned by boot.case, except, of course, with different
bootstrap replications. This matrix can be summarized or used in exactly the
same way that it was used with R. S-Plus also includes summarization tools
to do the work for you:

> summary(betahat.boot)

Call:

bootstrap(data = lm(formula = Time ~ T1 + T2, data = transact, method =

"model.list"), statistic = coef.default(lm(data)), B = 999)

Number of Replications: 999

Summary Statistics:

Observed Mean Bias SE

(Intercept) 144.369 147.804 3.43487 192.9803

T1 5.462 5.443 -0.01937 0.6807

T2 2.035 2.036 0.00138 0.1528

Percentiles:

2.5% 5% 95% 97.5%

(Intercept) -209.643 -165.262 451.621 502.311

T1 4.031 4.217 6.496 6.643

T2 1.749 1.791 2.286 2.322

BCa Confidence Intervals: ...not discussed in the text

2.5% 5% 95% 97.5%

(Intercept) -225.562 -168.590 447.313 493.513

T1 3.960 4.109 6.427 6.571

T2 1.773 1.807 2.305 2.382

Correlation of Replicates:

(Intercept) T1 T2

(Intercept) 1.0000 0.6454 -0.9078

T1 0.6454 1.0000 -0.8747

T2 -0.9078 -0.8747 1.0000

This prints the observed estimates, the mean of the bootstrap samples, the
difference between these two, called the Bias, and the standard error. The
Bias is very small compared to the standard error, suggesting little bias in the
estimation of coefficients. Next, the percentile bootstrap confidence intervals
are given, as are slightly improved intervals not discussed in alr; see Davison

2More complex functions with many arguments can be used as well; see help(bootstrap).

COMPUTATIONALLY INTENSIVE METHODS 39

bootstrap : m1 : coef

(Intercept)

D
en

si
ty

-400 0 400 800

0.
0

0.
00

05
0.

00
15

Observed
Mean

bootstrap : m1 : coef

T1

D
en

si
ty

4 5 6 7
0.

0
0.

2
0.

4
0.

6 Observed
Mean

bootstrap : m1 : coef

T2

D
en

si
ty

1.6 2.0 2.4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5 Observed

Mean

Fig. 4.1 S-Plus histogram of 999 bootstrap samples for the transactions data. The plot
has normal densities superimposed, and indicates the observed mean of the bootstrap
and the actual sample mean. The bootstrap means and the observed values agree
closely. The histograms appear close to normal as well.

and Hinkley (1997) or Efron and Tibshirani (1993). There is also a plot helper
for this function; the results of plot(betahat.boot) are shown in Figure 4.1.

The simulation outlined in alr[4.6.3] is not based on resampling the ob-
served data, but rather on modifying the observed data by adding normal
random numbers with given variances. Once again, you need to write a func-
tion to do this simulation. Here is one approach that works in both R and
S-Plus:

> catch.sim <- function(B=999){

+ ans <- NULL

+ for (i in 1:B) {

+ X <- npdata$Density + npdata$SEdens*rnorm(16)

+ Y <- npdata$CPUE + npdata$SECPUE*rnorm(16)

40 DRAWING CONCLUSIONS

+ m0 <- lm(Y~X-1)

+ ans <- c(ans,coef(m0))}

+ ans}

>

> b0 <- catch.sim(B=999)

> c(mean(b0),cl(b0))

2.5% 97.5%

0.30704 0.22206 0.39437

For this simulation, we have written a one-off function for this particular
problem. It has one argument, the number of simulations. In the for loop,
we have explicitly referred to the data frame, even though we had previously
attached the data. Variable names work a little differently inside a function,
and so without the reference to the data frame, this function would not work.
The command rnorm computes vectors of 16 standard normal random num-
bers; these are multiplied by the vectors of standard errors to get random
numbers with the right standard deviations. The model m0 is for regression
through the origin, and only the estimated slope is kept on each replication.
We have shown only a numeric summary of the mean and 95% confidence
interval reusing the cl function we wrote previously, but graphical summaries
could be used as well, probably using a histogram.

5
Weights, Lack of Fit, and

More

5.1 WEIGHTED LEAST SQUARES

R and S-Plus Weighted least squares estimates are most easily obtained
using the weights argument for the lm command. In the physics data in
alr[5.1], the weights are the inverse squares of the variable SD in the data
frame. wls is computed by

> data(physics)

> attach(physics)

> m1 <- lm(y~x,weights=1/SD^2)

> summary(m1) . . . output edited

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 148.47 8.08 18.4 7.9e-08

x 530.84 47.55 11.2 3.7e-06

Residual standard error: 1.66 on 8 degrees of freedom

Multiple R-Squared: 0.94, Adjusted R-squared: 0.932

F-statistic: 125 on 1 and 8 DF, p-value: 3.71e-06

> anova(m1)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

x 1 342 342 125 3.7e-06

Residuals 8 22 3

41

42 WEIGHTS, LACK OF FIT, AND MORE

You can nearly “set and forget” weights and use lm for wls just as you would
for ols. There are, however, a few exceptions:

1. The residuals helper function returns a vector of y − ŷ, as with ols.
As we will see later, with wls a more reasonable set of residuals is
given by

√
w(y − ŷ). R and S-Plus will return these correct residuals

if you specify residuals(m1,type="pearson"). In R, you can also used
the function weighted.residuals. For ols all the weights equal one, so
the Pearson and ordinary residuals are identical. Consequently, if you
always use type="pearson", you will always be using the right residuals.

2. The predict helper function also works correctly for getting predictions
and standard errors of fitted values, but it apparently does not always
give the right answer for prediction intervals. Both R and S-Plus com-
pute the standard error of prediction as (σ̂2 + sefit(y|X = x∗)

2)1/2,
rather than (σ̂2/w∗ + sefit(y|X = x∗)

2)1/2. The R/S-Plus formula as-
sumes that the variance of the future observation is σ2 rather than
σ2/w∗, where w∗ is the weight for the future value.

5.1.1 Applications of weighted least squares

R and S-Plus This subsection has our first application of polynomial regres-
sion. R attaches special meaning to the symbol ^ in formulas, so the formula
y ~ x + x^2 won’t work the way you expect it to work. Instead, you need to

use y ~ x + I(x^2). The function I inhibits its argument, so the special mean-
ing of ^ in formulas is not used, but the more general use as the exponentiation
indicator is used. In S-Plus, the use of I is optional.

R and S-Plus have alternative ways of specifying polynomial models, par-
ticularly using orthogonal polyonmials. The formula y ~ poly(x,2) also fits a
quadratic polynomial, but rather than using x and x2 as predictors, it uses x
and the residuals from the regression of x2 on x as predictors. This is numeri-
cally more stable, and highly recommended in large problems. Interpretation
of coefficients is harder with orthogonal polynomials. The overall F test will
be the same with either parameterization, and the t test for the quadratic
term will be the same as well; the t-test for x will be different.

5.1.2 Additional comments

5.2 TESTING FOR LACK OF FIT, VARIANCE KNOWN

R and S-Plus alr[F5.1] contains data and two fitted curves, from, the linear
and quadratic fits to the physics data. Here are the commands that generate
this graph:

data(physics)

attach(physics)

TESTING FOR LACK OF FIT, VARIANCE UNKNOWN 43

m1 <- lm(y~x,weights=1/SD^2)

m2 <- update(m1,~.+I(x^2))

plot(x,y,xlab="x=s^(-1/2)",ylab="Cross section, y")

abline(m1)

a <- seq(.05,.35,length=50)

lines(a,predict(m2,newdata=data.frame(x=a)),lty=2)

The models m1 and m2 are, respectively, the simple linear and quadratic wls
fits. The advantage to using update to define m2 is that we do not need to
specify the weights again. The abline command draws the fitted line for the
simple linear fit. To get the fit for the quadratic is a little harder. The vector
a includes 50 equally spaced values between .05 and .35, more or less the
minimum and maximum value of x. We then use the lines function to plot
the predicted values at a versus a. In the predict helper function, we only
had to specify values for x in the newdata argument. The program will use the
value of x in both the linear and quadratic terms. Setting lty=2 gives dashed
lines.

Getting the lack of fit test for known variance requires getting significance
levels from the Chi-squared distribution. You can use the pchisq command
for this purpose; see Section 0.4.4.

5.3 TESTING FOR LACK OF FIT, VARIANCE UNKNOWN

R and S-Plus The test of lack of fit based on replication is not a standard
part of R or S-Plus. For problems with just one term x in the mean function
beyond the intercept, it is easy to get the lack of fit test by adding factor(x)

to the mean function:

> x <- c(1,1,1,2,3,3,4,4,4,4)

> y <- c(2.55,2.75,2.57,2.40,4.19,4.70,3.81,4.87,2.93,4.52)

> m1 <- lm(y~x)

> anova(lm(y~x+as.factor(x),singular.ok=TRUE))

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

x 1 4.57 4.57 11.62 0.014

as.factor(x) 2 1.86 0.93 2.36 0.175

Residuals 6 2.36 0.39

The F -test on the line as.factor(x) is the F for lack-of-fit, and the line marked
Residuals is the pure error. The singular.ok=TRUE is optional with R, but it
is required with S-Plus.

With more than one term beyond the intercept finding the groups of re-
peated values to give pure error is harder. The alr3 library includes a function
pure.error.anova that will do the trick for any number of terms:

> pure.error.anova(m1)

44 WEIGHTS, LACK OF FIT, AND MORE

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

x 1 4.57 4.57 11.62 0.014

Lack.of.Fit 2 1.86 0.93 2.36 0.175

Residuals 6 2.36 0.39

Except for the correct labelling of the lack-of-fit line, this gives the same
answer as before.

5.4 GENERAL F TESTING

R and S-Plus The anova helper function is designed to compute the general
F -test described in alr[5.4]. For example, consider the fuel consumption
data, and fit a sequence of models:

> data(fuel2001) # \R\ only

> f <- fuel2001 # required for S-Plus, but renaming not required for R

> f$Dlic <- 1000*f$Drivers/f$Pop

> f$Fuel <- 1000*f$FuelC/f$Pop

> f$Income <- f$Income/1000

> f$logMiles <- logb(f$Miles,2)

> m1 <- lm(Fuel~Dlic+Income+logMiles+Tax, data=f)

> m2 <- update(m1, ~.-Dlic-Income)

> anova(m2,m1)

Analysis of Variance Table

Model 1: Fuel ~ logMiles + Tax

Model 2: Fuel ~ Dlic + Income + logMiles + Tax

Res.Df RSS Df Sum of Sq F Pr(>F)

1 48 302192

2 46 193700 2 108492 12.9 3.6e-05

In the anova helper, list the models to be compared from smallest model,
the null hypothesis, to the largest model, the alternative hypothesis. The
output gives the RSS and df under both hypotheses in the columns Res.df

and RSS. The columns Df and Sum of Sq are the quantities for the numerator
of alr[E5.16]. The F and is p-value are then provided.

You can use anova for a longer sequence of nested models as well.

> m3 <- update(m2, ~.-Tax)

> anova(m3,m2,m1)

Analysis of Variance Table

Model 1: Fuel ~ logMiles

Model 2: Fuel ~ logMiles + Tax

Model 3: Fuel ~ Dlic + Income + logMiles + Tax

JOINT CONFIDENCE REGIONS 45

Res.Df RSS Df Sum of Sq F Pr(>F)

1 49 325216

2 48 302192 1 23024 5.47 0.024

3 46 193700 2 108492 12.88 3.6e-05

The F on line number 2 is for the hypothesis m3 versus m2, which may not be
a hypothesis of interest. The F on line 3 tests m2 versus m3, giving the same
answer as before.

5.5 JOINT CONFIDENCE REGIONS

R and S-Plus alr[F5.3] is one of the few figures in alr that was not drawn
in R. It is possible to draw this figure using the confidence.ellipse helper
function in the car library.

> data(UN2) # R only

> attach(UN2)

> m1 <- lm(logFertility ~ logPPgdp + Purban)

> library(car)

> confidence.ellipse(m1, scheffe=TRUE)

Problems

5.3.
The bootstrap used in this problem is different from the bootstrap discussed

in alr[4.6] because rather than resampling cases we are resampling residuals.
Here is the general outline of the method:

1. Fit the model of interest to the data. In this case, the model is just the
simple linear regression of the response y on the predictor x. Compute
the test statistic of interest, given by alr[E5.23]. Save the fitted values
ŷ and the residuals ê.

2. A bootstrap sample will consist of the original x and a new y∗, where
y∗ = ŷ+ e∗. The ith element of e∗ is obtained by sampling from ê with
replacement. In R or S-Plus, you can compute e∗ by

> estar <- ehat[sample(1:n,replace=TRUE)]

3. Given the bootstrap data (x, y∗), compute and save alr[E5.23].

4. Repeat steps 2 and 3 B times, and summarize results.

6
Polynomials and Factors

6.1 POLYNOMIAL REGRESSION

R and S-Plus alr[F6.2] is a plot of the design points in the cakes data,
with the values slightly jittered. R and S-Plus include a command jitter to
make this easy. Here are the commands that will draw this figure:

> data(cakes)

> attach(cakes)

> plot(jitter(X1),jitter(X2))

jitter has arguments to control the magnitude of the jittering; type help(jitter)
for information.

Polynomial models generally require creating many terms that are functions
of a few base predictors. One way to do this is discussed in Section 5.1.1. For
example, to fit the cubic polynomial with response y and predictor x, the
formula y ~ 1 + x + I(x^2) + I(x^3) is appropriate. In S-Plus the inhibitor
I is not required, and you can enter y ~ 1 + x + x^2 + x^3.

The command poly can also be uses to define polynomials in one variable.
The variables created by these commands have orthogonal columns. For ex-
ample, suppose we have n = 5 cases, and x = (1, 2, 3, 4, 5)′.

> x <- 1:5

> print(xmat <- cbind(rep(1,5),x,x^2,x^3))

[1,] 1 1 1 1

[2,] 1 2 4 8

[3,] 1 3 9 27

[4,] 1 4 16 64

47

48 POLYNOMIALS AND FACTORS

[5,] 1 5 25 125

Following alr, we would use the second to fourth columns of this matrix for
the linear, quadratic, and cubic terms in x. The command poly would replace
these by the second to fourth columns of the QR factorization of the above
matrix,

> qr.Q(qr(xmat))

[,1] [,2] [,3] [,4]

[1,] -0.44721 -6.3246e-01 0.53452 -3.1623e-01

[2,] -0.44721 -3.1623e-01 -0.26726 6.3246e-01

[3,] -0.44721 1.1791e-17 -0.53452 8.1813e-16

[4,] -0.44721 3.1623e-01 -0.26726 -6.3246e-01

[5,] -0.44721 6.3246e-01 0.53452 3.1623e-01

> poly(x,3)

1 2 3

[1,] -6.3246e-01 0.53452 -3.1623e-01

[2,] -3.1623e-01 -0.26726 6.3246e-01

[3,] -3.2880e-17 -0.53452 1.5952e-16

[4,] 3.1623e-01 -0.26726 -6.3246e-01

[5,] 6.3246e-01 0.53452 3.1623e-01

These vectors are uncorrelated, making regression calculations potentially
more accurate, but make interpretation of coefficients more difficult. See
the help page for poly.

