
Computing Primer
for

Applied Linear
Regression, Third Edition

Using SAS

Keija Shan & Sanford Weisberg
University of Minnesota

School of Statistics
August 3, 2009

c©2005, Sanford Weisberg

Home Website: www.stat.umn.edu/alr

Contents

Introduction 1
0.1 Organization of this primer 5
0.2 Data files 6

0.2.1 Documentation 6
0.2.2 SAS data library 6
0.2.3 Getting the data in text files 7
0.2.4 An exceptional file 7

0.3 Scripts 7
0.4 The very basics 8

0.4.1 Reading a data file 8
0.4.2 Saving text output and graphs 9
0.4.3 Normal, F , t and χ2 tables 9

0.5 Abbreviations to remember 11
0.6 Copyright and Printing this Primer 11

1 Scatterplots and Regression 13
1.1 Scatterplots 13
1.2 Mean functions 18
1.3 Variance functions 19
1.4 Summary graph 19

v

vi CONTENTS

1.5 Tools for looking at scatterplots 19
1.6 Scatterplot matrices 19

2 Simple Linear Regression 23
2.1 Ordinary least squares estimation 23
2.2 Least squares criterion 23
2.3 Estimating σ2 25
2.4 Properties of least squares estimates 25
2.5 Estimated variances 25
2.6 Comparing models: The analysis of variance 25
2.7 The coefficient of determination, R2 27
2.8 Confidence intervals and tests 27
2.9 The Residuals 30

3 Multiple Regression 33
3.1 Adding a term to a simple linear regression model 33
3.2 The Multiple Linear Regression Model 34
3.3 Terms and Predictors 34
3.4 Ordinary least squares 35
3.5 The analysis of variance 36
3.6 Predictions and fitted values 37

4 Drawing Conclusions 39
4.1 Understanding parameter estimates 39

4.1.1 Rate of change 39
4.1.2 Sign of estimates 39
4.1.3 Interpretation depends on other terms in the mean function 39
4.1.4 Rank deficient and over-parameterized models 39

4.2 Experimentation versus observation 41
4.3 Sampling from a normal population 41
4.4 More on R2 41
4.5 Missing data 41
4.6 Computationally intensive methods 42

5 Weights, Lack of Fit, and More 45
5.1 Weighted Least Squares 45

5.1.1 Applications of weighted least squares 46
5.1.2 Additional comments 47

CONTENTS vii

5.2 Testing for lack of fit, variance known 47
5.3 Testing for lack of fit, variance unknown 48
5.4 General F testing 49
5.5 Joint confidence regions 50

6 Polynomials and Factors 53
6.1 Polynomial regression 53

6.1.1 Polynomials with several predictors 54
6.1.2 Using the delta method to estimate a minimum or a maximum 55
6.1.3 Fractional polynomials 57

6.2 Factors 57
6.2.1 No other predictors 58
6.2.2 Adding a predictor: Comparing regression lines 60

6.3 Many factors 61
6.4 Partial one-dimensional mean functions 61
6.5 Random coefficient models 63

7 Transformations 67
7.1 Transformations and scatterplots 67

7.1.1 Power transformations 67
7.1.2 Transforming only the predictor variable 67
7.1.3 Transforming the response only 69
7.1.4 The Box and Cox method 69

7.2 Transformations and scatterplot matrices 71
7.2.1 The 1D estimation result and linearly related predictors 72
7.2.2 Automatic choice of transformation of the predictors 72

7.3 Transforming the response 72
7.4 Transformations of non-positive variables 72

8 Regression Diagnostics: Residuals 73
8.1 The residuals 73

8.1.1 Difference between ê and e 74
8.1.2 The hat matrix 74
8.1.3 Residuals and the hat matrix with weights 75
8.1.4 The residuals when the model is correct 75
8.1.5 The residuals when the model is not correct 75
8.1.6 Fuel consumption data 75

8.2 Testing for curvature 76

viii CONTENTS

8.3 Nonconstant variance 77
8.3.1 Variance Stabilizing Transformations 77
8.3.2 A diagnostic for nonconstant variance 77
8.3.3 Additional comments 78

8.4 Graphs for model assessment 78
8.4.1 Checking mean functions 78
8.4.2 Checking variance functions 81

9 Outliers and Influence 85
9.1 Outliers 85

9.1.1 An outlier test 85
9.1.2 Weighted least squares 85
9.1.3 Significance levels for the outlier test 85
9.1.4 Additional comments 86

9.2 Influence of cases 86
9.2.1 Cook’s distance 87
9.2.2 Magnitude of Di 88
9.2.3 Computing Di 88
9.2.4 Other measures of influence 88

9.3 Normality assumption 88

10 Variable Selection 91
10.1 The Active Terms 91

10.1.1 Collinearity 93
10.1.2 Collinearity and variances 94

10.2 Variable selection 94
10.2.1 Information criteria 94
10.2.2 Computationally intensive criteria 95
10.2.3 Using subject-matter knowledge 95

10.3 Computational methods 95
10.3.1 Subset selection overstates significance 97

10.4 Windmills 97
10.4.1 Six mean functions 97
10.4.2 A computationally intensive approach 97

11 Nonlinear Regression 99
11.1 Estimation for nonlinear mean functions 99
11.2 Inference assuming large samples 99

CONTENTS ix

11.3 Bootstrap inference 105
11.4 References 106

12 Logistic Regression 107
12.1 Binomial Regression 107

12.1.1 Mean Functions for Binomial Regression 107
12.2 Fitting Logistic Regression 107

12.2.1 One-predictor example 108
12.2.2 Many Terms 109
12.2.3 Deviance 111
12.2.4 Goodness of Fit Tests 112

12.3 Binomial Random Variables 113
12.3.1 Maximum likelihood estimation 113
12.3.2 The Log-likelihood for Logistic Regression 113

12.4 Generalized linear models 113

References 115

Index 117

0
Introduction

This computer primer supplements the book Applied Linear Regression (alr),
third edition, by Sanford Weisberg, published by John Wiley & Sons in 2005.
It shows you how to do the analyses discussed in alr using one of several
general-purpose programs that are widely available throughout the world. All
the programs have capabilities well beyond the uses described here. Different
programs are likely to suit different users. We expect to update the primer
periodically, so check www.stat.umn.edu/alr to see if you have the most recent
version. The versions are indicated by the date shown on the cover page of
the primer.

Our purpose is largely limited to using the packages with alr, and we will
not attempt to provide a complete introduction to the packages. If you are
new to the package you are using you will probably need additional reference
material.

There are a number of methods discussed in alr that are not (as yet)
a standard part of statistical analysis, and some methods are not possible
without writing your own programs to supplement the package you choose.
The exceptions to this rule are R and S-Plus. For these two packages we have
written functions you can easily download and use for nearly everything in the
book.

Here are the programs for which primers are available.

R is a command line statistical package, which means that the user types
a statement requesting a computation or a graph, and it is executed
immediately. You will be able to use a package of functions for R that

1

2 INTRODUCTION

will let you use all the methods discussed in alr; we used R when writing
the book.

R also has a programming language that allows automating repetitive
tasks. R is a favorite program among academic statisticians because
it is free, works on Windows, Linux/Unix and Macintosh, and can be
used in a great variety of problems. There is also a large literature
developing on using R for statistical problems. The main website for
R is www.r-project.org. From this website you can get to the page for
downloading R by clicking on the link for CRAN, or, in the US, going to
cran.us.r-project.org.

Documentation is available for R on-line, from the website, and in several
books. We can strongly recommend two books. The book by Fox (2002)
provides a fairly gentle introduction to R with emphasis on regression.
We will from time to time make use of some of the functions discussed in
Fox’s book that are not in the base R program. A more comprehensive
introduction to R is Venables and Ripley (2002), and we will use the
notation vr[3.1], for example, to refer to Section 3.1 of that book.
Venables and Ripley has more computerese than does Fox’s book, but
its coverage is greater and you will be able to use this book for more than
linear regression. Other books on R include Verzani (2005), Maindonald
and Braun (2002), Venables and Smith (2002), and Dalgaard (2002). We
used R Version 2.0.0 on Windows and Linux to write the package. A
new version of R is released twice a year, so the version you use will
probably be newer. If you have a fast internet connection, downloading
and upgrading R is easy, and you should do it regularly.

S-Plus is very similar to R, and most commands that work in R also work in
S-Plus. Both are variants of a statistical language called “S” that was
written at Bell Laboratories before the breakup of AT&T. Unlike R, S-
Plus is a commercial product, which means that it is not free, although
there is a free student version available at elms03.e-academy.com/splus.
The website of the publisher is www.insightful.com/products/splus. A
library of functions very similar to those for R is also available that will
make S-Plus useful for all the methods discussed in alr.

S-Plus has a well-developed graphical user interface or GUI. Many new
users of S-Plus are likely to learn to use this program through the GUI,
not through the command-line interface. In this primer, however, we
make no use of the GUI.

If you are using S-Plus on a Windows machine, you probably have the
manuals that came with the program. If you are using Linux/Unix, you
may not have the manuals. In either case the manuals are available
online; for Windows see the Help→Online Manuals, and for Linux/Unix
use

> cd ‘Splus SHOME‘/doc

3

Fig. 0.1 SAS windows.

> ls

and see the pdf documents there. Chambers and Hastie (1993) provides
the basics of fitting models with S languages like S-Plus and R. For a
more general reference, we again recommend Fox (2002) and Venables
and Ripley (2002), as we did for R. We used S-Plus Version 6.0 Release
1 for Linux, and S-Plus 6.2 for Windows. Newer versions of both are
available.

SAS is the largest and most widely distributed statistical package in both
industry and education. SAS also has a GUI. When you start SAS,
you get the collection of Windows shown in Figure 0.1. While it is
possible to do some data analysis using the SAS GUI, the strength of this
program is in the ability to write SAS programs, in the editor window,
and then submit them for execution, with output returned in an output
window. We will therefore view SAS as a batch system, and concentrate
mostly on writing SAS commands to be executed. The website for SAS
is www.sas.com.

4 INTRODUCTION

SAS is very widely documented, including hundreds of books available
through amazon.com or from the SAS Institute, and extensive on-line
documentation. Muller and Fetterman (2003) is dedicated particularly
to regression. We used Version 9.1 for Windows. We find the on-line
documentation that accompanies the program to be invaluable, although
learning to read and understand SAS documentation isn’t easy.

Although SAS is a programming language, adding new functionality can
be very awkward and require long, confusing programs. These programs
could, however, be turned into SAS macros that could be reused over and
over, so in principle SAS could be made as useful as R or S-Plus. We have
not done this, but would be delighted if readers would take on the chal-
lenge of writing macros for methods that are awkward with SAS. Anyone
who takes this challenge can send us the results (sandy@stat.umn.edu)
for inclusion in later revisions of the primer.

We have, however, prepared script files that give the programs that will
produce all the output discussed in this primer; you can get the scripts
from www.stat.umn.edu/alr.

JMP is another product of SAS Institute, and was designed around a clever
and useful GUI. A student version of JMP is available. The website is
www.jmp.com. We used JMP Version 5.1 on Windows.

Documentation for the student version of JMP, called JMP-In, comes
with the book written by Sall, Creighton and Lehman (2005), and we will
write jmp-start[3] for Chapter 3 of that book, or jmp-start[P360] for
page 360. The full version of JMP includes very extensive manuals; the
manuals are available on CD only with JMP-In. Fruend, Littell and
Creighton (2003) discusses JMP specifically for regression.

JMP has a scripting language that could be used to add functionality
to the program. We have little experience using it, and would be happy
to hear from readers on their experience using the scripting language to
extend JMP to use some of the methods discussed in alr that are not
possible in JMP without scripting.

SPSS evolved from a batch program to have a very extensive graphical user
interface. In the primer we use only the GUI for SPSS, which limits
the methods that are available. Like SAS, SPSS has many sophisticated
tools for data base management. A student version is available. The
website for SPSS is www.spss.com. SPSS offers hundreds of pages of
documentation, including SPSS (2003), with Chapter 26 dedicated to
regression models. In mid-2004, amazon.com listed more than two thou-
sand books for which “SPSS” was a keyword. We used SPSS Version
12.0 for Windows. A newer version is available.

This is hardly an exhaustive list of programs that could be used for re-
gression analysis. If your favorite package is missing, please take this as a

ORGANIZATION OF THIS PRIMER 5

challenge: try to figure out how to do what is suggested in the text, and write
your own primer! Send us a PDF file (sandy@stat.umn.edu) and we will add
it to our website, or link to yours.

One program missing from the list of programs for regression analysis is
Microsoft’s spreadsheet program Excel. While a few of the methods described
in the book can be computed or graphed in Excel, most would require great
endurance and patience on the part of the user. There are many add-on
statistics programs for Excel, and one of these may be useful for comprehensive
regression analysis; we don’t know. If something works for you, please let us
know!

A final package for regression that we should mention is called Arc. Like
R, Arc is free software. It is available from www.stat.umn.edu/arc. Like JMP
and SPSS it is based around a graphical user interface, so most computations
are done via point-and-click. Arc also includes access to a complete computer
language, although the language, lisp, is considerably harder to learn than the
S or SAS languages. Arc includes all the methods described in the book. The
use of Arc is described in Cook and Weisberg (1999), so we will not discuss it
further here; see also Weisberg (2005).

0.1 ORGANIZATION OF THIS PRIMER

The primer often refers to specific problems or sections in alr using notation
like alr[3.2] or alr[A.5], for a reference to Section 3.2 or Appendix A.5,
alr[P3.1] for Problem 3.1, alr[F1.1] for Figure 1.1, alr[E2.6] for an equa-
tion and alr[T2.1] for a table. Reference to, for example, “Figure 7.1,” would
refer to a figure in this primer, not to alr. Chapters, sections, and homework
problems are numbered in this primer as they are in alr. Consequently, the
section headings in primer refers to the material in alr, and not necessarily
the material in the primer. Many of the sections in this primer don’t have any
material because that section doesn’t introduce any new issues with regard to
computing. The index should help you navigate through the primer.

There are four versions of this primer, one for R and S-Plus, and one for
each of the other packages. All versions are available for free as PDF files at
www.stat.umn.edu/alr.

Anything you need to type into the program will always be in this font.
Output from a program depends on the program, but should be clear from
context. We will write File to suggest selecting the menu called “File,” and
Transform→Recode to suggest selecting an item called “Recode” from a menu
called “Transform.” You will sometimes need to push a button in a dialog,
and we will write “push ok” to mean “click on the button marked ‘OK’.” For
non-English versions of some of the programs, the menus may have different
names, and we apologize in advance for any confusion this causes.

6 INTRODUCTION

Table 0.1 The data file htwt.txt.

Ht Wt

169.6 71.2

166.8 58.2

157.1 56

181.1 64.5

158.4 53

165.6 52.4

166.7 56.8

156.5 49.2

168.1 55.6

165.3 77.8

0.2 DATA FILES

0.2.1 Documentation

Documentation for nearly all of the data files is contained in alr; look
in the index for the first reference to a data file. Separate documenta-
tion can be found in the file alr3data.pdf in PDF format at the web site
www.stat.umn.edu/alr.

The data are available in a package for R, in a library for S-Plus and for SAS,
and as a directory of files in special format for JMP and SPSS. In addition,
the files are available as plain text files that can be used with these, or any
other, program. Table 0.1 shows a copy of one of the smallest data files called
htwt.txt, and described in alr[P3.1]. This file has two variables, named Ht
and Wt, and ten cases, or rows in the data file. The largest file is wm5.txt with
62,040 cases and 14 variables. This latter file is so large that it is handled
differently from the others; see Section 0.2.4.

A few of the data files have missing values, and these are generally indicated
in the file by a place-holder in the place of the missing value. For example, for
R and S-Plus, the placeholder is NA, while for SAS it is a period “.” Different
programs handle missing values a little differently; we will discuss this further
when we get to the first data set with a missing value in Section 4.5.

0.2.2 SAS data library

The data for use with SAS are provided in a special SAS format, or as plain
data files. Instructions for getting and installing the SAS library are given on
the SAS page at www.stat.umn.edu/alr.

If you follow the directions on the web site, you will create a data library
called alr3 that will always be present when you start SAS. Most procedures
in SAS have a required data keyword that tells the program where to find the
data to be used. For example, the simple SAS program

proc means data = alr3.heights;

SCRIPTS 7

run;

tells SAS to run the means procedure using the data set heights in the library
alr3. To run this program, you type it into the editor window, and then select
and submit it; see Section 0.4.1.