6.1.1 Polynomials with several predictors

R and S-Plus With two predictors, and generalizing to more than two pre-
dictors, the full second-order mean function alr[E6.4] can be fit (to the cakes
data) by

> m1 <- lm(Y ~ X1 + X2 + I(X1^2) + I(X2^2) + X1:X2, data=cakes)

The new feature here is the interaction term X1:X2, which is obtained by
multiplying X1 by X2 elementwise. Other programs often write an interaction
as X1*X2, but in R and S-Plus, X1*X2 = X1+X2+X1:X2.

As an alternative, you could precompute the polynomial terms (and even
the interactions) and add them to the data frame:

> cakes$X1sq <- cakes$X1^2

> cakes$X2sq <- cakes$X2^2

> cakes$X1X2 <- cakes$X1 * cakes$X2

> m2 <- lm(Y ~ X1 + X2 + X1sq + X2sq + X1X2, data=cakes)

The models m1 and m2 are identical, but m1 will be a little easier to use if
you want to get predictions since for m1 you need only supply new values
for X1 and X2, while for the latter you need to supply all five variables. The
final alternative is to use the command mpoly that fits polynomials in several
variables; see help(mpoly) for more information.

POLYNOMIAL REGRESSION 49

The plots shown in alr[F6.3] are tedious to draw in R and S-Plus1. Here
are the commands that will draw alr[F6.3a]:

> oldpar <-par(mfrow=c(1,2)) # two plots in one row

> # part (a)

> plot(X1,Y,type="n",xlab=paste("(a) ",X[1]))

> X1new <- seq(32,38,len=50)

> lines(X1new,predict(m1,newdata=data.frame(X1=X1new,X2=rep(340,50))))

> lines(X1new,predict(m1,newdata=data.frame(X1=X1new,X2=rep(350,50))))

> lines(X1new,predict(m1,newdata=data.frame(X1=X1new,X2=rep(360,50))))

> text(34,4.7,"X2=340",adj=0,cex=0.7)

> text(32.0,5.7,"X2=350",adj=0,cex=0.7)

> text(32.0,7.6,"X2=360",adj=0,cex=0.7)

> # part (b)

. . . part b is similar to part a

> par(oldpar) # reset to previous parameters

The par command sets global graphical parameters, in this case resetting the
graphics window to have one row of plots and two columns of plots. The first
plot sets the values plotted on each axis and the labels for the axes. The
argument type="n" means draw the plot but not the points. The other options
are type="p" to draw points, the default; type="l" to draw lines, and type="b"

for both points and lines. To the plot we then add three lines of fitted values
versus X1 for X2 fixed at either 340, 350 or 360. Finally, the text helper is
used to add text to the plot. The first two argument give the upper left corner
of the text, then the text to be put on the plot. The adj argument can be
used to adjust the placement of the text, and cex=0.7 multiplies the standard
height of the text by 0.7. This choice of cex works well when plotting using
R on Windows, but it might be a poor choice using S-Plus or R on Linux or
Macintosh. Part b is drawn in much the same way. The graphs you get are
likely to be tall and thin, but you can rescale them to be more useful using
the mouse by dragging the lower right corner of the window. Finally, par is
used again to reset to one graph in a plot window.

6.1.2 Using the delta method to estimate a minimum or a maximum

R and S-Plus The command D can be used for symbolic differentiation of an
expression, and so the delta method can be implemented while allowing the
program to do the differentiation; Venables and Ripley (2000, p. 167) discuss
this at length. We will use the example from alr[6.1.2]. The mean function
we use is E(y|x) = β0 + β1x + β2x

2, and the nonlinear function of interest
is xm = −2β1/(2β2). For data, we will use the cakes data, but ignore the
variable X1.

> m4 <- lm(Y ~ X2 + I(X2^2), data=cakes)

1As with many things in R and S-Plus, there are many ways to do this plot, and I would
not be surprised to learn that there is a much easier way.

50 POLYNOMIALS AND FACTORS

> Var <- vcov(m4)

> b0 <- coef(m4)[1]

> b1 <- coef(m4)[2]

> b2 <- coef(m4)[3]

We have assigned b0, b1 and b2 to be, respectively, the estimates of the in-
tercept, linear and quadratic terms, and Var is the estimated variance of the
coefficients. The vcov helper function recovers the matrix σ̂2(X′X)−1 from
the fitted linear model. vcov is part of the base R, and is added to S-Plus by
the alr3 library.

To differentiate xm requires several steps. First, define xm as a string, and
then convert it to an expression:

> xm <- "-b1/(2*b2)"

> xm.expr <- parse(text=xm)

> xm.expr

expression(-b1/(2 * b2))

Since the b’s have been assigned values, we can evaluate xm.expr to get a point
estimate.

> eval(xm.expr)

354.2

The point estimate of xm is 354.2 degrees.
Next, compute the derivatives with respect to each of the three parameters

in the mean function, and collect them into a vector.

> expr <- expression(-b2/(2*b3))

> derivs <- c(D(xm.expr,"b0"),D(xm.expr,"b1"),D(xm.expr,"b2"))

> derivs

[[1]]

[1] 0

[[2]]

-(1/(2 * b2))

[[3]]

b1 * 2/(2 * b2)^2

which are the expressions given before alr[E6.13]. The derivative with re-
spect to b0 is zero because b0 does not appear in the expression. Since the b’s
have been defined, we can evaluate the vector of derivatives:

> eval.derivs<-c(eval(D(xm.expr,"b0")),eval(D(xm.expr,"b1")),

+ eval(D(xm.expr,"b2")))

> eval.derivs

I(X2^2) X2

0.000 43.602 30888.063

The labels printed from the evaluated derivatives are wrong, but we won’t use
them anyway. Finally, we can compute the estimated standard error of x̂m:

FACTORS 51

> sqrt(t(eval.derivs) %*% Var %*% eval.derivs)

[,1]

[1,] 2.0893

and the standard error is 2.0893.
If this seems excessively difficult, well, I agree. This discussion amounts to

an algorithm for computing the delta method, and a command delta.method

has been added to the alr3 package that essentially follows this outline.

> delta.method(m4,"-b1/(2*b2)")

Functions of parameters: expression(-b1/(2 * b2))

Estimate = 354.2 with se = 2.0893

The key arguments to delta.method are the name of the regression model
and a quoted string corresponding to the function of parameters of inter-
est. The names of the parameters are b0, b1,. . . ,bp, according to the order
in which they appear in the mean function2. This method will work with
linear, generalized linear and nonlinear regression models. Another command
delta.method.compute allows using the delta method in any problem with an
estimated covariance matrix and vector of estimates; see the help page for
more information.

6.1.3 Fractional polynomials

6.2 FACTORS

Factors are a slippery topic because different computer programs will handle
them in different ways. In particular, while SAS and SPSS use the same
default for defining factors, JMP, R and S-Plus all used different defaults. A
factor represents a qualitative variable with say a levels by a − 1 (or, if no
intercept is in the model, possibly a) dummy variables. alr[E6.16] describes
one method for defining the dummy variables, using the following rules:

1. If a factor A has a levels, create a dummy variables U1, . . . , Ua, such that
Uj has the value one when the level of A is j, and value zero everywhere
else.

2. Obtain a set of a−1 dummy variables to represent factor A by dropping
one of the dummy variables. For example, using the default coding in
R, the first dummy variable U1 is dropped, while in SAS and SPSS the
last dummy variable is dropped.

3. JMP and S-Plus use a completely different method.

2For nonlinear models, the parameters have other names that are assigned when the model
is fit. Use those names, not the bj’s, for nonlinear models.

52 POLYNOMIALS AND FACTORS

Most of the discussion in alr assumes the R default for defining dummy
variables.

R and S-Plus The factor command is used to convert a numeric variable
into a factor; see vr[2.1]. R and S-Plus use the factor command a little
differently. In R the command will all its arguments is

factor(x, levels = sort(unique.default(x), na.last = TRUE),

labels = levels, exclude = NA, ordered = is.ordered(x))

The argument x is the name of the variable to be turned into a factor, and is
the only required argument. The argument levels is a vector of the names of
the levels of x; if you don’t specify the levels, then the program will use all the
unique values of x, sorted in alphabetical order. Thus you will want to use the
levels argument if the levels of a factor are, for example, “Low”, “Medium”
and “High” because by default factor will reorder them as “High,” “Low” and
“Medium.” You can avoid this by setting levels=c("Low","Medium","High").
The next optional argument labels allows you to change the labels for the
levels, so, for example, if the levels of the factor are 1, 2 and 3, you can change
them with the argument labels=c("Low","Medium","High").

The next argument is ordered. If this is set to TRUE, then an ordered
factor is created. Ordered factors compute the dummy variables as if the
levels of the factor were qualitative, not quantitative. Ordered factors are
never required for the methodology in alr, and we recommend that you
always specify ordered=FALSE when creating a factor. Additional arguments
concern the handling of missing values; see the help page for more information.

For the sleep data discussed in alr[6.2], the variable D is a qualitative
variable with five levels, given by the integers 1, 2, 3 4 and 5. It can be
declared a factor using

> sleep1$D <- factor(sleep1$D, ordered=FALSE)

The terms for the factor created by R corresponds to our preferred method,
dropping the dummy variable for the first level, and then using the remaining
Uj .

The factor command in S-Plus is almost the same as in R, except it does
not have the ordered argument; ordered factors are created using the ordered

command. Also, S-Plus does not define factors by default in the same
way that R does; rather it uses Helmert contrasts; see vr[6.2]. To get
the same contrasts that R uses is easy however, and requires only one extra
statement.

> options(contrasts = c("contr.treatment","contr.poly"))

> sleep1$D <- factor(sleep1$D)

This will now give the same contrasts as R. You can put this options command
in a startup file like a .First file, vr[C.2]. In this primer, we will assume
that you are always using contr.treatment to define the contrasts for a factor.

FACTORS 53

If you don’t do this, computations you do may differ from those shown here
and in alr.

If you use different definitions for the dummy variables for a factor:

1. Coefficient estimates are different because the terms in the mean func-
tion have different meaning. Consequently, t-statistics for individual
terms are also different.

2. F -tests for the factor or for other terms in the mean function are the
same regardless of the way the factor is defined.

6.2.1 No other predictors

R and S-Plus alr[T6.1] is obtained by

> data(sleep1)

> sleep1$D <- factor(sleep1$D, ordered=FALSE)

> a1 <- lm(TS~D,sleep1,na.action=na.omit)

> a0 <- update(a1,~.-1)

> summary(a0)

. . .

> summary(a1)

. . .

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 13.083 0.888 14.73 < 2e-16

D2 -1.333 1.343 -0.99 0.3252

D3 -2.773 1.486 -1.87 0.0675

D4 -4.272 1.538 -2.78 0.0076

D5 -9.012 1.678 -5.37 1.8e-06

Residual standard error: 3.77 on 53 degrees of freedom

Multiple R-Squared: 0.378, Adjusted R-squared: 0.331

F-statistic: 8.05 on 4 and 53 DF, p-value: 3.78e-05

Since the data frame sleep1 has missing values, we used na.action=na.omit to
delete species with missing data. The dummy variables are labelled according
to the name of the factor and the level for that dummy variable. For example,
D2 corresponds to the variable U2 in alr[T6.1b]. If the factor is defined using
different variables then the labels for the terms are also different.

To produce the “pretty” alr[T6.1] we used the R package xtable that
takes standard R output and gives a table that can be inserted into a LATEX
document for printing. If this is of interest to you, see the script for this
chapter for the exact commands used.

6.2.2 Adding a predictor: Comparing regression lines

R and S-Plus The discussion in alr[6.2.2] uses the appropriate R and S-Plus

formulas for the models discussed.

54 POLYNOMIALS AND FACTORS

f
ff f

ff
f

f
ff

f
f

f

f
ff ff

f
f
ff

ff

ff
f

f

f

ff
f fff

f
f

f
f

fff ff
f

fff f

f

ff ff
f
ff fff

ff
ff

f
f ff

f

f
f f

f
f

f

f

f
f

f
f

f
f f

ff
f

ff f ff

f
f

f
f

ff
f

f
f

m
m

m
mm

mm
mm

m

m

m

m

mmm

m

mmm

m

mmmm
m

m
m

m

m

mm

m
mm

m
m

m
m

m

m

mmm

m
m

m

m
mmm

mm

m

m

mm

m m

m

m
m

m

m

m
mm

mmm
mmmm

m

mm m

m

mm
m

m

m
mmm

m

m

mm
m

m

mmm

m

m

m
m

m

m

50 60 70 80 90 100 120

40
60

80
10

0

Linear Predictor, pod mean function

LB
M

, G
ro

up
s

=
 S

ex

Fig. 6.1 alr[F6.8] in color.

6.3 MANY FACTORS

6.4 PARTIAL ONE-DIMENSIONAL MEAN FUNCTIONS

alr[F6.8] is much more compelling in color, and is shown here as Figure 6.1.

R and S-Plus The alr3 package includes a command for fitting the partial
one-dimensional or POD models described in alr[6.4]. We illustrate the use
of this command with the Australian Athletes data:

> m <- pod(LBM~Ht+Wt+RCC, data=ais, group=Sex, mean.function="pod")

> anova(m)

POD Analysis of Variance Table for LBM, grouped by Sex

1: LBM ~ Ht + Wt + RCC

2: LBM ~ Ht + Wt + RCC + factor(Sex)

3: LBM ~ eta0 + eta1 * Ht + eta2 * Wt + eta3 * RCC + Sex1 * (th02 +

3: th12 * (eta1 * Ht + eta2 * Wt + eta3 * RCC))

PARTIAL ONE-DIMENSIONAL MEAN FUNCTIONS 55

4: LBM ~ (Ht + Wt + RCC) * factor(Sex)

Res.Df RSS Df Sum of Sq F Pr(>F)

1: common 198 2936.71

2: parallel 197 1457.43 1 1479.28 245.6466 < 2.2e-16

3: pod 196 1185.91 1 271.52 45.0876 2.030e-10

4: pod + 2fi 194 1168.27 2 17.65 1.4651 0.2336

> plot(m,pch=c("m","f"),colors=c("red","black"))

The pod command requires that you specify a formula, giving the response on
the left and the variables on the right that make up the linear combination
of terms. A new feature of this command is the required group argument
that specifies the grouping variable. In this case, the linear predictor will be
of the form β1Ht + β2Wt + β3RCC, and it will be fit for each level of Sex.
The argument mean.function is used to select which form of the POD mean
function is to be used. The default is mean.function="pod", which fits the
partial one-dimensional model to the groups, given for the example by

E(LBM|pod) = β0 + β1Ht + β2Wt + β3RCC +

β4Sex1 + β5Sex1 × (β1Ht + β2Wt + β3RCC)

where Sex1 is a dummy variable equal to one when the grouping variable Sex
is equal to one and zero otherwise.

Three other choices of mean function are available. mean.function="common"
that ignores the grouping variable, essentially equivalent to Model 4 in alr[6.2.2].
For the example, it is given by

E(LBM|common) = β0 + β1Ht + β2Wt + β3RCC

mean.function="parallel" that fits a mean function that is parallel within
group, like Model 2 in alr[6.2.2]. For the example, it is

E(LBM|parallel) = β0 + β1Ht + β2Wt + β3RCC + β4Sex1

Finally, mean.function="general" fits a separate coefficient for each predictor
in each group. This represents a larger, and more complex, mean function
than the POD mean function.

E(LBM|general) = β0 + β1Ht + β2Wt + β3RCC + β4Sex1 +

β5Sex1× Ht + β6Sex1× Wt + β7Sex1× RCC

Additional arguments to pod are the same as for lm, and include data to specify
a data frame, subset to specify a subset of cases to use, and so on.