0.2.3 Getting the data in text files

You can download the data as a directory of plain text files, or as individual
files; see www.stat.umn.edu/alr/data. Missing values on these files are indi-
cated with a ?. If your program does not use this missing value character, you
may need to substitute a different character using an editor.

0.2.4 An exceptional file

The file wm5.txt is not included in any of the compressed files, or in
the libraries. This one file is nearly five megabytes long, requiring as much
space as all the other files combined. If you need this file, for alr[P10.12],
you can download it separately from www.stat.umn.edu/alr/data.

0.3 SCRIPTS

For R, S-Plus, and SAS, we have prepared script files that can be used while
reading this primer. For R and S-Plus, the scripts will reproduce nearly every
computation shown in alr; indeed, these scripts were used to do the calcu-
lations in the first place. For SAS, the scripts correspond to the discussion
given in this primer, but will not reproduce everything in alr. The scripts
can be downloaded from www.stat.umn.edu/alr for R, S-Plus or SAS.

Although both JMP and SPSS have scripting or programming languages, we
have not prepared scripts for these programs. Some of the methods discussed
in alr are not possible in these programs without the use of scripts, and so
we encourage readers to write scripts in these languages that implement these
ideas. Topics that require scripts include bootstrapping and computer inten-
sive methods, alr[4.6]; partial one-dimensional models, alr[6.4], inverse re-
sponse plots, alr[7.1, 7.3], multivariate Box-Cox transformations, alr[7.2],
Yeo-Johnson transformations, alr[7.4], and heteroscedasticity tests, alr[8.3.2].
There are several other places where usability could be improved with a script.

If you write scripts you would like to share with others, let me know
(sandy@stat.umn.edu) and I’ll make a link to them or add them to the web-
site.

8 INTRODUCTION

0.4 THE VERY BASICS

Before you can begin doing any useful computing, you need to be able to read
data into the program, and after you are done you need to be able to save
and print output and graphs. All the programs are a little different in how
they handle input and output, and we give some of the details here.

0.4.1 Reading a data file

Reading data into a program is surprisingly difficult. We have tried to ease
this burden for you, at least when using the data files supplied with alr, by
providing the data in a special format for each of the programs. There will
come a time when you want to analyze real data, and then you will need to
be able to get your data into the program. Here are some hints on how to do
it.

SAS If you have created the SAS library called alr3 as suggested in Sec-
tion 0.2.2, then all the data files are ready for your use in SAS procedures.
For example, the data in htwt.txt is available by referring to the dataset
alr3.htwt. If you did not create the library, you can read the data from the
plain text files provided into SAS using the menu item File→ Import data file.

If you select this menu item, the SAS import wizard will guide you through
the process of importing the data. In the first window, select the type of file
you want to import. If you want to import one of the files supplied with alr
such as htwt.txt, select “Delimited file (*.*)” from the popup menu. Push
Next, and on the next screen browse to find the file on your disk. Use the
Options button on this screen to check the settings for this file. For all the
data files that are provided, the delimiter is a space, the first row of data is
row 2, and “Get variable names from the first row” should be checked. Push
Next. On the third screen, you need to assign a name and a library for this
data set. For example, if you keep the default library work and name the data
set as htwt, then in SAS programs you will refer to this data set as work.htwt.
The work library is special because files imported into it are temporary, and
will disappear when you close SAS. If you import the file to any other library
such as sasuser, then the file is permanent, and will be available when you
restart SAS.

After selecting a library and name, push Finish. If you push Next, you
will be given the opportunity to save the SAS program generated by the wizard
as a file. The code that is saved looks like this:

PROC IMPORT OUT= WORK.htwt

DATAFILE= "z:\working\alr3-data\htwt.txt"

DBMS=DLM REPLACE;

DELIMITER=’20’x;

GETNAMES=YES;

DATAROW=2;

THE VERY BASICS 9

RUN;

Using the wizard is equivalent to writing this SAS program and then executing
it. Like most SAS programs: (1) all statements end with a semicolon “;”, (2)
the program consists of blocks that begin with a proc to start a procedure and
ending with a run; to execute it, and (3) several statements are included into
the procedure call, each ending with a semicolon. There are a few exceptions
to these rules that we will encounter later.

SAS is not case-sensitive, meaning that you can type programs in capitals,
as shown above, using lower-case letters, or any combination of them you
like.

0.4.2 Saving text output and graphs

All the programs have many ways of saving text output and graphs. We will
make no attempt to be comprehensive here.

SAS Some SAS procedures produce a lot of output. SAS output is by default
centered on the page, and assumes that you have paper with 132 columns.
You can, however, change these defaults to other values. For example, the
following line at the beginning of a SAS program

options nocenter linesize=75 pagesize=66;

will produce left-justified output, assuming 75 columns on a page, and a page
length of 66 lines.

To save numerical output, click in the output window, and select File→ Save
As. Alternatively, select the output you want and copy and paste all the
output to a word processing document or editor. If you use a word processor
like Microsoft Word, be sure to use a monospaced font like Courier New so the
columns line up properly. To save a graph, click it and then select File→Export
as Image. In the dialog to save the graph, we recommend that you save files
using “gif” format; otherwise the graphics files will be very large. You can
then print the graph, or import it into a word processing document. We do
not recommend copying the graph to the clipboard and pasting it into a word
processing document.

0.4.3 Normal, F , t and χ2 tables

alr does not include tables for looking up critical values and significance
levels for standard distributions like the t, F and χ2. Although these values
can be computed with any of the programs we discuss in the primers, doing
so is easy only with R and S-Plus. Also, the computation is fairly easy with
Microsoft Excel. Table 0.2 shows the functions you need using Excel.

SAS SAS allows computing the computing critical values and significance
levels for a very long list of distributions. Two functions are used, called CDF

10 INTRODUCTION

Table 0.2 Functions for computing p-values and critical values using Microsoft Excel.
The definitions for these functions are not consistent, sometimes corresponding to
two-tailed tests, sometimes giving upper tails, and sometimes lower tails. Read the
definitions carefully. The algorithms used to compute probability functions in Excel
are of dubious quality, but for the purpose of determining p-values or critical values,
they should be adequate; see Knüsel (2005) for more discussion.

Function What it does

normsinv(p) Returns a value q such that the area to the left of q for
a standard normal random variable is p.

normsdist(q) The area to the left of q. For example, normsdist(1.96)
equals 0.975 to three decimals.

tinv(p,df) Returns a value q such that the area to the left of −|q|
and the area to the right of +|q| for a t(df) distribution
equals q. This gives the critical value for a two-tailed
test.

tdist(q,df,tails) Returns p, the area to the left of q for a t(df) distri-
bution if tails = 1, and returns the sum of the areas
to the left of −|q| and to the right of +|q| if tails = 2,
corresponding to a two-tailed test.

finv(p,df1,df2) Returns a value q such that the area to the right of
q on a F (df1, df2) distribution is p. For example,
finv(.05,3,20) returns the 95% point of the F (3, 20)
distribution.

fdist(q,df1,df2) Returns p, the area to the right of q on a F (df1, df2)
distribution.

chiinv(p,df) Returns a value q such that the area to the right of q
on a χ2(df) distribution is p.

chidist(q,df) Returns p, the area to the right of q on a χ2(df) distri-
bution.

and quantile. These functions are used inside the data step in SAS, and so
you need to write a short SAS program to get tabled values. For example,
the following program returns the p-value from a χ2(25) test with value of the
test statistic equal to 32.5, and also the critical value at the 95% level for this
test.

data qt;

pval = 1-CDF(’chisquare’,32.5,25);

critval = quantile(’chisquare’,.95,25);

output;

proc print data=qt; run;

which returns the output

Obs pval critval

ABBREVIATIONS TO REMEMBER 11

1 0.14405 37.6525

giving the p-value of .14, and the critical value 37.6, for the test.
To get F or t significance levels, use functions similar to the following:

1-CDF(’F’,value,df1,df2) F p-values
quantile(’F’,level,df1,df2) F critical values
1-CDF(’t’,value,df) t p-values
quantile(’t’,level,df) t critical values

For more information, go to Index tab in SAS on-line help, and type either
quantile or cdf.

0.5 ABBREVIATIONS TO REMEMBER

alr refers to the textbook, Weisberg (2005). vr refers to Venables and Ripley
(2002), our primary reference for R and S-Plus. jmp-start refers to Sall,
Creighton and Lehman (2005), the primary reference for JMP. Information
typed by the user looks like this. References to menu items looks like File
or Transform→Recode. The name of a button to push in a dialog uses this
font.