The anova helper command for POD models is a little different from the
default method. Three F -tests are shown in the table; the first compares the
first two mean functions; the second compares the parallel line mean function
to the POD mean function and the third compares the POD mean function

56 POLYNOMIALS AND FACTORS

to the larger mean function with separate coefficients for each group. All F -
tests use the error term from the largest mean function as the denominator.
In this example, the POD mean function is a clear improvement over the
parallel regression mean function, but the more general mean function is not
an improvement over the POD mean function.

The plot method for POD models will produce the equivalent of Figure 6.1.
The full complement of arguments and their defaults are for R are given by:

plot(x, colors = rainbow(nlevels(x$group)),

pch = 1:nlevels(x$group), key = FALSE,

xlab = "Linear Predictor",

ylab = as.character(formula(x)[[2]]), ...)

Any additional arguments are graphical parameters. In this command, the
argument x is the result of a call to the pod command. If key=TRUE, then you
can add a key (or legend) to the plot by clicking the mouse in the location
you want the key to appear. The colors argument is not available in S-Plus.

Finally, pod models have all the usual helper commands, like residuals,
fitted, predict and update that work in the usual way.

6.5 RANDOM COEFFICIENT MODELS

R and S-Plus The random coefficient model can be fit in R or S-Plus using
the nlme package. This package is part of the base distribution of R; in S-
Plus, it may be called nlme4 or have some other ending digit. Here are the
R commands that give the computations discussed in alr[6.5]; see Pinheiro
and Bates (2000) for complete documentation. This example also uses lattice
graphics, called trellis graphics in S-Plus; see vr[4.5].

> library(nlme) # possibly library(nlme4) in S-Plus

> data(chloride) # R only

> xyplot(Cl~Month|Type, group=Marsh, data=chloride,ylab="Cl (mg/liter)",

+ panel.groups=function(x,y,...){
+ panel.linejoin(x,y,horizontal=FALSE,...)}
+) ... alr[F6.9]
> m1 <- lme(Cl~Month+Type, data=chloride, random=~1+Type|Marsh)

> m2 <- update(m1, random=~1|Marsh)

The model m1 fits a separate intercept for each Type, since it is a factor, and a
single slope for Month. In the random arguement, we specify a variance term
1 for a separate random intercept for each marsh, and Type, which allows
the variation between marshes to be different for the two types. Model m2 is
identical except the variation between marshes in a type is assumed to be the
same. These two models can be compared by an analysis of variance:

> anova(m1,m2)

Model df AIC BIC logLik Test L.Ratio p-value

m1 1 7 228.14 237.71 -107.07

RANDOM COEFFICIENT MODELS 57

m2 2 5 229.69 236.53 -109.85 1 vs 2 5.5545 0.0622

> intervals(m2)

Approximate 95% confidence intervals

Fixed effects:

lower est. upper

(Intercept) -21.50837 -5.5038 10.5007

Month 0.75487 1.8538 2.9527

TypeRoadside 28.69165 50.5719 72.4521

attr(,"label")

[1] "Fixed effects:"

Random Effects:

Level: Marsh

lower est. upper

sd((Intercept)) 7.5761 13.335 23.473

Within-group standard error:

lower est. upper

4.7501 6.3872 8.5885

According to the anova table, the p-value is about 0.06 for the hypothesis that
the variance between marshes is the same for the two types of march, versus
the alternative that it is different. Continuing with the simpler model m2, we
get estimates and confidence intervals for the population slope and intercept,
for the variation in intercepts between marshes, and for the within-march
variance.

7
Transformations

R and S-Plus This chapter uses graphs and smoothers in ways that are
uncommon in most most statistical packages, including R and S-Plus. Using
these methods in R and S-Plus generally requires a sequence of commands
that would be too tedious for most people to use on a regular basis.

Our solution to this problem is to automate this process with several com-
mands that are included in the alr3 package. These commands become avail-
able when you use the command library(alr3) to load the data files. In the
main part of this chapter we show how to use these commands, along with an
outline of what they do. Table 7.1 is a listing of coming attractions.

7.1 TRANSFORMATIONS AND SCATTERPLOTS

7.1.1 Power transformations

7.1.2 Transforming only the predictor variable

R and S-Plus To draw a graph like alr[F7.3] with both points and several
lines, you must first draw the graph with the plot command, and then add
the lines with the lines helper command.

> data(ufcwc)

> attach(ufcwc)

> plot(Dbh,Height)

> lam <-c(1,0,-1)

> new.dbh <- seq(min(Dbh),max(Dbh),length=100)

59

60 TRANSFORMATIONS

Table 7.1 R/S-Plus commands relating to transformations in the alr3 package. Only
the required arguments are shown for each command. More complete information is
given later in this chapter, or in the help files for each of the commands. In this table,
X1, X2, Y are all variables, and Z is a data frame. Additionally, suppose that m <-

lm(Y~X1+X2) is a fitted linear model.

Command Description

Basic transformations

powtran(X1,lambda=0) Power transformation of the variable X1. Options
include the family of transformations.

powtran(Z,lambda=c(0,1)) Power transformation of each of the columns of the
matrix or data frame Z, with two columns in this
example.

powtran(object) object is the result of the bctrans command, de-
scribed below. This will return an matrix like the
argument to bctrans with columns transformed ac-
cording the the values of λ found by bctrans.

Transforming predictors

inv.tran.estimate(X1,Y) Plot Y versus X1 and then compute and return
the value of λ that minimizes the residual sum of
squares.

inv.tran.plot(X1,Y) Plot Y versus X1 and add three inverse fitted val-
ues curves for λ ∈ (−1, 0, 1), or use the argument
lambda to select the curves to draw.

bctrans(Y~X1+X2,data=Z) Multivariate version of the Box-Cox procedures to
transform the predictors, not the response. A num-
ber of helper functions are included, such as a
summary to summarize results, plot to plot results,
coef to print the estimated transformation param-
eters λ̂, and vcov to print the estimated variance of
λ̂.

lrt.bctrans(object) object is the result of the bctrans command. This
will compute a likelihood ratio test of λ equal to a
vector specified versus a general alternative. The ar-
gument lrt=list(c(.5,.5)) would use this vec-
tor as the null hypothesis.

Transforming the response

inverse.response.plot(m) Draw an inverse response plot for the model m, esti-
mate the optimal value of λ and add the fitted curve
to the plot.

boxcox(m) Use the Box-Cox procuedure to estimate a transfor-
mation of the response. boxcox is not included in
the alr3 package, but it is part of the MASS package
described later in this chapter.

TRANSFORMATIONS AND SCATTERPLOTS 61

200 400 600 800 1000

10
0

20
0

30
0

40
0

Dbh

H
ei

gh
t

−1
0
1

Fig. 7.1 Result of inv.tran.plot.

> for (j in 1:3){

> m1 <- lm(Height~powtran(Dbh,lam[j],modified=FALSE))

> lines(new.dbh,predict(m1,data.frame(Dbh=new.dbh)),lty=j,col=j)}

> legend(locator(1), legend = as.character(lam),lty=1:3,col=1:3)

After getting and attaching the data, we draw the plot. We will add three
lines for λ ∈ (−1, 0, 1). The variable new.dbh gives 100 equally spaced values
between the minimum and maximum of Dbh, for plotting positions. The
for loop draws the lines. First, we use lm to fit the model implied by the
transformation. The command powtran, which is included in the alr3 package,
transforms the predictor. The lines helper function adds the line to the plot.
Since m1 fits the regression of the response on ψS(Dbh, λ), in predict we need
only specify values for Dbh. The predict helper will then figure out how to
compute ψS(Dbh, λ) from the values of Dbh provided. A legend (or key) was
added to the plot. The helper command locator expects input from the user
by clicking the mouse on the graph. This point will be the upper-left corner
of the legend.

62 TRANSFORMATIONS

The alr3 package includes a function called inv.tran.plot that automates
this procedure.

> inv.tran.plot(Dbh,Height, lam = c(-1, 0, 1), lty = 1:length(lam),

+ optimal=TRUE,key="topleft")

lam rss

1 -1 197352

2 0 152232

3 1 193740

The first two arguments are the predictor and the response, respectively. The
remaining arguments are all given their default values and could have been
omitted. The argument c(-1,0,1), selects values of the transformation pa-
rameter for plotting. lty sets different line types. default. If key="topright",
then the key is written in the top-left of the plot. Other choices include, for
example key="bottomright", or key=FALSE to suppress the key. The result is
shown in Figure 7.1. After the graph is drawn, the residual sum of squares for
each value of λ used in the plot is printed, so in this case the RSS for λ = 0
is much smaller than the other choices.

Finally, the argument optimal=TRUE adds an additional regression line with
λ computed by minimizing the nonlinear regression problem implied by alr[8.4].
The function inv.tran.estimate can be called directly to get the optimal value
without ddrawing the graph,

> unlist(inv.tran.estimate(Dbh,Height))

lambda se RSS

4.7884e-02 1.5218e-01 1.5212e+05

We get λ̂ = 0.048, close to the logarithmic transformation selected visually,
with standard error 0.15. The minimum value of RSS =152,120. The unlist

command made the output prettier.
The command powtran is used by inv.tran.estimate and inv.tran.plot to

compute the transformation. The form of this command is

> powtran(U,lambda,family="box.cox",modified=FALSE)

where U is a vector, matrix or data frame, lambda is the transformation param-
eter. If U is a vector, then lambda is just a number, usually in the range from
−2 to 2; if U is a matrix or a data, frame, then lambda is a vector of numbers.
The family specifies the family of transformations, usually either "box.cox"

for the Box-Cox transformations, ψS(U, λ) if modified=FALSE and ψM (U, λ) if
modified=TRUE. Also available are "yeo.johnson" for the Yeo-Johnson trans-
formations ψY J(U, λ), alr[7.4], or "power" for the power transformations
ψ(U, λ). For example, to plot a response Y versus ψM (U, 0), type

> plot(powtran(U,0,family="box.cox",modified=FALSE},Y)

7.1.3 Transforming the response only

R and S-Plus The method described alr[7.1.3] requires the steps: (1) fit
the model with the response untransformed, and predictors transformed; (2)

TRANSFORMATIONS AND SCATTERPLOTS 63

draw the inverse plot with fitted values on the horizontal axis, and the un-
transformed response on the vertical axis; (3) estimate the transformation by
fitting a smoother to this graph. The only “smoother” we will discuss is fitting

E(Ŷ |Y) = α0 + α1φS(Y, λ)

which parallels the discussion for a predictor transformation.
For an example, we will use the highway accident data. We will assume

the transformations of predictors found in alr[7.2.2]

> attach(highway) # R only

> d <- data.frame(Rate=Rate,logLen=log(Len,2),

+ logADT=logb(ADT,2),logTrks=logb(Trks,2),

+ Slim=Slim,Shld=Shld,logSigs1=logb((Len*Sigs+1)/Len,2))

> attach(d)

> m2 <- lm(Rate~logLen+logADT+logTrks+Slim+Shld+logSigs1,data=d)

> inv.tran.plot(Rate,predict(m2),key=FALSE)

lam RSS

1 -1 34.716

2 0 30.726

3 1 32.458

> unlist(inv.tran.estimate(Rate,predict(m2)))

lambda se RSS

0.18464 0.44042 30.62130

After attaching the data, we created a new data.frame that included only the
untransformed response and the transformed predictors found in alr[7.2.2].
The new data frame was then attached, and the model with the “wrong”
response was fit. We then used the inv.tran.plot command that we used
in the last section when transforming the predictor to get alr[F7.7]. The
inv.tran.estimate was then used to find an estimate of λ numerically rather
than visually. The numerical estimate agrees with the visual assessment of
alr[F7.7]: the best values of λ are close to zero, but there is lots of variation
here, reflected in the large standard error. Finally, we can draw the plot

including λ̂, as shown in Figure 7.2.

> inv.tran.plot(Rate,predict(m2),lam=c(0,.185),key=c(6,2))

lam RSS

1 0.000 30.726

2 0.185 30.621

The two curves on the plot for λ = 0 and λ = λ̂ are virtually identical, so the
log transformation seems reasonable here.

This process is automated with the inv.res.plot command in the alr3

package,

> inv.res.plot(m2,key=c(6,2))

will produce the estimate from inv.tran.estimate, and the plot from inv.tran.plot.
See the help page for all the options.

64 TRANSFORMATIONS

2 4 6 8

0
2

4
6

8

Rate

pr
ed

ic
t(

m
2)

0
0.185

Fig. 7.2 Transforming the response in the highway data.

7.1.4 The Box and Cox method

R and S-Plus A very easy to use implementation of the Box and Cox method
for automatically selecting λ is described by vr[6.8]. To use their method,
you need to obtain and load their package called MASS. This package is part of
the base distribution for R; for S-Plus see

www.stats.ox.ac.uk/pub/MASS3/Software.html.

Continuing with the highway data from the last section,

> library(MASS)

> boxcox(m2, xlab=expression(lambda[y]))

will produce alr[F7.8].

7.2 TRANSFORMATIONS AND SCATTERPLOT MATRICES

The scatterplot matrix is the central graphical object in learning about re-
gression models. You should draw them all the time; all problems with many
continuous predictors should start with one.

R and S-Plus The primary command in R and S-Plus for drawing scatterplot
matrices is the pairs command. The basic use of pairs requires that we

TRANSFORMATIONS AND SCATTERPLOT MATRICES 65

||||| || || |||||||| ||||||| |||| || |||| || || |

Rate

10 30 6 10 2 6 10

2
6

10
30

| ||| |||| ||| ||| ||||| | ||| ||| | ||| || || || |||

Len

||| ||| || |||||||||||||||| |||||||||||||||

ADT

0
30

70

6
10

|| | ||| || ||| | ||| || ||| ||| ||| | |||| | |||| |||

Trks

| || | |||||| ||| || ||| | || || || | ||| || ||||| | ||

Slim

40
55

70

2
6

10

||||||| ||| || | |||||| || ||||| ||| ||| | |||| ||

Shld

2 6 0 30 70 40 55 70 0.0 1.5

0.
0

1.
5

||||| ||| || |||| ||||| ||||| |||||||||||||||

Sigs

Fig. 7.3 Scatterplot matrix for the highway data with colors and symbols.

specify the matrix or data frame to be plotted. For example, apart from
a few statements added to improve formatting for the book, alr[F7.5] is
obtained from

> data(highway)

> pairs(~Rate+Len+ADT+Trks+Slim+Shld+Sigs,data=highway)

The only required argument to pairs is a formula1; here a one-sided formula
in which all the variables to be plotted appear to the right of the “∼”; you can
use a two-sided formula as well. In addition, you can specify a data frame.

There are many enhancements possible for a scatterplot matrix, such as
using colors or symbols for different groups of points, adding smoothers, for
example, ols as a dashed line and loess as a connected line, and putting

1In place of the formula, you can provide a data frame or a matrix.

66 TRANSFORMATIONS

histograms on the diagonal. In the car package for R, there is a function
called scatterplot.matrix that adds a dizzying array of arguments for fine
control over a scatterplot matrix, including these smoothers and histograms
by default. The defaults for scatterplot.matrix are generally sensible, and
will produce the plot shown in Figure 7.3,

> library(car)

> scatterplot.matrix(~Rate+Len+ADT+Trks+Slim+Shld+Sigs,data=highway)

One very useful argument to scatterplot.matrix is groups. Setting groups=Hwy

results in a different color and symbol used for each unique value of the group-
ing variable. A legend is also added to the plot, but it can be hard to read
and can be suppressed using the legend.plot=FALSE argument. An alias of
scatterplot.matrix is spm.

7.2.1 The 1D estimation result and linearly related predictors

7.2.2 Automatic choice of transformation of the predictors

R and S-Plus One important usage of scatterplot matrices is to help se-
lect transformations toward normality, with the goal of getting approximately
linearly related predictors, alr[7.2.1]. The alr3 package includes one basic
command bctrans for this purpose, along with several helper commands that
work with it. Continuing with the highway data, suppose we want to con-
sider transforming the five variables Len,ADT,Trks,Shld,Sigs1 discussed in
alr[7.2.2]. The first step is to draw the scatterplot matrix discussed above,
and shown in Figure 7.3 and alr[F7.5]. Since curvature is apparent in plots
of predictors versus predictors, transformations can help. We can next use
Velilla’s multivariate extension of the Box-Cox method to find starting guesses
for transformations. This is what bctrans does:

> highway$Sigs1 <- (round(highway$Sigs*highway$Len)+1)/highway$Len

> ans <- bctrans(Rate~Len+ADT+Trks+Shld+Sigs1,data=highway)

> summary(ans)

box.cox Transformations to Multinormality

Est.Power Std.Err. Wald(Power=0) Wald(Power=1)

Len 0.1429 0.2126 0.6722 -4.0313

ADT 0.0501 0.1204 0.4160 -7.8863

Trks -0.7019 0.6178 -1.1361 -2.7547

Shld 1.3455 0.3631 3.7062 0.9517

Sigs1 -0.2440 0.1498 -1.6287 -8.3034

LRT df p.value

LR test, all lambda equal 0 23.373 5 0.0002864

LR test, all lambda equal 1 133.179 5 0.0000000

TRANSFORMATIONS AND SCATTERPLOT MATRICES 67

In the first line, we created the variable Sigs1 because it did not appear in
the data frame2. We used the round command to make sure that Sigs × Len,
which is the number if signals, is exactly an integer. Like lm, the variables
to be used in bctrans are specified using a formula3. In the example we have
shown a two-sided formula, with the response Rate on the left-hand side. Only
the predictors on the right-hand side are transformed. If present, the response
is used only in the plot helper function for bctrans. The data, subset and
na.action items are used as in lm. We used the summary helper to print the
answer; this is the same as alr[T7.2]. In S-Plus, the standard errors and the
Wald tests are not computed.

Examining the output, it appears that all the estimated powers are close
to zero (for logarithms) except for Shld, so reasonable rounded values for the
transformations are λ = (0, 0, 0, 1, 0).

> lrt.bctrans(ans,lrt=list(c(0,0,0,1,0)))

LRT df p.value

LR test, all lambda equal 0 23.3730 5 0.0002864

LR test, all lambda equal 1 133.1788 5 0.0000000

LR test, lambda = 0 0 0 1 0 6.1433 5 0.2925204

The likelihood ratio test for this choice for λ has a significance level close to
.3, so this is a reasonable choice for the transformation. In the lrt.bctrans

command, the first argument is the name of the output from bctrans. The
second argument lrt must be a list of vectors (in the example, it is a list of
one vector), each vector giving the hypothesized values for each of the λs.
The vectors of all zeroes and all ones are always included.

The next step is to get a scatterplot matrix of the transformed predictors.
This is done using the plot helper. Here are four variants on this command
that might be useful:

> plot(ans)

> plot(ans,lambda=c(0,0,0,1,0))

> plot(ans,lambda=c(0,0,0,1,0),family="power")

> plot(ans,lambda=c(0,0,0,1,0),family="power",

plot=scatterplot.matrix)

This first of these produces a scatterplot matrix of the transformed predictors
plus the response if you specified it using the formula on the call to bctrans.
The variables are labelled to indicate that they have been transformed. For
example, the label ADT.0.05 means that ADT has been transformed with λ =
0.05. Trucks.minus0.7 means Trucks has been transformed with λ = −0.7.

The second plot will use the value of lambda specified to determine the
transformations, not the estimate from bctrans. The next plot will use the

2In S-Plus, you need to make a local copy of a data frame from a library before you can
modify it.
3If you have previously fit a linear model called m, you can type bctrans(formula(m),
data=highway) to run bctrans.

68 TRANSFORMATIONS

“ordinary” power transformations ψ(U, λ) rather than ψS(U, λ) or ψY J(U, λ).
The last plot will use scatterplot.matrix to draw the plot rather than the
default pairs.

If you are satisfied with the predictor transformations you have obtained,
you need to add them to the data frame for fitting models, or perhaps trans-
forming the response. This can be done in a number of ways, including:

> highway <- cbind(highway,

powtran(ans,lambda=c(0,0,0,1,0),family="power"))

If you leave off the argument lambda, the estimates from bctrans will be used.
If you leave off the argument family, the Box-Cox (or Yeo-Johnson) family
will be used in place of simple power transformations.

7.3 TRANSFORMING THE RESPONSE

R and S-Plus See Sections 7.1.3-7.1.4 above for the examples in this section.

7.4 TRANSFORMATIONS OF NON-POSITIVE VARIABLES

R and S-Plus Any command in the alr3 package that has a keyword family

can be set to use the Yeo-Johnson transformations, family="yeo.johnson",
either using ψY J(U, λ) if modified=FALSE, or a modified version suitable for
use in the Box-Cox method when modified=TRUE.

The boxcox command from the MASS package does not have the family

argument. An interesting problem is to write the equivalent to the boxcox

command, but allowing for use of Yeo-Johnson transformations. Writing this
for arbitrary transformations of the response is a little harder because you need
to modify the transformation family to a constant Jacobian for the transfor-
mation; see Cook and Weisberg (1982, Section 2.4.1).

8
Regression Diagnostics:

Residuals

8.1 THE RESIDUALS

R and S-Plus Suppose you have fit a linear model using lm, and named it,
for example, m1. The commands listed in Table 8.1 give helper functions to
get the quantities described in this chapter or in the next chapter.

You can use these quantities in graphs or for any other purpose. For ex-
ample,

> plot(predict(m1), residuals(m1,type="pearson"))

> plot(predict(m1), predict(m2))

> press <- residuals(m1)/(1-hatvalues(m1))

The first is the usual plot of residuals versus fitted values, and the second is
the plot of fitted values from m2 versus the fitted values from m1, and the third
computes and saves the PRESS residuals, alr[P9.4].

8.1.1 Difference between ê and e

8.1.2 The hat matrix

R and S-Plus The hat-matrix H is rarely computed in full because it is
an n × n matrix that can be very large. Its diagonal entries, the leverages,
are computed simply by hatvalues(m1) for a model m1. Should you wish to
compute H in full, you can use the following commands. First, suppose that
X is an n× p matrix. Then

> decomp <- qr(cbind(rep(1,n),X))

69

70 REGRESSION DIAGNOSTICS: RESIDUALS

Table 8.1 R/S-Plus commands relating to residuals. For example, residuals(m1)

will return the residuals from the model m1. Many of these commands differ in R and

S-Plus.

Quantities described in alr[8]
predict Fitted values, alr[E8.3] for ols and wls.
residuals Residuals, alr[8.4] for ols only.
residuals(m1,type="pearson") Residuals, alr[E8.13], for wls. For ols, the Pear-

son residuals and the ordinary residuals are the
same, so this option can be used for all least squares
models.

hatvalues Leverages, alr[E8.11], for ols and wls. In S-Plus,
use lm.influence(m1)$hat.

Quantities described in alr[9]. All of these functions are available in the base version of
R. If you are using S-Plus, we recommend you use the car library. These commands are
then available for S-Plus as well.

rstandard Standardized residual, alr[E9.3].
rstudent Studentized residuals, alr[E9.4].
cooks.distance Cook’s distance, alr[E9.6].

> Hat <- qr.Q(decomp) %*% t(qr.Q(decomp))

This is probably nonintuitive, so here is an explanation. First, append a
column of ones to X for the intercept. Then, compute the QR decomposition,
alr[A.9], of the augmented matrix. The helper function qr.Q returns Q, and
the second command is just alr[EA.27].

8.1.3 Residuals and the hat matrix with weights

As pointed out in alr[8.1.3], the residuals for wls are
√
wi × (yi − ŷi).

Whatever computer program you are using, you need to check to see how
residuals are defined.

R and S-Plus In R and S-Plus, the correct residuals for wls are given by
residuals(m1,type="pearson"). These are also correct for ols, and so these
should always be used in graphical procedures.

8.1.4 The residuals when the model is correct

8.1.5 The residuals when the model is not correct

8.1.6 Fuel consumption data

Rand S-Plus In alr[F8.5] several of the points corresponding to states are
identified with labels. R and S-Plus have a mechanism for identifying points
that is fairly general, but clumsy and not very pleasant to use. The basic
outline is:

TESTING FOR CURVATURE 71

1. Draw a graph. The method works best with a scatterplot, so that is the
only case we consider. Let’s suppose the plot was created by

> plot(x,y)

2. While the graph is on the screen, use the identify helper to identify
points. The basic command is

> identify(x,y, labels)

where labels is a vector of labels or numbers of the same length as x and
y giving the labels that will be used to identify the points. Nothing seems
to happen when you type this command. The program is waiting for you
to click the mouse button on the graph. If you click close enough to a
point, the label corresponding to the nearest point will be printed on the
graph. This will continue until you press “escape,” select Stop→ Stop

locator from the plot’s menu, or select Stop after clicking the right mouse
button.

The mechanism for labelling points noninteractively uses the text command;
see the script for this chapter for an example.

8.2 TESTING FOR CURVATURE

Rand S-Plus The command residual.plots in the alr3 package implements
the curvature tests described in alr[8.2]. For example, all the plots in
alr[F8.5] except for part (f), along with a fitted quadratic curve, and the
curvature tests, are obtained using

> residual.plots(m1)

Test stat Pr(>|t|)

Tax -1.076663 0.28737

Dlic -1.921935 0.06096

Income -0.083979 0.93345

logMiles -1.347291 0.18463

Tukey test -1.445992 0.14818

All the residual plots will be combined in one graph; you can change this
behavior with arguments described in the help page for this command. If you
have any factors in your formula, boxplots of residuals will be drawn for the
factors, but there is no curvature test for the a factor. Interactions are skipped
entirely. The command resplot draws one residual plot, and resid.curv.test

computes the curvature test for one plot.
R and S-Plus have their own standard suite of residual plots produced by

the plot helper. Some of these “default” plots are not discussed in alr, and
so we will not discuss them further here, either.

72 REGRESSION DIAGNOSTICS: RESIDUALS

8.3 NONCONSTANT VARIANCE

8.3.1 Variance Stabilizing Transformations

8.3.2 A diagnostic for nonconstant variance

R and S-Plus Here is the complete outline of the computations for the test
for heteroscedasticity for the snow geese data discussed in alr[8.3.2]:

> data(snowgeese)

> m1 <- lm(photo~obs1,snowgeese)

> sig2 <- sum(residuals(m1,type="pearson")^2)/length(snowgeese$obs1)

> U <- residuals(m1)^2/sig2

> m2 <- update(m1,U ~ .)

> anova(m2)

Analysis of Variance Table

Response: U

Df Sum Sq Mean Sq F value Pr(>F)

snowgeese$obs1 1 162.826 162.826 50.779 8.459e-09 ***

Residuals 43 137.881 3.207

After getting the data, the model with term obs1 is fit. The quantity sig2

is the estimate of σ2, using n as a denominator rather than n − p′. pearson

residuals make this computation correct even for wls. The score variable U
is computed by the next command, and then m2 is the regression of U on the
terms in the original model, using the update helper. The score test is 1/2 the
sum of squares for regression, for (1/2)162.83 = 81.41.

As with the other methods described in the chapter, there is an R/S-Plus
command that automates computing the score test for nonconstant variance.
The command called ncv.test is part of the car package. For the snow geese
data,

> library(car)

> ncv.test(m1)

Non-constant Variance Score Test

Variance formula: ~ fitted.values

Chisquare = 81.41318 Df = 1 p = 0

In the sniffer data, we would like to consider more variance functions. Some
of the results in alr[T8.4] can be obtained as follows:

> data(sniffer)

> m1 <- lm(Y~TankTemp+GasTemp+TankPres+GasPres,sniffer)

> library(car)

> ncv.test(m1,~TankTemp,data=sniffer)

Non-constant Variance Score Test

Variance formula: ~ TankTemp

Chisquare = 9.7055 Df = 1 p = 0.0018371

GRAPHS FOR MODEL ASSESSMENT 73

> ncv.test(m1,~TankTemp+GasPres,data=sniffer)

Non-constant Variance Score Test

Variance formula: ~ TankTemp + GasPres

Chisquare = 11.778 Df = 2 p = 0.0027695

> ncv.test(m1,~TankTemp+GasTemp+TankPres+GasPres,data=sniffer)

Non-constant Variance Score Test

Variance formula: ~ TankTemp + GasTemp + TankPres + GasPres

Chisquare = 13.76 Df = 4 p = 0.008102

> ncv.test(m1)

Non-constant Variance Score Test

Variance formula: ~ fitted.values

Chisquare = 4.8027 Df = 1 p = 0.028416

To use ncv.test, specify the regression model, then a one-sided formula that
specifies the model for the variance, and then if necessary the data frame.

8.3.3 Additional comments

8.4 GRAPHS FOR MODEL ASSESSMENT

8.4.1 Checking mean functions

R and S-Plus The alr3 package has two commands for drawing marginal
model plots; mmp draws one marginal model plot, while mmps draws many such
plots.

alr[F8.11] is created by

> data(ufcwc)

> c1 <- lm(Height~Dbh,ufcwc)

> mmp(c1,ufcwc$Dbh,label="Diameter, Dbh",color=c("blue","red"))

The first argument to mmp is the only required argument, and is the name
of a regression model. The second argument is the quantity to put on the
horizontal axis of the plot, with predict(c1) as the default. We have shown
two additiona arguments, for the horizontal axis label and the colors of the
two smooths; neither argument is required.

The command mmp uses the loess smoother, with defaults degree=1, span=2/3;
both of these values can be changed when using the command. An interesting
exercise would be to implement marginal model plots with other smoothers,
and with non-deterministic methods for selecting a bandwidth parameter.

To draw marginal model plots versus each predictor and versus fitted val-
ues, use mmps. The following will draw three of the four plots in alr[F8.13]:

> m1 <- lm(logFertility~logPPgdp+Purban,UN2)

> mmps(m1)

74 REGRESSION DIAGNOSTICS: RESIDUALS

The fourth plot in alr[F8.13] plots in a direction that is a random lin-
ear combination of the terms. You can get plots like this one using the
random.lin.comb command in the alr3 package,

> mmp(m1,u=random.lin.comb(m1))

Every time you draw this last plot, it will be different because the random
numbers used will change. If you want to reproduce a plot, use the seed

argument:

> mmp(m1,u=random.lin.comb(m1,seed=254346576))

8.4.2 Checking variance functions

R and S-Plus The commands mmp and mmps include an argument sd that if
set to TRUE will add the standard deviation smooths to the plot, as described
in alr[8.4.2].

9
Outliers and Influence

9.1 OUTLIERS

9.1.1 An outlier test

R and S-Plus In R or using the car library in S-Plus, the command rstandard

computes the standardized residuals alr[E9.3]. You can also use alr[E9.3]
to compute these directly. Given a model m1,

> # For R only:

> ri <- residuals(m1,type="pearson")/(sigma.hat(m1)*

sqrt(1-hatvalues(m1))

> # For S-Plus only

> ri <- residuals(m1,type="pearson")/(sigma.hat(m1)*

sqrt(1-lm.influence(m1)$hat)

Pearson residuals guarantee that the same formula will work with weighted
or unweighted least squares.