0.6 COPYRIGHT AND PRINTING THIS PRIMER

Copyright c© 2005, by Sanford Weisberg. Permission is granted to download
and print this primer. Bookstores, educational institutions, and instructors
are granted permission to download and print this document for student use.
Printed versions of this primer may be sold to students for cost plus a rea-
sonable profit. The website reference for this primer is www.stat.umn.edu/alr.
Newer versions may be available from time to time.

1
Scatterplots and

Regression

1.1 SCATTERPLOTS

A principal tool in regression analysis is the two-dimensional scatterplot. All
statistical packages can draw these plots. We concentrate mostly on the basics
of drawing the plot. Most programs have options for modifying the appearance
of the plot. For these, you should consult documentation for the program you
are using.

SAS Most of the graphics available in SAS are static, meaning that the user
writes a SAS program that will draw the graph, but cannot then interact
with the graph, for example to identify points. The exception is for graphs
created using the Interactive Data Analysis tool obtained by choosing So-
lutions→Analysis→ Interactive Data Analysis. We concentrate here on static
graphics because they are generally drawn using SAS programs. However,
since the standard graphing method is first to save the data to be plotted
in a data set, and then use proc gplot, one could equally well use another
procedure like interactive data analysis for the graphs.

A basic procedure for scatterplots is proc gplot. The following SAS code
will give a graph similar to alr[F1.1] using the heights data:

proc gplot data=alr3.heights;

plot Dheight*Mheight;

run; quit;

As with most SAS examples in this primer, we assume that you have the
data from alr available as a SAS library called alr3; see Section 0.2.2. The

13

14 SCATTERPLOTS AND REGRESSION

Fig. 1.1 SAS version of alr[F1.1] with the heights data.

phrase data=alr3.heights specifies that the data will come from the data set
called heights in the alr3 library. The phrase plot Dheight*Mheight draws
the plot with Mheight on the horizontal axis and Dheight on the vertical. run;

tells SAS to execute the procedure, and quit; tells SAS to close the graph,
meaning that it will not be enhanced by adding more points or lines. Simple
graphs like this one require only a very short SAS program. The output from
the above program is shown in Figure 1.1. We saved this file as a PostScript
file because that is required by our typesetting program. SAS postscript files
seem to be of low quality.

You can also use the menus to draw simple graphs like this one. Select
Solutions→Analyze→ Interactive data analysis, and from in the resulting win-
dow, select the library alr3 and the data set heights in that library. The data
will appear in a spreadsheet. Select Analyze→ Scatter plot to draw this plot.
An advantage to this method of drawing the plot is that the spreadsheet and
the plot will be linked, meaning that selecting points on the plot will highlight
the corresponding values in the spreadsheet. This can be useful for identifying
unusual points.

Returning to proc gplot, you can add commands that will modify the
appearance of the plot. These options must be added before the call to proc

gplot. Continuing with alr[F1.1],

goptions reset=all;

title ’ ’;

symbol v=dot c=black h=.1;

axis1 label=(’Mheight’);

axis2 label=(a=90 ’Dheight’);

proc gplot data=alr3.heights;

plot Dheight*Mheight /haxis=axis1 haxis=55 to 75 hminor=0

SCATTERPLOTS 15

Fig. 1.2 alr[F1.2] with the heights data.

vaxis=axis2 vaxis=55 to 75 vminor=0;

run; quit;

We use the goptions command to reset all options to their default values so
left-over options from a previous graph won’t appear in the current one. The
next four commands set the title, the plotting symbol, and the labels for the
two axes. The vertical axis label has been rotated ninety degrees. In in gplot

command, we have specified the haxis and vaxis keywords are set to axis1

and axis2 to get the variable labels. The remainder of the command concerns
tick marks and to ensure that both axes extended from 55 to 75.

Similar SAS code to produce a version of alr[F1.2] illustrates using the
where statement:

goptions reset=all;

proc gplot data=alr3.heights;

plot Dheight*Mheight /haxis=axis1 haxis=55 to 75 hminor=0

vaxis=axis2 vaxis=55 to 75 vminor=0;

where (Mheight ge 57.5) & (Mheight le 58.5) |

(Mheight ge 62.5) & (Mheight le 63.5) |

(Mheight ge 67.5) & (Mheight le 68.5);

run; quit;

Inside proc gplot, specify the data set by data=dataset-name. The first ar-
gument Dheight will be the vertical axis variable, and the second argument
Mheight will be on the horizontal axis. As with many SAS commands, options
for a command like plot are added after a /. We let the horizontal axis be
axis1, and the vertical axis be axis2. The where statement uses syntax similar
to the C language. The logical operators & for and and | for or are used to
specify ranges for plotting.

16 SCATTERPLOTS AND REGRESSION

a. (a) ols prediction. b. (b) ols residual plot.

Fig. 1.3 SAS version of alr[F1.3]. (sassupp104)

A few reminders:

1. All statements end with ;.

2. Always use goptions reset=all; to remove all existing graphical setup
before plotting.

3. Statements for changing graphical options like symbol have to be speci-
fied before proc gplot is called.

4. Nearly all SAS commands end with run;.

alr[F1.3-1.4] includes both points and fitted lines. For alr[F1.3a], we
need to get the ols fitted line. For alr[F1.3b], we need to compute residuals.
This can be done by calling proc reg in SAS, which also allows graphing:

goptions reset=all;

symbol v=circle h=1;

proc reg data=alr3.forbes;

model Pressure=Temp;

plot Pressure*Temp;

plot residual.*Temp;

run;

We define circle as the plotting symbol in the symbol statement. For the model

statement, the syntax is model response=terms;. The plot command in proc

reg draws graphs of regression quantities, with the syntax horizontal*vertical.
With simple regression, the plot of the response versus the single predictor
adds the ols line automatically. The second plot makes use of the keyword
residual. to get the residuals. Do not forget the dot after keywords!

alr[F1.5] includes both an ols line and a line that joins the mean lengths
at each age. Although this plot seems simple, the SAS program we wrote to

SCATTERPLOTS 17

obtain it is surprisingly difficult and not particularly intuitive. Here is the
SAS, program:

proc loess data=alr3.wblake;

model Length=Age /smooth=.1;

ods output OutputStatistics=m1;

run;

proc reg data=alr3.wblake;

model Length=Age;

output out=m2 pred=ols;

run;

data m3; set alr3.wblake; set m1; set m2;

proc sort data=m3; by Age;

goptions reset=all;

symbol1 v=circle h=1 c=black l=1 i=join;

symbol2 v=circle h=1 c=black l=2 i=join;

symbol3 v=circle h=1 c=black;

axis2 label=(a=90 ’Length’);

proc gplot data=m3;

plot ols*Age=1 Pred*Age=2 Length*Age=3

/overlay hminor=0 vaxis=axis2 vminor=0;

run; quit;

The plot consists of three parts: the points, the ols fitted line, and the line
joining the means for each value of Age. We couldn’t think of obvious way
to get this last line, and so we used a trick. The loess smoother, discussed in
alr[A.5], can be used for this purpose by setting the smoothing parameter to
be a very small number, like .1. The call shown to proc loess will compute the
mean Length for each Age called m1. Confusingly, you use an ods statement,
not output, to save the output from proc lowess. Next, proc reg is used to
get the regression of Length on Age. The output is saved using the output

statement, not ods. This output includes the input data and the predicted
values in a new data set called m2.

We now have the information for joining the points in the data set m1

and the data for fitting ols in m2. The data statement combines them with
alr3.wblake in another data set called m3. A few graphics commands are
then used. The , symbol2 and symbol3 define plotting symbols; you can define
symbol4, symbol5 and so on. The option i=join tells SAS to connect the points
using straight lines. The option l=1 refers to a connection with solid line, and
l=2 refers to a connection with a dashed line. proc sort was used to arrange
the data set by an ascending order (which is the default) of variable Age. This
makes sure that we do not get a mess when we connect data points to get the
ols line. After we customize each symbol, we can write ols*Age=1 Pred*Age=2

Length*Age=3 in the plot statement, which simply means that use the first
customized symbol for the plot of ols versus Age, the second customized symbol

for the plot of loess Pred versus Age, and the third customized symbol for the
scatterplot of Length versus Age. proc gplot was called with the data set m3.
The overlay option further modifies the axes of the plot.