The outlier test is computed in R or with the car library in S-Plus using
rstudent. These, too, can be computed directly. For a model m1, we use
alr[E9.4],

> ti <- ri* sqrt((m1$df-1)/(m1$df-ri^2))

The quantity m1$df is the df for residuals, equal to n− p′.

75

76 OUTLIERS AND INFLUENCE

9.1.2 Weighted least squares

9.1.3 Significance levels for the outlier test

R and S-Plus Significance levels for the outlier test use the pt command.
For example, if the largest in absolute value of n = 65 Studentized residuals
is 2.85, with p′ = 5, the df for error is n − p′ − 1 = 65 − 5 − 1 = 59. The
significance level, using the Bonferroni bound, is

> 65*2*(1-pt(2.85,59))

[1] 0.39084

By subracting the result of the pt command from one, we get the upper tail,
rather than the lower tail. We multiply by two to get a two-tailed test. We
multiply by n = 65 for the Bonferroni inequality.

If you have a regression model m, the test for one outlier is1

> n*2*(1-pt(max(abs(rstudent(m)),m$df-1))

You can find the case number of the maximum Studentized residual with

> match(max(abs(rstudent(m))),abs(rstudent(m)))

9.1.4 Additional comments

9.2 INFLUENCE OF CASES

R and S-Plus Table 8.1 lists the fundamental commands for influence and
outlier statistics. Each of the commands returns a vector.

In addition, R and S-Plus will compute and return the building blocks
that are used in computing these statistics. In particular, the command
influence in R, called lm.influence in S-Plus, returns a structure of these
building blocks. For example, if you have a model m1, then type

> ans <- influence(m1)

ans$coefficients returns a matrix with n rows and p′ columns whose ith
row is β̂(i), alr[E9.5]. This latter quantity was used to draw alr[F9.1].
ans$sigma returns a vector of the σ̂(i), the square roots of the estimate of σ,
each computed with one case deleted. Finally, ans$hat returns the leverage.
In linear models, all the leave-one-out statistics can be computed from the
leverages and residuals, so neither of the first two quantities are computed in
an influence analysis.

R and S-Plus make refitting a regression with one (or a few) cases deleted
easy. Suppose your model m1 was fit with n = 96 cases, and you want to refit,
leaving out cases 2, 7, 16. You need only type

1Reminder: rstudent is available in the base R, but for S-Plusyou need to load the library
car.

NORMALITY ASSUMPTION 77

> m2 <- update(m1, subset=(1:96)[-c(2,7,16)])

which uses the subset argument to update to refit with the specified cases
deleted. The value of the subset argument can be either a vector of case
numbers, as is the case here, or a vector of logical values with TRUE for values
to be included, and FALSE for values to be excluded.

9.2.1 Cook’s distance

R and S-Plus The command cooks.distance in R and in the car library
for S-Plus computes Cook’s distance. It can also be computed directly from
alr[E9.8] for a model m1,

> # For R only

> Di <- (ri^2/m1$rank)* (hatvalues(m1))/(1-hatvalues(m1))

> # For S-Plus only

> Di <- (ri^2/m1$rank)*(lm.influence(m1)$hat)/(1-lm.influence(m1)$hat)

m1$rank counts up the number of coefficients estimated in the mean function,
so it is equal to p′.

9.2.2 Magnitude of Di

R and S-Plus The command inf.index in the alr3 package is used to draw
index plots of diagnostic statistics, like alr[F9.3]. Here are the commands
to draw this figure:

> data(rat)

> m1 <- lm(y~BodyWt+LiverWt+Dose,rat)

> inf.index(m1)

This function also gives an index plot of the p-values for the (two-tailed)
outlier test based on the Bonferroni inequality.

9.2.3 Computing Di

9.2.4 Other measures of influence

R and S-Plus Just a reminder: added-variable plots are available in the car

package; see Section 3.1.

9.3 NORMALITY ASSUMPTION

R and S-Plus The qqnorm command is used to draw normal probability plots.
Here are the commands to draw alr[F9.5], which shows two normal proba-
bility plots.

> data(heights)

78 OUTLIERS AND INFLUENCE

> m1 <- lm(Dheight ~ Mheight, heights)

> data(transact)

> t1 <- lm(Time~T1+T2,transact)

> par(mfrow=c(1,2),mar=c(4,3,0,.5)+.1,mgp=c(2,1,0),cex=.5)

> qqnorm(residuals(m1),xlab="(a) Heights data",main="")

> qqnorm(residuals(t1),xlab="(a) Transaction data",main="")

10
Variable Selection

10.1 THE ACTIVE TERMS

The first example in this chapter uses randomly generated data. This can be
helpful in trying to understand issues against a background where we know
the right answers. Generating random data is possible in most statistical
packages, though doing so may not be easy or intuitive.

R and S-Plus Here is code in R for generating the random data with standard
normal random variables, and then fitting the regression for the first case in
alr[10.1]

> case1 <- data.frame(x1=rnorm(100),x2=rnorm(100),

+ x3=rnorm(100),x4=rnorm(100))

> e <- rnorm(100)

> case1$y <- 1 + case1$x1 + case1$x2 + e

> m1 <- lm(y~x1+x2+x3+x4,data=case1)

The data.frame command created a data frame, with each variable consisting
of 100 standard normal pseudo-random numbers. The variable case1$y was
added to the data frame to be the response, and then the model was fit.

Case 2 is more complicated because the random predictors are correlated.
In R, the simplest approach is to use the function rmvnormin the mvtnorm

Var2 <- matrix(c(1, 0, .95, 0,

0, 1, 0,-.95,

.95, 0, 1, 0,

0,-.95, 0, 1), ncol=4)

79

80 VARIABLE SELECTION

library(mvtnorm)

X <- rmvnorm(100,sigma=Var2)

dimnames(X)[[2]] <- paste("x",1:4,sep="")

case2 <- data.frame(X)

case2$y <- 1 + case2$x1 + case2$x2 + e

m2 <- lm(y~x1+x2+x3+x4,data=case2)

10.1.1 Collinearity

R and S-Plus The variance inflation factors, defined following alr[E10.5],
are computed by the command vif in the car package. Here are the variance
inflation factors for the first two examples in alr[10.1]

> vif(m1)

x1 x2 x3 x4

1.0072 1.0379 1.0330 1.0082

> vif(m2)

x1 x2 x3 x4

14.973 16.421 15.057 16.389

As expected, in the first case the variance inflation factors are all close to one,
but in the second example they are all large.

10.1.2 Collinearity and variances

10.2 VARIABLE SELECTION

10.2.1 Information criteria

The information criteria alr[E10.7]–alr[E10.9] depend only on the RSS,
p′, and possibly an estimate of σ2, and so if these are needed for a particular
model, they can be computed from the usual summaries available in a fitted
regression model.

R In R only, there is a command extractAIC that can be used to compute
AIC, BIC and Cp. For a fitted subset model m0 and a fitted larger model m1,
the following commands extract these quantities:

> extractAIC(m0,k=2) # give AIC

> extractAIC(m0,k=log(length(m0$residuals)) # gives BIC

> extractAIC(m0,scale=sigma.hat(m1)^2) # gives Cp

10.2.2 Computationally intensive criteria

Computation of PRESS, alr[E10.10], is not common in regression programs,
but it is easy to obtain given the residuals and leverages from a fitted model.

COMPUTATIONAL METHODS 81

Table 10.1 R/S-Plus commands relating to subset selection.

Fit all possible subsets and find the best few

leaps Uses the Furnival and Wilson algorithm to examine all possible regres-
sions. In R, you must obtain and load the package leaps. The syntax
of this command is different from the rest of R and S-Plus. You must
specify the predictors in a matrix, and the response in a separate vector;
factors are not permitted. The output from the command is confusing,
and selection can only be based on Cp, not on the other information
criteria. Serious use of this function will require writing a command to
process the output in an intelligent manner.

regsubsets Part of the leaps package for R, and not available in S-Plus, this com-
mand purports to improve on leaps, but the documentation is unclear,
and the output is still confusing.

stepwise Available only in S-Plus, this command uses a brute force algorithm to
examine all possible subset mean functions, and return the few with
the smallest value of Cp. The method does not permit other criteria,
or correctly handle factors. In addition, data must be supplied as in
leaps in the form of a matrix and a vector rather than as a formula
and a data frame.

Functions based on stepwise selection

step Use this function for both forward selection, backward elimination, or
a combination of them, based on any of the information criteria except
for PRESS.

drop1 This command will fit all models obtained by a current fitted model
by dropping one term, and gives very easy to interpret output. With
this command, you can do backward elimination “by hand,” one step
at a time. This is particularly helpful in problems with factors and
interactions, since dropping a main effect from a mean function that
includes interactions with that variable is not recommended.

add1 Adds one term from a potential pool of terms to the fitted model. This
can be used for forward selection “by hand.”

R and S-Plus In R and S-Plus, given a model m1, PRESS can be computed
as

> PRESS <- sum((residuals(m1,type="pearson")/(1-ls.diag(m1)$hat))^2)

This simple computation works for linear models, but not for more complex
models such as nonlinear or generalized linear models.

10.2.3 Using subject-matter knowledge

10.3 COMPUTATIONAL METHODS

R and S-Plus Four basic commands are included for use when examining
many possible regression models, as listed in Table 10.1.

The primary command we recommend using is step. Using the highway
data in alr[T10.5], we start by fitting the largest and smallest models that
we want to consider:

82 VARIABLE SELECTION

> m1 <- lm(logRate ~ logLen+logADT+logTrks+logSigs1+Slim+Shld+

+ Lane+Acpt+Itg+Lwid+Hwy, data=highway)

> m0 <- lm(logRate ~logLen,data=highway)

As discussed in alr[10.2.1], log(Len) will be in all subsets. One of the terms,
Hwy, is a factor with 3 df. Here is the command for fitting via forward
selection:

> ansf1 <- step(m0,scope=list(lower=~logLen,

+ upper=~logLen+logADT+logTrks+logSigs1+Slim+Shld+

+ Lane+Acpt+Itg+Lwid+Hwy),

+ direction="forward", data=highway)

The first argument to step is the name of a model, and for forward selection, it
is the smallest model considered. The argument scope gives explicity the the
lower and upper models, via one-sided formulas. The direction is specified
in quotation marks, and then the data frame must be named. The output of
this command is very long:

Start: AIC= -43.92

logRate ~ logLen

Df Sum of Sq RSS AIC

+ Slim 1 5.3 6.1 -66.3

+ Acpt 1 4.4 7.0 -60.8

+ Shld 1 3.6 7.9 -56.5

+ logSigs1 1 2.0 9.4 -49.4

+ Hwy 3 2.8 8.6 -48.8

+ logTrks 1 1.5 9.9 -47.5 Step 1

+ logADT 1 0.9 10.5 -45.1

<none> 11.4 -43.9

+ Lane 1 0.5 10.9 -43.8

+ Itg 1 0.5 11.0 -43.5

+ Lwid 1 0.4 11.0 -43.3

Step: AIC= -66.28

logRate ~ logLen + Slim

Df Sum of Sq RSS AIC

+ Acpt 1 0.6 5.5 -68.3

+ logTrks 1 0.5 5.6 -67.9

<none> 6.1 -66.3

+ logSigs1 1 0.3 5.8 -66.3

+ Hwy 3 0.7 5.4 -65.0 Step 2

+ Shld 1 0.1 6.0 -64.7

+ logADT 1 0.1 6.1 -64.6

+ Lwid 1 0.0346 6.1 -64.5

+ Lane 1 0.0071 6.1 -64.3

+ Itg 1 0.0055 6.1 -64.3

COMPUTATIONAL METHODS 83

Step: AIC= -68.31

logRate ~ logLen + Slim + Acpt

Df Sum of Sq RSS AIC

+ logTrks 1 0.4 5.2 -68.9

<none> 5.5 -68.3

+ logSigs1 1 0.2 5.3 -68.1

+ Shld 1 0.1 5.4 -66.8

+ logADT 1 0.032 5.5 -66.5 Step 3

+ Lane 1 0.031 5.5 -66.5

+ Itg 1 0.028 5.5 -66.5

+ Lwid 1 0.026 5.5 -66.5

+ Hwy 3 0.5 5.1 -65.7

Step: AIC= -68.94

logRate ~ logLen + Slim + Acpt + logTrks

Df Sum of Sq RSS AIC

<none> 5.2 -68.9

+ Shld 1 0.1 5.0 -68.0

+ logSigs1 1 0.1 5.0 -67.7

+ logADT 1 0.1 5.1 -67.4

+ Hwy 3 0.5 4.6 -67.3 Step 4

+ Lwid 1 0.0396 5.1 -67.2

+ Itg 1 0.0228 5.1 -67.1

+ Lane 1 0.0069 5.1 -67.0

The default criterion for fitting is AIC. The output marked Step 1 gives the
summary for each mean function obtained by adding one term to the base
model given by m0. The models are ordered, so the one that minimizes AIC
appears first.

At Step 2, Slim is added to the current model, and all the mean functions
add one term to log(Len) and Slim. Steps continue until the model at the
previous step, marked <none> has smaller AIC than adding the next term; in
this example this occurs at Step 4, so the base model for this step is taken
as the minimizer of AIC. The object ansf1 is the fitted model that minimizes
AIC.

In S-Plus, step works similarly, but the default information criterion is Cp

rather than AIC.
Backward elimination is similar, except the specified model is the largest

one.