18 SCATTERPLOTS AND REGRESSION

Fig. 1.4 SAS version of alr[F1.7].

The only part alr[F1.6] that is different from previous graphs is the hor-
izontal line. Getting this line is surprisingly difficult. We recommend that
you define one=1 in the data step so that we can fit a linear regression of Late
on one. All the fitted values for this regression will be equal to the overall
average.

alr[F1.7] is easier to obtain in SAS, because the variable S takes on values
1, 2, 3, which can be directly used in plot statement in proc gplot:

goptions reset=all;

proc gplot data=alr3.turkey;

plot gain*A=S;

run; quit;

We write the plot statement as plot y*x=z;, which allows us to make a scat-
terplot of y versus x with separate symbol for each value of z variable.

1.2 MEAN FUNCTIONS

SAS alr[F1.8] adds the line y=x to the plot. We fit a linear regression
model first, save the predicted values to a data set, which is called m1 here,
using the output statement. After this, we call the proc gplot to get a version
of alr[F1.8]. The SAS code is given below:

proc reg data=alr3.heights;

model Dheight=Mheight;

output out=m1 predicted=Dhat;

run;

goptions reset=all;

proc gplot data=m1;

plot (Dhat Mheight Dheight)*Mheight /overlay ;

VARIANCE FUNCTIONS 19

run; quit;

1.3 VARIANCE FUNCTIONS

1.4 SUMMARY GRAPH

1.5 TOOLS FOR LOOKING AT SCATTERPLOTS

SAS proc loess can be used to add a loess smoother to a graph. The fol-
lowing produces a version of alr[F1.10]:

proc reg data=alr3.heights;

model Dheight=Mheight;

output out=m1 predicted=Dhat;

run;

proc loess data=alr3.heights;

model Dheight=Mheight /smooth=.6;

ods output OutputStatistics=myout;

run;

data myout; set myout; set m1;

proc sort data=myout; by Mheight; run;

goptions reset=all;

proc gplot data=myout;

plot (Dhat Pred DepVar)*Mheight /overlay;

run; quit;

This procedure produces loess estimates given a smoothing parameter, which
is 0.6 here (specified using smooth). The smoothing parameter must be strictly
positive and less than one. The statement ods output is used to produce
procedure-specific output. We have saved the output in a data set called
myout. After combining myout from proc loess and the output m1 from ols
fit, we sort the data by Mheight, the variable to be plotted on the horizontal
axis. As we have mentioned before, this is simply for visual clarification since
we are going to connect the loess estimates to get a loess curve. DepVar is just
the dependent variable Dheight, in a different name in the output data myout.
Pred is the loess estimate. The quit; statement stops procedures called before
it.

1.6 SCATTERPLOT MATRICES

SAS This is the first example we have encountered that requires transfor-
mation of some of the variables to be graphed. This is done by creating a new
data set that consists of the old variables plus the transformed variables. The
data step in SAS for transformations.

20 SCATTERPLOTS AND REGRESSION

Fig. 1.5 SAS version of alr[F1.10].

Scatterplot matrices are obtained using proc insight. For the fuel2001

data, here is the program:

data m1;

set alr3.fuel2001;

Dlic=Drivers*1000/Pop;

Fuel=FuelC*1000/Pop;

logMiles=log2(Miles);

goptions reset=all;

proc insight data=m1;

scatter Tax Dlic income logMiles Fuel

*Tax Dlic income logMiles Fuel;

run;

In the data step, we created a new data set called m1 that includes all of
alr3.fuel2001 from the set statement, and the three additional variables com-
puted from transformations; note the use of log2 for base-two logarithms. We
called proc insight using this new data set.

Solutions→Analysis→ Interactive Data Analysis also starts proc insight.
You can also transform variables from within this procedure.

Graphs created with proc insight are interactive. If you click the mouse
on a point in this graph, the point will he highlighted in all frames of the
scatterplot matrix, and its case number will be displayed on the graph.

SCATTERPLOT MATRICES 21

Fig. 1.6 SAS scatterplot matrix for the fuel2001 data.

Problems

1.1. Boxplots would be useful in a problem like this because they display level
(median) and variability (distance between the quartiles) simultaneously.

SAS SAS has a proc boxplot procedure. You can follow the generic syntax
as follows:

proc boxplot data=alr3.wblake;

plot Length*Age;

run;

The above SAS code means that a separate boxplot of Length will be provided
at each value of Age.

As an alternative, you can use the SAS Interactive Data Analysis tool
to obtain boxplots. After you launch it with a data set, you can choose
Analyze→Box Plot/Mosaic Plot(Y) from the menu. Then you click on Length
once and click the Y button once. Similarly, you can move the variable Age to
the box under the X button. After you click the OK button, a series of boxplots
of Length for each value of Age are printed on the screen.

22 SCATTERPLOTS AND REGRESSION

Just a reminder: Even if you choose to use SAS Interactive Data Analysis
tool, you must have the data available in advance, either using a SAS data
step, or using a data file from a library.

To get the standard deviation at each value of Age, you can call proc means

or proc summary (which is exactly the same as proc means except that it does
not show output) and put Age in the class statement. The keyword for
retrieving standard deviation is std.
1.2.

SAS To change the size of an image in SAS, you can move you mouse cursor
to the right-bottom edge of the graph window. When the cursor becomes a
double arrow, click and hold the left button of your mouse, then drag the edge
to any size.
1.3.

SAS In SAS, log2(Fertility) returns the base-two logarithms. If you need
transformations, use the procedure outlined in Section 1.6 of the primer.

2
Simple Linear Regression

2.1 ORDINARY LEAST SQUARES ESTIMATION

All the computations for simple regression depend on only a few summary
statistics; the formulas are given in the text, and in this section we show how
to do the computations step–by-step. All computer packages will do these
computations automatically, as we show in Section 2.6.

2.2 LEAST SQUARES CRITERION

SAS The procedure proc means can be used to get summary statsitics; see
Table 2.1.

proc means data=alr3.forbes;

var Temp Lpres;

run;

Table 2.1 proc means output with the forbes data.

The MEANS Procedure

Variable N Mean Std Dev Minimum Maximum

Temp 17 202.9529412 5.7596786 194.3000000 212.2000000

Lpres 17 139.6052941 5.1707955 131.7900000 147.8000000

23

24 SIMPLE LINEAR REGRESSION

This chapter illustrates the computations that are usually hidden by regres-
sion programs. You can follow along with the calculations with the interactive
matrix language in SAS, called proc iml.

data f;

set alr3.forbes ;

one=1;

proc iml;

use f;

read all var {one Temp Pressure Lpres}

where (Temp^=. & Pressure^=. & Lpres^=.) into X;

size=nrow(X); W=X‘*X;

Tempbar=W[1,2]/size; Lpresbar=W[1,4]/size; Y=j(size,2,0);

Y[,1]=X[,2]-Tempbar; Y[,2]=X[,4]-Lpresbar;

fcov=Y‘*Y; RSS=fcov[2,2]-fcov[1,2]**2/fcov[1,1];

sigmahat2=RSS/(size-2); sigmahat=sqrt(sigmahat2);

b1=fcov[1,2]/fcov[1,1];

b0=Lpresbar-b1*Tempbar;

title ’PROC IML results’;

print Tempbar Lpresbar fcov b1 b0 RSS sigmahat2;

create forbes_stat var{Tempbar Lpresbar fcov b1 b0 RSS sigmahat2};

append var{Tempbar Lpresbar fcov b1 b0 RSS sigmahat2};

close forbes_stat;

quit;

Table 2.2 proc iml results with the forbes data.

PROC IML results

TEMPBAR LPRESBAR FCOV B1 B0 RSS SIGMAHAT2

202.95294 139.60529 530.78235 475.31224 0.8954937 -42.13778

2.1549273 0.1436618

475.31224 427.79402

We start by creating a new data set called f that has all the variables in
alr3.forbes plus a new variable called one that repeats the value 1 for all
cases in the data set, so it is a vector of length 17.

The keywords used in proc iml include use, read all var, where and into.
These load all the variables of interest into the procedure so that we can com-
pute various summary statistics. The variables in the braces are collected into
a new matrix variable we called X , whose columns represent the variables in
the order they are entered. The where statement guarantees that all calcu-
lations will be done on non-missing values only. “^=” stands for “not equal
to”, and is equivalent to the operator ne (not equal) outside proc iml. The
operator X‘*X denotes a matrix product X ′X . Use the single-quote located at
the upper left corner of the computer keyboard, not the usual one, to denote
the transpose. An alternative way of specifying the transpose of a matrix X
is by t(X). The function j(size,2,0) creates a matrix of dimension size by 2

ESTIMATING σ2 25

of all zeroes. The operator “**2” is for exponentiating, here squaring. The
print statement asks SAS to display some results, and the create and append

statements save some of the variables into a data set called forbes stat. The
create statement defines a structure of the data set called forbes stat, and
the append statement fills in values. If some variables do not have the same
length, then “.” will be used in the new data set for missing values. The close

statement simply denotes closing the data set.
The SAS code gives the sample means, the sample covariance matrix, re-

gression coefficient estimates, RSS and variance estimate; see Table 2.2.

2.3 ESTIMATING σ2

SAS From proc iml, we can easily get the variance estimate as sigmahat2

in the output of proc iml above. RSS is also given above from proc iml. See
the last section.

2.4 PROPERTIES OF LEAST SQUARES ESTIMATES

2.5 ESTIMATED VARIANCES

The estimated variances of coefficient estimates are computed using the sum-
mary statistics we have already obtained. These will also be computed auto-
matically linear regression fitting methods, as shown in the next section.

2.6 COMPARING MODELS: THE ANALYSIS OF VARIANCE

Computing the analysis of variance and F test by hand requires only the value
of RSS and of SSreg = SYY − RSS. We can then follow the outline given in
alr[2.6].

SAS There are several SAS procedures that can do simple linear regression.
The most basic procedure is proc reg, which prints at minimum the summary
of the fit and the ANOVA table. For the Forbes data,

proc reg data = alr3.forbes;

model Lpres = Temp;

run;

is the smallest program for fitting regression. This will give the output shown
in Table 2.3.

There are literally dozens of options you can add to the model statement
that will modify output. For example, consider the following five statements:

model Lpres=Temp;

26 SIMPLE LINEAR REGRESSION

Table 2.3 Output of proc reg with the forbes data.

The REG Procedure

Model: MODEL1

Dependent Variable: Lpres

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 425.63910 425.63910 2962.79 <.0001

Error 15 2.15493 0.14366

Corrected Total 16 427.79402

Root MSE 0.37903 R-Square 0.9950

Dependent Mean 139.60529 Adj R-Sq 0.9946

Coeff Var 0.27150

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 -42.13778 3.34020 -12.62 <.0001

Temp 1 0.89549 0.01645 54.43 <.0001

model Lpres=Temp/noprint;

model Lpres=Temp/noint;

model Lpres=Temp/all;

model Lpres=Temp/CLB XPX I R;

All but the third will fit the same regression, but will differ on what is printed.
The first will print the default output in Table 2.3. The second will produce
no printed output, and is useful if followed by an output statement to save
regression summaries for some other purpose. The third will fit a mean func-
tion with no intercept. The fourth will produce pages and pages of output,
of everything the program knows about; you probably don’t want to use this
option very often (or ever). The last will print the default output confidence
intervals for each of the regression coefficients, the matrix X ′X , its inverse
(X ′X)−1, and a printed version of the residuals. See documentation for proc

reg for a complete list of options.
Remember that transformations must be done in a data step, not in proc

reg.
proc glm Another important SAS procedure for fitting linear models is

proc glm, which stands for the general linear model. proc glm is is more
general than proc reg because it allows class variables, which is the name
that SAS uses for factors. Also, proc glm has several different approaches
to fitting ANOVA tables. The approach to ANOVA discussed in alr[3.5] is
sequential ANOVA, called Type I in SAS. The Wald or t-tests discussed in
alr are equivalent to SAS Type II, with no factors present. SAS Type III is

THE COEFFICIENT OF DETERMINATION, R2 27

not recommended in any regression problem. Table 2.4 gives a comparison of
proc reg and proc glm.

2.7 THE COEFFICIENT OF DETERMINATION, R2

2.8 CONFIDENCE INTERVALS AND TESTS

Confidence intervals and tests can be computed using the formulas in alr[2.8],
in much the same way as the previous computations were done.

SAS The SAS procedure proc reg will give confidence intervals for parame-
ter estimates by adding the option clb to the model statement, so, for example,

model Lpres=Temp/clb alpha=.01;

will print 99% confidence intervals; the default is 95% intervals.
A function called tinv(p,df) can be used in a data step to calculate quan-

tiles for t-distribution with df degrees of freedom. Similar functions include
betainv(p,a,b) for Beta distribution, cinv(p,df) for χ2 distribution, gaminv(p,a)
for Gamma distribution, finv(p,ndf,ddf) for F -distribution, and probit(p)

for standard normal distribution. All of these functions can be used in the
data step or any SAS procedure.

Prediction and fitted values

SAS It is easy in SAS to get fitted values and associated confidence intervals
for each observation by adding the option cli keyword to the model statement
in proc reg:

proc reg data=alr3.forbes alpha=.05;

model Lpres=Temp /cli;

run;

To get predictions and confidence intervals at unobserved values of the predic-
tors, you need to append new data to the data set, with a missing indicator (a
period) for the response. In the Forbes data, for example, to get predictions
at Temp = 210, 200, use

data forbes2;

input Temp;

cards;

210

220

;

data forbes2;

set alr3.forbes forbes2;

proc reg data=forbes2 alpha=.05;

28 SIMPLE LINEAR REGRESSION

Table 2.4 Comparison of proc reg and proc glm.

Property proc reg proc glm

Terms

Class variables (called fac-
tors in alr)

Not allowed; use dummy
variables instead

Allowed

Polynomial terms and in-
teractions

Not allowed; define them in
data step

Allowed

Other transformations Use a data step Use a data step
Random effects Not allowed Not recommended; use

proc mixed instead.

Fitting

ols and wls Yes Yes
No intercept Allowed Allowed

Prediction/Fitted values

Prediction at new values Add new values for the
predictors to the data set
with missing values, indi-
cated by a “.”, for the re-
sponse.

Allowed

Miscellaneous

Covariance of estimates Yes No; but can be com-
puted from model out-
put

ANOVA tables Overall ANOVA only. Overall and sequential
ANOVA and other
types of SS, really
different orders of
fitting

R2 Yes Yes
Add/delete variables and
refit

Allowed Not allowed

Submodel selection Allowed Not allowed

Model diagnostics

Diagnostic statistics Yes Yes
Graphical diagnostics Yes No

CONFIDENCE INTERVALS AND TESTS 29

model Lpres=Temp /cli;

run;

Table 2.5 Predictions and prediction standard errors for the forbes data.

The REG Procedure

Model: MODEL1

Dependent Variable: Lpres

Output Statistics

Dep Var Predicted Std Error

Obs Lpres Value Mean Predict 95% CL Predict Residual

1 131.7900 132.0357 0.1667 131.1532 132.9183 -0.2457

2 131.7900 131.8566 0.1695 130.9717 132.7416 -0.0666

3 135.0200 135.0804 0.1239 134.2304 135.9304 -0.0604

4 135.5500 135.5282 0.1186 134.6817 136.3747 0.0218

5 136.4600 136.4237 0.1089 135.5831 137.2642 0.0363

6 136.8300 136.8714 0.1048 136.0332 137.7096 -0.0414

7 137.8200 137.7669 0.0979 136.9325 138.6013 0.0531

8 138.0000 137.9460 0.0969 137.1122 138.7798 0.0540

9 138.0600 138.2146 0.0954 137.3816 139.0477 -0.1546

10 138.0400 138.1251 0.0959 137.2918 138.9584 -0.0851

11 140.0400 140.1847 0.0925 139.3531 141.0163 -0.1447

12 142.4400 141.0802 0.0958 140.2469 141.9135 1.3598

13 145.4700 145.4681 0.1416 144.6057 146.3306 0.001856

14 144.3400 144.6622 0.1307 143.8076 145.5168 -0.3222

15 146.3000 146.5427 0.1571 145.6682 147.4173 -0.2427

16 147.5400 147.6173 0.1735 146.7288 148.5059 -0.0773

17 147.8000 147.8860 0.1777 146.9937 148.7783 -0.0860

18 . 145.9159 0.1480 145.0486 146.7831 .

19 . 154.8708 0.2951 153.8469 155.8947 .

Sum of Residuals -3.3378E-13

Sum of Squared Residuals 2.15493

Predicted Residual SS (PRESS) 2.52585

The new data for the input variable Temp are entered after the cards state-
ment; we need to use the same variable name as in the forbes data set so that
these new values will be appended to the column of our interest.