> ansf2 <- step(m1,scope=list(lower=~logLen,

+ upper=~logLen+logADT+logTrks+logSigs1+Slim+Shld+

+ Lane+Acpt+Itg+Lwid+Hwy),

+ direction="backward", data=highway,

+ scale=sigma.hat(m1)^2)

The other arguments are similar to the arguments for forward selection. In
this example, we have set scale=sigma.hat(m1)^2, in which case the selection

84 VARIABLE SELECTION

criterion is Cp, not AIC. If you set k=log(length(residuals$m1)), then BIC
will be used. You can’t use PRESS with this command. Here is the output:

Start: AIC= 14

logRate ~ logLen + logADT + logTrks + logSigs1 + Slim + Shld +

Lane + Acpt + Itg + Lwid + Hwy

Df Sum of Sq RSS Cp

- Shld 1 0.0011 3.54 12.0

- Itg 1 0.0031 3.54 12.0

- Lane 1 0.01 3.54 12.0

- Lwid 1 0.01 3.55 12.1

- Hwy 3 0.63 4.16 12.4

- Acpt 1 0.08 3.62 12.6

- logTrks 1 0.10 3.63 12.7

- logADT 1 0.27 3.81 13.9

<none> 3.54 14.0

- Slim 1 0.37 3.91 14.6

- logSigs1 1 0.92 4.46 18.5

Step: AIC= 12.01

logRate ~ logLen + logADT + logTrks + logSigs1 + Slim + Lane +

Acpt + Itg + Lwid + Hwy

Df Sum of Sq RSS Cp

- Itg 1 0.0028 3.54 10.0

- Lane 1 0.01 3.54 10.1

- Lwid 1 0.01 3.55 10.1

- Acpt 1 0.10 3.64 10.7

- logTrks 1 0.12 3.65 10.8

- Hwy 3 0.68 4.22 10.8

<none> 3.54 12.0

- logADT 1 0.28 3.82 12.0

- Slim 1 0.71 4.25 15.0

- logSigs1 1 1.00 4.54 17.1

Step: AIC= 10.03

logRate ~ logLen + logADT + logTrks + logSigs1 + Slim + Lane +

Acpt + Lwid + Hwy

Df Sum of Sq RSS Cp

- Lane 1 0.01 3.55 8.06

- Lwid 1 0.01 3.55 8.13

- Acpt 1 0.09 3.64 8.70

- logTrks 1 0.12 3.66 8.86

<none> 3.54 10.03

- logADT 1 0.32 3.86 10.31

- Hwy 3 1.16 4.71 12.26

- Slim 1 0.79 4.33 13.61

COMPUTATIONAL METHODS 85

- logSigs1 1 1.00 4.54 15.11

Step: AIC= 8.06

logRate ~ logLen + logADT + logTrks + logSigs1 + Slim + Acpt +

Lwid + Hwy

Df Sum of Sq RSS Cp

- Lwid 1 0.02 3.56 6.18

- Acpt 1 0.10 3.64 6.75

- logTrks 1 0.11 3.66 6.87

<none> 3.55 8.06

- logADT 1 0.38 3.93 8.76

- Hwy 3 1.28 4.82 11.08

- Slim 1 0.80 4.35 11.72

- logSigs1 1 1.02 4.56 13.26

Step: AIC= 6.18

logRate ~ logLen + logADT + logTrks + logSigs1 + Slim + Acpt +

Hwy

Df Sum of Sq RSS Cp

- Acpt 1 0.10 3.67 4.92

- logTrks 1 0.13 3.69 5.09

<none> 3.56 6.18

- logADT 1 0.37 3.93 6.77

- Hwy 3 1.27 4.84 9.18

- Slim 1 0.80 4.36 9.81

- logSigs1 1 1.03 4.59 11.46

Step: AIC= 4.92

logRate ~ logLen + logADT + logTrks + logSigs1 + Slim + Hwy

Df Sum of Sq RSS Cp

- logTrks 1 0.14 3.81 3.93

<none> 3.67 4.92

- logADT 1 0.31 3.98 5.11

- Hwy 3 1.51 5.18 9.61

- logSigs1 1 1.16 4.83 11.12

- Slim 1 1.21 4.87 11.45

Step: AIC= 3.93

logRate ~ logLen + logADT + logSigs1 + Slim + Hwy

Df Sum of Sq RSS Cp

<none> 3.81 3.93

- logADT 1 0.29 4.10 3.96

- Hwy 3 1.69 5.50 9.84

- Slim 1 1.16 4.97 10.12

- logSigs1 1 1.56 5.37 12.98

86 VARIABLE SELECTION

The commands drop1 and add1 do one step of these methods, so you can do
the stepwise fitted “by hand.”

10.3.1 Subset selection overstates significance

10.4 WINDMILLS

10.4.1 Six mean functions

10.4.2 A computationally intensive approach

The data for the windmill example in alr[10.4.2] is not included with the
alr3 library, and must be downloaded separately from www.stat.umn.edu/alr.
The R or S-Plus commands used to compute alr[F10.1] are given in the script
for this chapter. The process requires many statements, but the method is
straightforward. The command to compute the simulation in the script for this
chapter has a comment marker in front of it, as the simulation can take several
hours to complete. The results from the simulation discussed in alr[10.4.2]
are available from the data page at www.stat.umn.edu/alr in the file sim1.out.

11
Nonlinear Regression

11.1 ESTIMATION FOR NONLINEAR MEAN FUNCTIONS

11.2 INFERENCE ASSUMING LARGE SAMPLES

R and S-Plus The command nls is used to obtain ols and wls estimates
for nonlinear regression models. nls differs from lm in a few key respects:

1. The formula for defining a model is different. In lm, a typical formula
is Y∼X1+X2+X3+X4. This formula specifies the names of the response and
the terms, but not the names of the parameters because to each term
there is an associated parameter, or parameters for a factor. For a
nls model, the formula specifies both terms and parameters. A typical
example might be Y∼th1 + th2*(1-exp(-th3*x)). In this case there are
three parameters, th1, th2 and th3, but only one term, x. The right-
hand side formula should be an expression of parameters, terms, and
numbers that can be evaluated by the computer language C.

2. Factors are generally not used with nls.

3. A named list start of starting values must be specified. This serves the
dual purpose of telling the algorithm where to start, and also to name
the parameters. For the example, start=list(th1=620,th2=200,th3=10)
indicates that th1, th2 and th3 are parameters, and so by implication
the remaining quantity, x, must be a predictor variable.

87

88 NONLINEAR REGRESSION

4. Most iterative algorithms for nonlinear least squares require compu-
tation of derivatives, and many programs require the user to provide
formulas for the derivatives. This is not the case in nls; all derivatives
are computed using numerical differentiation.

Here is the input leading to alr[T11.2]

> data(turk0) # R only

> n1 <- nls(Gain ~ th1 + th2*(1-exp(-th3*A)), data=turk0,

start=list(th1=620,th2=200,th3=10))

> summary(n1)

Formula: Gain ~ th1 + th2 * (1 - exp(-th3 * A))

Parameters:

Estimate Std. Error t value Pr(>|t|)

th1 622.96 5.90 105.57 < 2e-16

th2 178.25 11.64 15.32 2.7e-16

th3 7.12 1.21 5.91 1.4e-06

Residual standard error: 19.7 on 32 degrees of freedom

Correlation of Parameter Estimates:

th1 th2

th2 -0.312

th3 -0.406 -0.62

After loading the data, we called nls with the required arguments of a for-
mula and starting values. In addition, we specified a data frame. In R, there
are many other arguments to nls, including several that are identical with
arguments of the same name in lm, including subset for selecting cases, and
na.action for setting the missing value action; neither of these is available in
S-Plus. A few arguments are used to change the details of the computing algo-
rithm; see the help page for nls. Neither R nor S-Plus have a weights argument
for fitting wls1, but see the next example for computing wls estimates.

The printed output from the summary method is also similar to the output
from ls, as described in alr[11.2]. The “correlation of parameter estimates”
is the matrix alr[E11.14] rescaled as a correlation matrix.

Similar to an object created by the lm command, objects created by nls

have summary, plot and predict methods, and these are used in a way that is
similar to linear regression models. For example, alr[F11.2] is obtained by

> attach(turk0)

> plot(A,Gain, xlab="Amount (percent of diet)", ylab="Weight gain, g")

> x <- (0:44)/100

> lines(x,predict(n1,data.frame(A=x)))

1The argument exists in R but as of October 2004 it has not been implemented.

INFERENCE ASSUMING LARGE SAMPLES 89

Lack-of-fit testing is possible if there are repeated observations. The idea
is to compare the nonlinear fit to the one-way analysis of variance, using the
levels of the predictor as a grouping variable:

> m1 <- lm(Gain~as.factor(A),turk0)

> anova(n1,m1)

Analysis of Variance Table

Model 1: Gain ~ th1 + th2 * (1 - exp(-th3 * A))

Model 2: Gain ~ as.factor(A)

Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)

1 32 12367

2 29 9824 3 2544 2.5 0.079

The model m1 is a linear model, while n1 is a nonlinear model. Even so, the
anova will correctly compare them, giving the F test for lack of fit.

Unlike lm, nls does not allow factors in a formula. To use factors, you need
to create dummy variables for the various levels of the factor and use these.

For example, consider fitting the models alr[11.17]–alr[11.19]. The data
frame turkey includes a variable S that is a factor with three levels for the
source of the dietary addtive. Weighted least squares is required. We can
apply alr[E5.8] to get nls to get wls estimates. We have y = g(θ, x)+e/

√
w

where the e’s have constant variance, so the y’s have variance σ2/w. Multiply
both sides of the mean function by

√
w to get

√
wy =

√
wg(θ, x) + e so we

can get wls estimates in the original problem by getting ols estimates with√
wg(θ, x) as the kernel mean function, and

√
wy as the response.

The code for fitting the four models using wls is given next. The vector
m is the number of pens at each treatment combination, and is the vector of
weights for this problem, S is the factor, and Gain is the response variable.

data(turkey) # R only

tdata <- turkey # copy data to local name, requires only for Splus

create the indicators for the categories of S

tdata$S1 <- tdata$S2 <- tdata$S3 <- rep(0,dim(tdata)[1])

tdata$S1[tdata$S==1] <- 1

tdata$S2[tdata$S==2] <- 1

tdata$S3[tdata$S==3] <- 1

compute the weighted response

tdata$wGain <- sqrt(tdata$m)*tdata$Gain

fit the models

common regressions

m4 <- nls(wGain ~ sqrt(m)*(th1 + th2*(1-exp(-th3*A))),

data=tdata,start=list(th1=620,th2=200,th3=10))

most general

m1 <- nls(wGain ~ sqrt(m)*(S1*(th11 + th21*(1-exp(-th31*A)))+

S2*(th12 + th22*(1-exp(-th32*A)))+

S3*(th13 + th23*(1-exp(-th33*A)))),

data=tdata,start= list(th11=620,th12=620,th13=620,

th21=200,th22=200,th23=200,

90 NONLINEAR REGRESSION

th31=10,th32=10,th33=10))

common intercept

m2 <- nls(wGain ~ sqrt(m)*(th1 +

S1*(th21*(1-exp(-th31*A)))+

S2*(th22*(1-exp(-th32*A)))+

S3*(th23*(1-exp(-th33*A)))),

data=tdata,start= list(th1=620,

th21=200,th22=200,th23=200,

th31=10,th32=10,th33=10))

common intercept and asymptote

m3 <- nls(wGain ~ sqrt(m)*(th1 + th2 *(

S1*(1-exp(-th31*A))+

S2*(1-exp(-th32*A))+

S3*(1-exp(-th33*A)))),

data=tdata,start= list(th1=620, th2=200,

th31=10,th32=10,th33=10))

We have now created the dummy variables, weighted response, and the models
with different mean functions. If there were no weights, we could leave off the
sqrt(w) in the above statements, and use Gain, not wGain, as the response. In
each of the models we had to specify starting values for all the parameters.
The starting values we use essentially assume no group differences. Here are
the anova tables to compare the models:

> anova(m4,m2,m1)

Analysis of Variance Table

Model 1: wGain ~ sqrt(m) * (th1 + th2 * (1 - exp(-th3 * A)))

Model 2: wGain ~ sqrt(m) * (th1 + S1 * (th21 * (1 - exp(-th31 * A)))

+ S2 * (th22 * (1 - exp(-th32 * A)))

+ S3 * (th23 * (1 - exp(-th33 * A))))

Model 3: wGain ~ sqrt(m) * (S1 * (th11 + th21 * (1 - exp(-th31 * A)))

+ S2 * (th12 + th22 * (1 - exp(-th32 * A)))

+ S3 * (th13 + th23 * (1 - exp(-th33 * A))))

Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)

1 10 4326

2 6 2040 4 2286 1.68 0.27

3 4 1151 2 889 1.54 0.32

> anova(m4,m3,m1)

Analysis of Variance Table

Model 1: wGain ~ sqrt(m) * (th1 + th2 * (1 - exp(-th3 * A)))

Model 2: wGain ~ sqrt(m) * (th1 + th2 * (S1 * (1 - exp(-th31 * A))

+ S2 * (1 - exp(-th32 * A)) + S3 * (1 - exp(-th33 * A))))

Model 3: wGain ~ sqrt(m) * (S1 * (th11 + th21 * (1 - exp(-th31 * A)))

+ S2 * (th12 + th22 * (1 - exp(-th32 * A)))

+ S3 * (th13 + th23 * (1 - exp(-th33 * A))))

Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)

1 10 4326

2 8 2568 2 1758 2.74 0.12

BOOTSTRAP INFERENCE 91

3 4 1151 4 1417 1.23 0.42

These tests are interpreted as in alr[6.2.2].

11.3 BOOTSTRAP INFERENCE

R The bootstrap be done using the same boot.case command used for linear
models. For example, to get the bootstrap leading to alr[F11.5], using R

> data(segreg) # R only

> attach(segreg)

> smod <- C ~ th0 + th1*(pmax(0,Temp-gamma))

> s1 <- nls(smod, data=segreg,start=list(th0=70,th1=.5,gamma=40))

> set.seed(10131985)

> s1.boot <- boot.case(s1,B=999)

If you are using S-Plus, load the package resample and replace the call to
boot.case by bootstrap(s1,coef,B=999). By using the set.seed command in
R, you will get exactly the same bootstrap replications discussed in alr; leave
this command off, or change the seed, and you will get different replications.

s1.boot will consist only of a matrix with 999 rows and 3 columns, one row
for each replication, and one column for each parameter, and summarizing
the bootstrap is your responsibility. The summary used in alr uses the
scatterplot.matrix command in the car package2

> library(car)

> scatterplot.matrix(s1.boot,diagonal="histogram",

+ col=palette(),#[-1],

+ lwd=0.7,pch=".",

+ labels=c(expression(theta[1]),expression(theta[2]),

+ expression(gamma)),

+ ellipse=FALSE,smooth=TRUE,level=c(.90))

Numerical summaries can also be appropriate, for example,

> s1.boot.summary <- data.frame(rbind(

+ apply(s1.boot,2,mean),

+ apply(s1.boot,2,sd),

+ apply(s1.boot,2,function(x){quantile(x,c(.025,.975))})))

> row.names(s1.boot.summary)<-c("Mean","SD","2.5%","97.5%")

> s1.boot.summary

th0 th1 gamma

Mean 74.8407 0.60701 43.1235

SD 1.4453 0.11833 4.6156

2.5% 72.0214 0.46359 36.8698

97.5% 77.5957 0.97129 55.0744

2scatterplot.matrix is not available in S-Plus. Use pairs instead.

92 NONLINEAR REGRESSION

Here we combined the summaries into a data frame so they would be pretty
when printed. The apply command is used repeatedly to apply functions
to the columns of s1.boot, and we summarize with the mean, SD, and 95%
percentile-based confidence interval for each parameter.

S-Plus Bootstrapping nonlinear models is not straightforward in S-Plus, and
neither the boot.case command in the alr3 package, nor the bootstrap com-
mand in the resample library work for nonlinear model objects. The heart
of the problem is that nls in S-Plus does not accept the subset argument, so
permuting cases as is required in bootstrapping is relatively difficult. If you
write S-Plus code for bootstrapping a nonlinear model, let us know and we
will add it to the alr3 library.

11.4 REFERENCES

12
Logistic Regression

Both logistic regression and the normal linear models that we have discussed
in earlier chapters are examples of generalized linear models. Many programs,
including SAS, R, and S-Plus, have procedures that can be applied to any
generalized linear model. Both JMP and SPSS seem to have separate pro-
cedures for logistic regression. There is a possible source of confusion in the
name. Both SPSS and SAS use the name general linear model to indicate a
relatively complex linear model, possibly with continuous terms, covariates,
interactions, and possibly even random effects, but with normal errors. Thus
the general linear model is a special case of the generalized linear models.

12.1 BINOMIAL REGRESSION

12.1.1 Mean Functions for Binomial Regression

12.2 FITTING LOGISTIC REGRESSION

R and S-Plus The key command in fitting a generalized linear model is glm.
We will only consider the logistic regression case, but only minor changes are
required for other cases.