To save the predicted values and associated confidence intervals for later
computation, you can use output statement in proc reg. Here the information
is saved to a data set called m1:

data forbes2;

input Temp;

cards;

210

220

;

data forbes2;

set alr3.forbes forbes2;

30 SIMPLE LINEAR REGRESSION

proc reg data=forbes2 alpha=.05;

model Lpres=Temp /cli noprint;

output out=m1 predicted=prediction L95=Lower_limit U95=Upper_limit;

run;

2.9 THE RESIDUALS

SAS The SAS procedure proc reg computes the residuals for the linear
model we fit. A plot of residuals versus fitted values can be obtained using
plot statement in proc reg. The keywords are residual., the ordinary resid-
uals, and predicted.; don’t forget the trailing periods. The /nostat nomodel

option suppresses the model fit information on the graph.

proc reg data=alr3.forbes;

model Lpres=Temp /noprint;

output out=m1 residual=res predicted=pred;

plot residual.*predicted. /nostat nomodel; *the residual plot;

run;

proc print data=work.m1 ;

run;

The output statement was used to save the residuals and fitted values in a
data set called m1. We then used proc print to print m1, but you could use
this data set in other graphs or for other purposes.

Problems

2.2.

SAS In order to do part 2.2.3, you need to save the fitted values from the
two regression models to two data sets, then apply SAS graphical procedure
to the combined data set.

For part 2.2.5, you also need to save the predicted values and prediction
standard errors, then use a data step to combine these data and the Hooker’s
data.

For part 2.2.6, you first need to combine the forbes data and the Hooker’s
data, with the response in the forbes data to missing. Then you fit the
regression model with this combined data set. Since SAS provides predictions
for the data with missing response as well, the computation of z-scores are
still straightforward in this part.
2.7.

SAS A linear regression model without an intercept can be fit in SAS by
adding noint option to the model statement.
2.10.

THE RESIDUALS 31

SAS The where conditions; statement can be used to select the cases of
interest.

3
Multiple Regression

3.1 ADDING A TERM TO A SIMPLE LINEAR REGRESSION MODEL

SAS Using the fuel2001 data, we first need to transform variables and create
a new data set that includes them. To draw an added-variable plot in SAS,
we use proc reg twice to get the sets of residuals that are needed. Using the
fuel2001 data,

data fuel;

set alr3.fuel2001;

Dlic=Drivers*1000/Pop;

Fuel=FuelC*1000/Pop;

Income=Income/1000;

logMiles=log2(Miles);

goptions reset=all;

title ’Added Variable Plot for Tax’;

proc reg data=fuel;

model Fuel Tax=Dlic Income logMiles;

output out=m1 residual=res1 res2;

run;

proc reg data=m1;

model res1=res2;

plot res1*res2;

run;

The first proc reg has a model statement with two responses on the left side
of the equal sign. This means that two regression models will be fit, one
for each response. The output specification assigns m1 to be the name of the

33

34 MULTIPLE REGRESSION

Table 3.1 Summary statistics from proc means for the fuel2001 data.

The MEANS Procedure

Variable N Mean Std Dev Minimum Maximum

Tax 51 20.1549020 4.5447360 7.5000000 29.0000000

Dlic 51 903.6778311 72.8578005 700.1952729 1075.29

Income 51 28.4039020 4.4516372 20.9930000 40.6400000

logMiles 51 15.7451611 1.4867142 10.5830828 18.1982868

Fuel 51 613.1288080 88.9599980 317.4923972 842.7917524

output, and the names for the two sets of residuals are res1 and res2. The
added-variable plot is just the plot of res1 versus res2. We did this using plot

inside the next proc reg; in this way, the fitted line and summary statistics
are automatically added to the plot.

A low-quality version of all the added-variable plots (produced in the out-
put window rather than a graphics window) can be produced using the partial

option:

data=fuel;

model Fuel = Tax Dlic Income logMiles/partial;

run;

A synonym for an added-variable plot is a partial regression plot.

3.2 THE MULTIPLE LINEAR REGRESSION MODEL

3.3 TERMS AND PREDICTORS

SAS The standard summary statistics in SAS can be retrieved using proc

means, and the output is in Table 3.1.

data fuel;

set alr3.fuel2001;

Dlic=Drivers*1000/Pop;

Fuel=FuelC*1000/Pop;

Income=Income/1000;

logMiles=log2(Miles);

proc means data=fuel;

var Tax Dlic Income logMiles Fuel;

run;

We will use proc iml, the interactive matrix language that we used in the
last chapter, for several calculations and covariances. First, we get the sample
correlations, starting with the fuel data set that we have just created.

proc iml;

use fuel;

ORDINARY LEAST SQUARES 35

read all var {Tax Dlic Income logMiles Fuel} into X;

size=nrow(X); one=j(1,size,1);

ave=one*X/size;

Xave=one‘*ave;

W=X-Xave; Y=W‘*W;

Xcov=Y/(size-1);

Xstd=sqrt(diag(Xcov)); Xstd_inv=inv(Xstd);

Xcor=Xstd_inv*Xcov*Xstd_inv;

print Xcor Xcov;

quit;

We have used inv to get the inverse of a matrix; it is equivalent to X‘. See
output in Table 3.2.

Table 3.2 Sample correlation matrix and sample covariance matrix from proc iml

for the fuel2001 data.

XCOR

1 -0.085844 -0.010685 -0.043737 -0.259447

-0.085844 1 -0.175961 0.0305907 0.4685063

-0.010685 -0.175961 1 -0.295851 -0.464405

-0.043737 0.0305907 -0.295851 1 0.4220323

-0.259447 0.4685063 -0.464405 0.4220323 1

XCOV

20.654625 -28.4247 -0.216173 -0.295519 -104.8944

-28.4247 5308.2591 -57.07045 3.3135435 3036.5905

-0.216173 -57.07045 19.817074 -1.958037 -183.9126

-0.295519 3.3135435 -1.958037 2.2103191 55.817191

-104.8944 3036.5905 -183.9126 55.817191 7913.8812

3.4 ORDINARY LEAST SQUARES

SAS Continuing with using proc iml to do matrix calculations, the ols es-
timates can be computed from (X ′X)−1X ′Y ; results are shown in Table 3.3.

data fuel;

set alr3.fuel;

Dlic=Drivers*1000/Pop;

Fuel=FuelC*1000/Pop;

Income=Income/1000;

logMiles=log2(Miles);

one=1;

proc iml;

use fuel2001;

read all var {one Tax Dlic Income logMiles} where (one^=. &

Tax^=. & Dlic^=. & Income^=. & logMiles^=. & fuel^=.) into X;

read all var ’fuel’ where (one^=. &

36 MULTIPLE REGRESSION

Tax^=. & Dlic^=. & Income^=. & logMiles^=. & fuel^=.) into Y;

beta_hat=inv(t(X)*X)*t(X)*Y;

print beta_hat;

quit;

Table 3.3 ols using proc iml for the fuel2001 data.

BETA_HAT

154.19284

-4.227983

0.4718712

-6.135331

18.545275

The ols estimates can be obtained using proc reg or proc glm. The output
from proc glm is given in Table 3.4. The syntax is very similar to that for
simple linear regression.

proc glm data=fuel;

model Fuel=Tax Dlic Income logMiles;

run;

The only difference between fitting simple and multiple regression is in the
specification of the model. All terms in the mean function appear to the right
of the equal sign, separated by white space. The output for using proc reg

would be similar, but would not include the extensive ANOVA tables shown.

3.5 THE ANALYSIS OF VARIANCE

SAS We recommend using proc glm for getting sequential analysis variance
tables. For example,

proc glm data=fuel;

model Fuel=Tax Dlic Income logMiles/ss1;

run;

produces the output shown in Table 3.4. This output gives the overall ANOVA,
and by the sequential ANOVA discussed in alr, and called Type I ANOVA by
SAS. By using the option /ss1, we have suppressed SAS’s default behavior of
printing what it calls “Type III” sums of squares; these are not recommended
(Nelder, 1977).

The order of fitting is determined by the order of the terms in the model

statement. Thus

proc glm data=fuel;

model Fuel=logMiles Income Tax Dlic /ss1;

run;

would fit logMiles first, then Income, Tax and finally Dlic.

PREDICTIONS AND FITTED VALUES 37

Table 3.4 Anova for nested models in proc reg for the fuel2001 data.