Here is a general form for the glm command, illustrating the basic argu-
ments available for binomial regression:

glm(formula, family = binomial(link="logit"), data, weights,

subset, na.action, start = NULL)

93

94 LOGISTIC REGRESSION

The arguments data, weights, subset and na.action are used in the same way
they are used in lm. The family argument is new, and the formula argument
is a little different than its use in lm or nls. There are a few other arguments,
mostly modifying the computational algorithm, that will probably be rarely
needed.

As in alr[12.1.1], let θ(x) be the probability of success given the value of
the terms X in the mean function equal x. According to the logistic regression
model, we have from alr[E12.7]

log

(

θ(x)

1 − θ(x)

)

= β′x (12.1)

The quantity on the right of this equation is called the linear predictor. The
quantity on the left depends on the link function (or equivalently, the kernel
mean function) used in fitting, which in this case is the logit link, the inverse
of the logistic kernel mean function discussed in alr[10.1.1].

The formula for a glm is a two-sided formula. The right-hand side of this
formula is the linear predictor, equivalent to β′x in (12.1). The left-hand side
is either: (1) if the number of trials is always equal to one for each case, then
the left-hand side is just the the response variable, a vector of zeroes and ones.
(2) If the number of trials is not always equal to one, then the left-hand side
is a matrix with two columns, the first column giving the number of successes
and the second giving the number of failures.

The family argument is the name of an error distribution, which is binomial
for binomial regression. Other choices like Poisson and gaussian are used for
Poisson errors and normal errors, respectively. As an argument to the family,
you set the link function. The only link discussed in alr is the logit link
for logistic regression. Since this is the default, it need not be specified. See
vr[7] for a more general discussion.

12.2.1 One-predictor example

R and S-Plus For alr[T12.1], here are the computations:

> data(blowBF)

> m1 <- glm(y~logb(D,2),family=binomial(),data=blowBF)

> summary(m1)

Call:

glm(formula = y ~ logb(D, 2), family = binomial(), data = blowBF)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.507 -0.757 -0.494 0.810 2.327

Coefficients:

Estimate Std. Error z value Pr(>|z|)

FITTING LOGISTIC REGRESSION 95

(Intercept) -7.892 0.633 -12.5 <2e-16

logb(D, 2) 2.263 0.191 11.8 <2e-16

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 856.21 on 658 degrees of freedom

Residual deviance: 655.24 on 657 degrees of freedom AIC: 659.2

The linear predictor used consists of the base-two logarithm of D. The family

must be specified, because the default is family=gaussian, but the link can be
skipped because the default is "logit".

Here are the commands to draw alr[F12.1a].

> plot(jitter(logb(D,2),amount=.05),

+ jitter(y,amount=0.02),

+ xlab=expression(paste("(a) ",Log[2](Diameter))),

+ ylab="Blowdown indicator")

> xx <- seq(min(D),max(D),length=100)

> abline(lm(y~logb(D,2)),lty=1)

> lo.fit <- loess(y~logb(D,2),data=blowBF,degree=1)

> lines(logb(xx,2),predict(lo.fit,data.frame(D=xx)),lty=3)

> lines(logb(xx,2),predict(m1,data.frame(D=xx),type="response"),lty=2)

The data are jittered in plot to avoid over-plotting. The vector xx will be
used in plotting fitted values. First, the ols line is added to the plot. Then
the loess function was used to get a smoother, and it is added to the plot.
Then, the fitted values from the model m1 are added to the plot.

alr[F12.1b] uses the sm.density command in the sm package.

> library(sm)

> sm.density.compare(logD,y,lty=c(1,2),

xlab=expression(paste("(b) ",log[2](D))))

> legend(4.5,.9,legend=c("Y=0","Y=1"),lty=c(1,2))

12.2.2 Many Terms

R and S-Plus Here are the statements to get the models shown in alr[T12.2]:

> m2 <- glm(y~logb(D,2)+S,family=binomial(),data=blowBF)

> m3 <- update(m2,~.+logb(D,2):S)

> summary(m2) output is edited

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -9.562 0.750 -12.75 <2e-16

logb(D, 2) 2.216 0.208 10.66 <2e-16

S 4.509 0.516 8.74 <2e-16

> summary(m3) output is edited

96 LOGISTIC REGRESSION

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.678 1.425 -2.58 0.0099

logb(D, 2) 0.401 0.439 0.91 0.3614

S -11.205 3.638 -3.08 0.0021

logb(D, 2):S 4.911 1.140 4.31 1.7e-05

alr[12.2.2] also includes several non-standard graphics. alr[F12.2a] uses
sm.density, as illustrated previously, and alr[F12.2b] is just an ordinary
scatterplot, but uses jittering. alr[F12.3] shows contours on constant esti-
mated probability superimposed on the scatterplot of the data. Here are the
commands for alr[F12.3b].

> xa <- seq(min(D),max(D),len=99)

> ya <- seq(.01, .99,len=99)

> za <- matrix(nrow=99,ncol=99)

> for (i in 1:99) {

+ za[,i] <- predict(m3,data.frame(D=rep(xa[i],99),S=ya),type="response")}

> contour(logb(xa,2),ya,za,

xlab=expression(paste("(b) ",log[2](D))),ylab="S")

> points(jitter(logb(D,2),amount=.04),S,pch=y+1,cex=.5)

We first defined a grid xa for the horizontal axis for D, ya for the vertical
axis for S. za is then defined as a (very large) matrix giving the predicted
value for each combination (xa, ya). The contour command is then used to
draw the probability contours based on this matrix. We needed to adjust the
horizontal axis to be the base-two logarithm of xa. The jittered points were
then added.

The plots in alr[F12.5] are considerably simpler. Here is the second one.

> xx <- seq(min(logb(D,2)),max(logb(D,2)),length=100)

> plot(2^(xx),exp(coef(m3)[3]/10+coef(m3)[4]*xx/10),type="l",

xlab="(b) D",ylab="Odds multiplier")

12.2.3 Deviance

R and S-Plus Comparing models uses the anova just as with lm models. For
the three models fit to the Balsam Fir blowdown data,

> anova(m1,m2,m3,test="Chisq")

Analysis of Deviance Table

Model 1: y ~ logb(D, 2)

Model 2: y ~ logb(D, 2) + S

Model 3: y ~ logb(D, 2) + S + logb(D, 2):S

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 657 655

2 656 564 1 91 1.2e-21

3 655 542 1 22 2.5e-06

BINOMIAL RANDOM VARIABLES 97

We specified test="Chisq") to compare the change in deviance to the Chi-
squared distribution to get significance levels. The default is no significance
levels.

12.2.4 Goodness of Fit Tests

R and S-Plus The Titanic data uses binomial, rather than binary regression,
since the number of trails exceeds one. Here is the syntax:

> data(titanic)

> m1 <- glm(cbind(Surv,N-Surv)~Class+Age+Sex, data=titanic,

family=binomial())

The response is specified as a matrix whose first column is the number of
survivors, and whose second column is the number of deaths. In S-Plus,
fitting the saturated model, with more parameters than cell counts, produces
an error rather than the correct fitted model with all fitted values equal to
the observed values; R does the computation correctly.

12.3 BINOMIAL RANDOM VARIABLES

12.3.1 Maximum likelihood estimation

12.3.2 The Log-likelihood for Logistic Regression

12.4 GENERALIZED LINEAR MODELS

Problems

R and S-Plus 12.5.1. The pairs will accept a matrix (or data frame) for
its first argument, and the argument col can be used to set the colors of the
points. You can also use scatterplot.matrix in the car package.

Appendix A

A.1 WEB SITE

A.2 MEANS AND VARIANCES OF RANDOM VARIABLES

A.2.1 E notation

A.2.2 Var notation

A.2.3 Cov notation

A.2.4 Conditional moments

A.3 LEAST SQUARES FOR SIMPLE REGRESSION

A.4 MEANS AND VARIANCES OF LEAST SQUARES ESTIMATES

A.5 ESTIMATING E(Y |X) USING A SMOOTHER

R and S-Plus A bewildering array of options are available for smoothing,
both in the base programs, and in packages available from others. In alr, we
have almost always used the loess smoother or an older version of it called

99

100 APPENDIX A

lowess1. There is no particular reason to prefer this smoother over other
smoothers. For the purposes to which we put smoothers, mainly to help us
look at scatterplots, the choice of smoother is probably not very important.

The important problem of choosing a smoothing parameter is generally
ignored in alr; one of the nice features of loess is that choosing the smoothing
parameter of about 2/3 usually gives good answers. R and S-Plus have several
methods for selecting a smoothing parameter; see vr[8.7], and the references
given in alr[A.5], for more information.

The lowess is used to draw alr[FA.1]

> data(ufcwc)

> attach(ufcwc)

> plot(Dbh,Height)

> abline(lm(Height~Dbh),lty=3)

> lines(lowess(Dbh,Height,iter=1,f=.1),lty=4)

> lines(lowess(Dbh,Height,iter=1,f=2/3),lty=1)

> lines(lowess(Dbh,Height,iter=1,f=.95),lty=2)

> legend(700,200,legend=c("f=.1","f=2/3","f=.95","OLS"),lty=c(4,1,2,3))

We have used the lines helper to add the lowess fits to the graph, with
different values of the smoothing argument, f. We set the argument iter to
one rather than the default value of three.

More or less the same figure can be obtained using loess.

> plot(Dbh,Height)

> abline(lm(Height~Dbh),lty=3)

> new <- seq(100,1000,length=100)

> m1 <- loess(Height~Dbh,degree=1,span=.1)

> m2 <- loess(Height~Dbh,degree=1,span=2/3)

> m3 <- loess(Height~Dbh,degree=1,span=.95)

> lines(new,predict(m1,data.frame(Dbh=new)),lty=4,col="cyan")

> lines(new,predict(m2,data.frame(Dbh=new)),lty=1,col="red")

> lines(new,predict(m3,data.frame(Dbh=new)),lty=2,col="blue")

> legend(700,200,legend=c("f=.1","f=2/3","f=.95","OLS"),lty=c(4,1,2,3))

loess expects a formula. degree=1 uses local linear, rather than quadratic,
smoothing, to match lowess. The span argument is like the f argument for
lowess.

alr[FA.2] with the standard deviation smooths was drawn using the fol-
lowing commands.

> plot(Dbh,Height)

> loess.fit <- loess(Height~Dbh, degree=1, span=2/3) # gives same answers

> sqres <- residuals(loess.fit)^2

> loess.var.fit <- loess(sqres ~ Dbh, degree=1, span=2/3)

> new <- seq(min(Dbh),max(Dbh), length=100)

1loess and lowess have different defaults, and so they will give the same answers only if
they are set to use the same tuning parameters.

A BRIEF INTRODUCTION TO MATRICES AND VECTORS 101

> lines(new, predict(loess.fit,data.frame(Dbh=new)))

> lines(new, predict(loess.fit,data.frame(Dbh=new)) +

+ sqrt(predict(loess.var.fit,data.frame(Dbh=new))), lty=2)

> lines(new, predict(loess.fit,data.frame(Dbh=new)) -

+ sqrt(predict(loess.var.fit,data.frame(Dbh=new))), lty=2)

We used the loess command rather than lowess because loess has a method
for the residuals helper function.

A.6 A BRIEF INTRODUCTION TO MATRICES AND VECTORS

R and S-Plus vr[3.9] gives a good summary of the most commonly used
matrix commands. These are also discussed in the documentation that comes
with the two programs, or in various help pages available in the program.

A.6.1 Addition and subtraction

A.6.2 Multiplication by a scalar

A.6.3 Matrix multiplication

A.6.4 Transpose of a matrix

A.6.5 Inverse of a matrix

A.6.6 Orthogonality

A.6.7 Linear dependence and rank of a matrix

A.7 RANDOM VECTORS

A.8 LEAST SQUARES USING MATRICES

A.8.1 Properties of estimates

A.8.2 The residual sum of squares

A.8.3 Estimate of variance

A.9 THE QR FACTORIZATION

R and S-Plus These programs compute the QR factorization using Lapack
routines, or the slightly older but equally good Linpack routines. We illustrate
the use of these routines with a very small example.

> X <- matrix(c(1,1,1,1,2,1,3,8,1,5,4,6), ncol=3, byrow=FALSE)

102 APPENDIX A

> y <- c(2,3,-2,0)

> X

[,1] [,2] [,3]

[1,] 1 2 1

[2,] 1 1 5

[3,] 1 3 4

[4,] 1 8 6

> y

[1] 2 3 -2 0

> QR <- qr(X)

Here X is a 4×3 matrix, and y is a 4×1 vector. To use the QR factorization,
we start with the command qr. This does not find Q or R explicitly but it
does return a structure that contains all the information needed to compute
these quantities, and there are helper functions to return Q and R:

> qr.Q(QR)

[,1] [,2] [,3]

[1,] -0.5 -0.278543 0.775475

[2,] -0.5 -0.464238 -0.621480

[3,] -0.5 -0.092848 -0.060498

[4,] -0.5 0.835629 -0.093497

> qr.R(QR)

[,1] [,2] [,3]

[1,] -2 -7.0000 -8.0000

[2,] 0 5.3852 2.0426

[3,] 0 0.0000 -3.1349

Q is a 4×3 matrix with orthogonal columns, and R is is a 3×3 upper triangular
matrix. These matrices are rarely computed in full like this. Rather, other
helper functions are used.

In the regression context, there are three helpers that return quantities
related to linear regression, using alr[EA.25–EA.27].

> qr.coef(QR,y)

[1] 1.732456 -0.350877 0.061404

> qr.fitted(QR,y)

[1] 1.09211 1.68860 0.92544 -0.70614

> qr.resid(QR,y)

[1] 0.90789 1.31140 -2.92544 0.70614

qr.coef computes alr[EA.26], qr.fitted computes the fitted values QQ′y,
and qr.resid computes residuals y −QQ′y.

The backsolve command is used to solve triangular systems of equations,
as described in alr[A.9].

The basic linear regression routine lm uses the QR factorization to obtain
estimates, standard errors, residuals and fitted values.

MAXIMUM LIKELIHOOD ESTIMATES 103

A.10 MAXIMUM LIKELIHOOD ESTIMATES

A.11 THE BOX-COX METHOD FOR TRANSFORMATIONS

A.11.1 Univariate case

A.11.2 Multivariate case

A.12 CASE DELETION IN LINEAR REGRESSION

References

1. Chambers, J. and Hastie, T. (eds.) (1993). Statistical Models in S. Boca Raton,
FL: CRC Press.

2. Cook, R. D. and Weisberg, S. (1982). Residuals and Influence in Regression.
London: Chapman & Hall.

3. Cook, R. D. and Weisberg, S. (1999). Applied Regression Including Computing

and Graphics. New York: Wiley.

4. Cook, R. D. and Weisberg, S. (2004). Partial One-Dimensional Regression
Models.

5. Dalgaard, Peter (2002). Introductory Statistics with R. New York: Springer.

6. Davison, A. and Hinkley, D. (1997). Bootstrap Methods and their Application.
Cambridge: Cambridge University Press.

7. Efron, B. and Tibshirani, R. (1993). An Introduction to the Bootstrap. Boca
Raton: Chapman & Hall.

8. Fox, John (2002). An R and S-Plus Companion to Applied Regression. Thou-
sand Oaks, CA: Sage.

9. Fruend, R., Littell, R. and Creighton, L. (2003). Regression Using JMP. Cary,
NC: SAS Institute, Inc., and New York: Wiley.

10. Furnival, G. and Wilson, R. (1974). Regression by leaps and bounds. Techno-

metrics, 16, 499-511.

105

106 REFERENCES

11. Knüsel, Leo (2005). On the accuracy of statistical distributions in Microsoft
Excel 2003. Computational Statistics and Data Analysis, 48, 445–449.

12. Maindonald, J. and Braun, J. (2003). Data Analysis and Graphics Using R.
Cambridge: Cambridge University Press.

13. Muller, K. and Fetterman, B. (2003). Regression and ANOVA: An Integrated

Approach using SAS Software. Cary, NC: SAS Institute, Inc., and New York:
Wiley.

14. Nelder, J. (1977). A reformulation of linear models. Journal of the Royal

Statistical Society, A140, 48–77.

15. Pinheiro, J. and Bates, D. (2000). Mixed-Effects Models in S and S-plus. New
York: Springer.

16. Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. New
York: John Wiley & Sons, Inc.

17. Sall, J., Creighton, L. and Lehman, A. (2005). JMP Start Statistics, third
edition. Cary, NC: SAS Institite, and Pacific Grove, CA: Duxbury. Referred

to as jmp-start.

18. SPSS (2003). SPSS Base 12.0 User’s Guide. Chicago, IL: SPSS, Inc.

19. Thisted, R. (1988). Elements of Statistical Computing. New York: Chapman &
Hall.

20. Venables, W. and Ripley, B. (2000). S Programming. New York: Springer.

21. Venables, W. and Ripley, B. (2002). Modern Applied Statistics with S, 4th
edition. New York: Springer. referred to as vr.

22. Venables, W. and Smith, D. (2002). An Introduction to R. Network Theory,
Ltd.

23. Verzani, John (2005). Using R for Introductory Statistics. Boca Raton: Chap-
man & Hall.

24. Weisberg, S. (2005). Applied Linear Regression, third edition. New York: Wiley.
referred to as alr.

25. Weisberg, S. (2005). Lost opportunities: Why we need a variety of statistical
languages. Journal of Statistical Software, 13(1), www.jstatsoft.org.

Index

Added-variable plots, 31
Alr3 package

bctrans, 66–68
boot.case, 91
confint, 24
conf.interval, 24
delta.method, 51
delta.method.compute, 51
inf.index, 77
inv.res.plot, 63
inv.tran.estimate, 62–63
inv.tran.plot, 62–63
lrt.bctrans, 67
mmp, 73–74
mmps, 73–74
plot, 67
powtran, 61–62
pure.error.anova, 43
random.lin.comb, 74
resid.curv.test, 71
residual.plots, 71
resplot, 71
sigma.hat, 23
vcov, 23, 50

Arc, 4
Case sensitive, 9
Chi-squared tables, 11
CRAN, 2
Data files, 5–6

Documentation, 5

Missing values in, 5
wm5.txt, 7

Data frame, 6
Excel, 4
Factor, 51
File

Change dir, 9
Save as

filetype, 10
Save to file, 10

Formula, 82, 87, 94
F tables, 11
Graphical user interface (GUI), 3
Help

Online Manuals, 2
Identifying points, 70
Interaction, 48
Loess, 16, 65
Macros, 3
Missing values, 5, 34
Normal tables, 11
One-sided formula, 65, 73
Ordinary least squares, 19
Orthogonal polyonmials, 42
Polynomial regression, 42, 47
Prediction, 24
QR factorization, 48
Random coefficient model, 56
R commands

%, 29

107

108 INDEX

abline, 15, 43
abs, 76
add1, 81, 86
anova, 22, 30, 44, 55, 89–90, 96
apply, 20, 28, 92
as.factor, 18
as.matrix, 29
attach, 13, 17, 21
avp, 27, 31
backsolve, 102
boot.case, 36–37, 92
boxcox, 60, 68
coef, 23, 37
complete.cases, 35
confidence.ellipse, 45
contour, 96
cooks.distance, 70, 77
cor, 22, 28
cov, 20, 28
D, 49
data, 13, 17
data.frame, 9, 63, 79
drop1, 81, 86
extractAIC, 80
factor, 52
fitted, 56
for, 40, 61
formula, 21
glm, 93–94
hatvalues, 70
I, 42, 47
identify, 71
influence, 76
inv.tran.plot, 61
is.na, 35
jitter, 47
jpeg, 10
leaps, 81
legend, 15, 61
library, 13
lines, 15, 43, 59, 61, 100
lm, 14–16, 21–22, 27, 29, 36, 41, 55, 61,

67, 69, 87–89, 96, 102
locator, 61
loess, 73, 95, 99–101
log, 17
logb, 17
lowess, 16, 100–101
ls, 88
match, 76
mean, 15
mpoly, 48
ncv.test, 72–73
nls, 87–89, 92
options, 52
pairs, 16–17, 64–65, 68, 97

par, 14, 49
pchisq, 43
pdf, 10
plot, 13, 16, 26, 49, 56, 59, 67, 71, 88, 95
pod, 55–56
points, 16
poly, 47–48
postscript, 10
predict, 24–26, 31, 42–43, 56, 61, 70, 88
print, 22
pt, 76
qF, 24
qnorm, 24
qqnorm, 77
qr, 70, 102
qr.coef, 102
qr.fitted, 102
qr.Q, 70
qr.resid, 102
qt, 24
read.cvs, 10
read.table, 8–9
regsubsets, 81
residuals, 26, 42, 56, 70, 101
rmvnorm, 79
rnorm, 40
round, 67
rstandard, 70, 75
rstudent, 70, 75–76
scatterplot.matrix, 66, 68, 91, 97
sd, 18, 28, 37
set.seed, 91
sm.density, 95–96
solve, 29
splom, 16
spm, 66
step, 81–83
summary, 22, 67, 88
t, 29
tapply, 15, 18
text, 49, 71
unlist, 62
update, 30, 43, 56, 72, 77
url, 9
var, 28
vcov, 23, 50
vif, 80
weighted.residuals, 42

Residuals, 26
R

factors in nls models, 89
formula, 21, 29, 47
one-sided formula, 17

R packages
alr3, 6, 12–13, 27, 36, 43, 54, 92

INDEX 109

car, 13, 27, 31, 45, 66, 70, 72, 75–77, 80,
91, 97

foreign, 9
leaps, 81
MASS, 13, 60, 64, 68
mvtnorm, 79
nlme, 13, 56
norm, 36
sm, 13, 95
xtable, 53

Scripts
to reproduce the book, 7

S-Plus commands
%, 29
abline, 15, 43
abs, 76
add1, 86
anova, 22, 30, 44, 55, 89–90, 96
apply, 20, 28, 92
as.factor, 18
as.matrix, 29
attach, 13, 17, 21
avp, 27, 31
backsolve, 102
boot.case, 37, 92
bootstrap, 37, 92
boxcox, 60, 68
coef, 23, 37
confidence.ellipse, 45
contour, 96
cooks.distance, 70, 77
cor, 22, 28
cov, 20, 28
D, 49
data.frame, 9, 63, 79
drop1, 81, 86
factor, 52
fitted, 56
for, 40, 61
formula, 21
function(x) sqrt(var(x)), 18
glm, 93–94
I, 42, 47
identify, 71
importData, 9
inv.tran.plot, 61
is.na, 35
jitter, 47
jpeg, 10
leaps, 81
legend, 15, 61
library, 13
lines, 15, 43, 59, 61, 100
lm, 14–16, 21–22, 27, 29, 36, 41, 55, 61,

67, 69, 87–89, 96, 102
lm.influence, 76

locator, 61
loess, 73, 95, 99–101
log, 7, 17
logb, 7, 17
lowess, 16, 100–101
ls, 88
match, 76
mean, 15
mpoly, 48
ncv.test, 72–73
nls, 87–89, 92
options, 52
ordered, 52
pairs, 16–17, 64–65, 68, 91, 97
par, 14, 49
pchisq, 43
pdf, 10
plot, 13, 16, 26, 49, 56, 59, 67, 71, 88, 95
pod, 55–56
points, 16
poly, 47–48
postscript, 10
predict, 24–26, 31, 42–43, 56, 61, 70, 88
print, 22
pt, 76
qF, 24
qnorm, 24
qqnorm, 77
qr, 70, 102
qr.coef, 102
qr.fitted, 102
qr.Q, 70
qr.resid, 102
qt, 24
residuals, 26, 42, 56, 70, 101
rnorm, 40
round, 67
rstandard, 70, 75
rstudent, 70, 75–76
scatterplot.matrix, 66, 68, 91, 97
sd, 28, 37
set.seed, 91
sm.density, 95–96
solve, 29
splom, 16
spm, 66
stdev, 28
step, 81–83
stepwise, 81
summary, 22, 67, 88
t, 29
tapply, 15, 18
text, 49, 71
unlist, 62
update, 30, 43, 56, 72, 77
var, 28

110 INDEX

vcov, 50
vif, 80

S-Plus
factors in nls models, 89
formula, 21, 29, 47

S-Plus libraries
alr3, 6, 12–13, 27, 36, 43, 54, 92
car, 13, 27, 31, 45, 66, 70, 72, 75–77, 80,

91, 97
MASS, 13, 60, 64, 68
missing, 13, 36
nlme, 13, 56

nlme4, 56
resample, 13, 36–37, 91–92
sm, 13, 95

S-Plus
one-sided formula, 17

Stop
Stop locator, 71

Tables, 11
Transform

Recode, 5, 12
T tables, 11
Yeo-Johnson transformation, 68

	Introduction
	0.1 Organization of this primer
	0.2 Data files
	0.2.1 Documentation
	0.2.2 R data files and a package
	0.2.3 Two files missing from the R library
	0.2.4 S-Plus data files and library
	0.2.5 Getting the data in text files
	0.2.6 An exceptional file

	0.3 Scripts
	0.4 The very basics
	0.4.1 Reading a data file
	0.4.2 Reading Excel Files
	0.4.3 Saving text output and graphs
	0.4.4 Normal, F, t and 2 tables

	0.5 Abbreviations to remember
	0.6 Packages/Libraries for R and S-Plus
	0.7 Copyright and Printing this Primer

	1 Scatterplots and Regression
	1.1 Scatterplots
	1.2 Mean functions
	1.3 Variance functions
	1.4 Summary graph
	1.5 Tools for looking at scatterplots
	1.6 Scatterplot matrices

	2 Simple Linear Regression
	2.1 Ordinary least squares estimation
	2.2 Least squares criterion
	2.3 Estimating 2
	2.4 Properties of least squares estimates
	2.5 Estimated variances
	2.6 Comparing models: The analysis of variance
	2.7 The coefficient of determination, R2
	2.8 Confidence intervals and tests
	2.9 The Residuals

	3 Multiple Regression
	3.1 Adding a term to a simple linear regression model
	3.2 The Multiple Linear Regression Model
	3.3 Terms and Predictors
	3.4 Ordinary least squares
	3.5 The analysis of variance
	3.6 Predictions and fitted values

	4 Drawing Conclusions
	4.1 Understanding parameter estimates
	4.1.1 Rate of change
	4.1.2 Sign of estimates
	4.1.3 Interpretation depends on other terms in the mean function
	4.1.4 Rank deficient and over-parameterized models

	4.2 Experimentation versus observation
	4.3 Sampling from a normal population
	4.4 More on R2
	4.5 Missing data
	4.6 Computationally intensive methods

	5 Weights, Lack of Fit, and More
	5.1 Weighted Least Squares
	5.1.1 Applications of weighted least squares
	5.1.2 Additional comments

	5.2 Testing for lack of fit, variance known
	5.3 Testing for lack of fit, variance unknown
	5.4 General F testing
	5.5 Joint confidence regions

	6 Polynomials and Factors
	6.1 Polynomial regression
	6.1.1 Polynomials with several predictors
	6.1.2 Using the delta method to estimate a minimum or a maximum
	6.1.3 Fractional polynomials

	6.2 Factors
	6.2.1 No other predictors
	6.2.2 Adding a predictor: Comparing regression lines

	6.3 Many factors
	6.4 Partial one-dimensional mean functions
	6.5 Random coefficient models

	7 Transformations
	7.1 Transformations and scatterplots
	7.1.1 Power transformations
	7.1.2 Transforming only the predictor variable
	7.1.3 Transforming the response only
	7.1.4 The Box and Cox method

	7.2 Transformations and scatterplot matrices
	7.2.1 The 1D estimation result and linearly related predictors
	7.2.2 Automatic choice of transformation of the predictors

	7.3 Transforming the response
	7.4 Transformations of non-positive variables

	8 Regression Diagnostics: Residuals
	8.1 The residuals
	8.1.1 Difference between "705Ee and e
	8.1.2 The hat matrix
	8.1.3 Residuals and the hat matrix with weights
	8.1.4 The residuals when the model is correct
	8.1.5 The residuals when the model is not correct
	8.1.6 Fuel consumption data

	8.2 Testing for curvature
	8.3 Nonconstant variance
	8.3.1 Variance Stabilizing Transformations
	8.3.2 A diagnostic for nonconstant variance
	8.3.3 Additional comments

	8.4 Graphs for model assessment
	8.4.1 Checking mean functions
	8.4.2 Checking variance functions

	9 Outliers and Influence
	9.1 Outliers
	9.1.1 An outlier test
	9.1.2 Weighted least squares
	9.1.3 Significance levels for the outlier test
	9.1.4 Additional comments

	9.2 Influence of cases
	9.2.1 Cook's distance
	9.2.2 Magnitude of Di
	9.2.3 Computing Di
	9.2.4 Other measures of influence

	9.3 Normality assumption

	10 Variable Selection
	10.1 The Active Terms
	10.1.1 Collinearity
	10.1.2 Collinearity and variances

	10.2 Variable selection
	10.2.1 Information criteria
	10.2.2 Computationally intensive criteria
	10.2.3 Using subject-matter knowledge

	10.3 Computational methods
	10.3.1 Subset selection overstates significance

	10.4 Windmills
	10.4.1 Six mean functions
	10.4.2 A computationally intensive approach

	11 Nonlinear Regression
	11.1 Estimation for nonlinear mean functions
	11.2 Inference assuming large samples
	11.3 Bootstrap inference
	11.4 References

	12 Logistic Regression
	12.1 Binomial Regression
	12.1.1 Mean Functions for Binomial Regression

	12.2 Fitting Logistic Regression
	12.2.1 One-predictor example
	12.2.2 Many Terms
	12.2.3 Deviance
	12.2.4 Goodness of Fit Tests

	12.3 Binomial Random Variables
	12.3.1 Maximum likelihood estimation
	12.3.2 The Log-likelihood for Logistic Regression

	12.4 Generalized linear models

	Appendix A
	A.1 Web site
	A.2 Means and variances of random variables
	A.2.1 E notation
	A.2.2 Var notation
	A.2.3 Cov notation
	A.2.4 Conditional moments

	A.3 Least squares for simple regression
	A.4 Means and variances of least squares estimates
	A.5 Estimating E(Y|X) using a smoother
	A.6 A brief introduction to matrices and vectors
	A.6.1 Addition and subtraction
	A.6.2 Multiplication by a scalar
	A.6.3 Matrix multiplication
	A.6.4 Transpose of a matrix
	A.6.5 Inverse of a matrix
	A.6.6 Orthogonality
	A.6.7 Linear dependence and rank of a matrix

	A.7 Random vectors
	A.8 Least squares using matrices
	A.8.1 Properties of estimates
	A.8.2 The residual sum of squares
	A.8.3 Estimate of variance

	A.9 The QR factorization
	A.10 Maximum likelihood estimates
	A.11 The Box-Cox method for transformations
	A.11.1 Univariate case
	A.11.2 Multivariate case

	A.12 Case deletion in linear regression

	References
	Index