The GLM Procedure

Dependent Variable: Fuel

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 4 201994.0473 50498.5118 11.99 <.0001

Error 46 193700.0152 4210.8699

Corrected Total 50 395694.0624

R-Square Coeff Var Root MSE Fuel Mean

0.510480 10.58362 64.89122 613.1288

Source DF Type I SS Mean Square F Value Pr > F

Tax 1 26635.27578 26635.27578 6.33 0.0155

Dlic 1 79377.52778 79377.52778 18.85 <.0001

Income 1 61408.17553 61408.17553 14.58 0.0004

logMiles 1 34573.06818 34573.06818 8.21 0.0063

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept 154.1928446 194.9061606 0.79 0.4329

Tax -4.2279832 2.0301211 -2.08 0.0429

Dlic 0.4718712 0.1285134 3.67 0.0006

Income -6.1353310 2.1936336 -2.80 0.0075

logMiles 18.5452745 6.4721745 2.87 0.0063

3.6 PREDICTIONS AND FITTED VALUES

SAS As with simple regression, we get predictions and prediction intervals
by appending new data points to the data set with missing values for the
response. See output in Table 3.5.

data fuel2;

input Tax Dlic Income logMiles;

cards;

20 909 16.3 626

35 943 16.8 667

;

data fuel2; set fuel fuel2;

proc reg data=fuel2 alpha=.05;

model Fuel=Tax Dlic Income logMiles /cli;

run;

We created a data file called fuel2 consisting of two cases with values for four
variables. We then redefined fule2 by appending it to the bottom of fuel; all

38 MULTIPLE REGRESSION

Table 3.5 Predictions and prediction standard errors at new values from proc reg

for the fuel2001 data.

The REG Procedure

Model: MODEL1

Dependent Variable: Fuel

... ... (omitted)

Output Statistics

Dep Var Predicted Std Error

Obs Fuel Value Mean Predict 95% CL Predict Residual

1 690.2644 727.2652 20.2801 590.4156 864.1147 -37.0007

2 514.2792 677.4242 32.8388 531.0318 823.8166 -163.1450

... ... (omitted)

50 581.7937 593.1223 18.5974 457.2446 729.0000 -11.3286

51 842.7918 659.2930 18.7829 523.3120 795.2740 183.4988

52 . 12008 3942 4072 19944 .

53 . 12718 4209 4244 21192 .

... ... (omitted)

other variables are missing for these two cases. We then fit the regression,
and obtain predictors for the two added cases.

Problems

4
Drawing Conclusions

The first three sections of this chapter do not introduce any new computational
methods; everything you need is based on what has been covered in previous
chapters. The last two sections, on missing data and on computationally
intensive methods introduce new computing issues.

4.1 UNDERSTANDING PARAMETER ESTIMATES

4.1.1 Rate of change

4.1.2 Sign of estimates

4.1.3 Interpretation depends on other terms in the mean function

4.1.4 Rank deficient and over-parameterized models

SAS SAS provides several diagnostics when you try to fit a mean function
in which some terms are linear combinations of others. Table 4.1 provides the
output that parallels the discussion in alr[4.1.4].

data BGS;

set alr3.BGSgirls;

DW9=WT9-WT2;

DW18=WT18-WT9;

proc reg data=BGS;

model Soma=WT2 DW9 DW18 WT9 WT18;

run;

39

40 DRAWING CONCLUSIONS

Table 4.1 Output from an over-parameterized model for the BGSgirls data.

The REG Procedure

Model: MODEL1

Dependent Variable: SOMA

Number of Observations Read 70

Number of Observations Used 70

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 3 25.35982 8.45327 28.67 <.0001

Error 66 19.45803 0.29482

Corrected Total 69 44.81786

Root MSE 0.54297 R-Square 0.5658

Dependent Mean 4.77857 Adj R-Sq 0.5461

Coeff Var 11.36264

NOTE: Model is not full rank. Least-squares solutions for the

parameters are not unique. Some statistics will be misleading.

A reported DF of 0 or B means that the estimate is biased.

NOTE: The following parameters have been set to 0, since the

variables are a linear combination of other variables as shown.

WT9 = WT2 + DW9

WT18 = WT2 + DW9 + DW18

Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 1.59210 0.67425 2.36 0.0212

WT2 B -0.01106 0.05194 -0.21 0.8321

DW9 B 0.10459 0.01570 6.66 <.0001

DW18 B 0.04834 0.01060 4.56 <.0001

WT9 0 0 . . .

WT18 0 0 . . .

Besides providing the correct ANOVA and other estimates, SAS correctly
reports the linear combinations of the terms in the mean function. It then
gives the estimates of parameters in the manner suggested in the text, by
deleting additional terms that are exact linear combinations of previous terms
in the mean function. SAS reports “B” degrees of freedom for the terms fit
that are part of the exact linear combinations to indicate that the fit would
have been different had the terms been entered in a different order.

EXPERIMENTATION VERSUS OBSERVATION 41

SAS uses the term model for the mean function; in alr, a model consists
of the mean function and any other assumptions required in a problem.

If proc glm had been used in place of proc reg, the resulting output would
have been similar, although the exact text of the diagnostic warnings is dif-
ferent.

4.2 EXPERIMENTATION VERSUS OBSERVATION

4.3 SAMPLING FROM A NORMAL POPULATION

4.4 MORE ON R2

4.5 MISSING DATA

The data files that are included with alr use “NA” as a place holder for
missing values. Some packages may not recognize this as a missing value
indicator, and so you may need to change this character using an editor to
the appropriate character for your program.

SAS SAS can detect missing values with strings like ‘NA’, ‘.’, ‘?’, or any
other that is not compatible with the rest values on the same variable(s). You
do not need to tell SAS to skip those cases when you fit models, since it will
do it automatically. As with most other programs, SAS will use cases that do
not have missing values on any variables you use in a particular procedure.

data sleep;

set alr3.sleep1;

logSWS=log(SWS);

logBodyWt=log(BodyWt);

logLife=log(Life);

logGP=log(GP);

proc reg data=sleep;

model logSWS=logBodyWt logLife logGP;

run;

proc reg data=sleep;

model logSWS=logBodyWt logGP;

var logLife;

run;

The way you ask SAS to fit models with a particular subset of cases is by using
the var statement. In the example above, the cases used will correspond to all
cases observed on log(Life), even though that term is not in the model. You
can guarantee that all models are fit to the same cases by putting all terms
of interest in the var statement.

The SAS procedures proc mi and proc mianalyze provide tools for working
with missing data beyond the scope of alr; see Rubin (1987). Introduction to

42 DRAWING CONCLUSIONS

and examples on this procedure can be found at support.sas.com/rnd/app/da/
new/dami.html.

4.6 COMPUTATIONALLY INTENSIVE METHODS

SAS SAS does not have predefined procedures for the bootstrap or other
simulation methods, so you need use a macro for this purpose. The macro
below is included in the SAS script file for this chapter. Macro writing can
be much more complicated than most of the other SAS programming we
discuss in this primer, so many readers may wish to skip this section. In
our example, we use the transact data, which has n = 261 observations, and
will produce a bootstrap similar to alr[4.6.1]. Here is the macro, with some
gentle annotation:

%let n=261; transact has 261 rows;
%macro boots(B=1, seed=1234, outputdata=temp); start macro def.;
%do i=1 %to &B; repeat B times;
data m1; data step to create data file ‘m1’;
rownum=int(ranuni(&seed*&i)*&n)+1; select row number at random;

set alr3.transact point=rownum; add row ‘rownum’ to data set ‘m1’;
j+1; increment row counter;
if j>&n then STOP; stop with sample size is n;

still in the loop, use proc reg to fit with bootstrap sample;
proc reg data=m1 noprint outest=outests (keep=INTERCEPT T1 T2);

model Time=T1 T2;

run;

keep coef. estimates and then use proc append to save them;

proc append base=&outputdata data=outests; run;

%end; end the do loop;
%mend boots; end the macro
Do bootstrap B=999 times, and save as ‘bootout’;

%boots(B=999, seed=2004, outputdata=bootout);

If you want to use this macro with a different data set, you must: (1) change
the definition of n; (2) substitute a different name for the data file, and (3)
change the model and term names to the correct ones for your data set.
Running the macro with B = 999 takes several minutes on a fast Windows
computer.

The output from the last line is a new data set called work.supp4boot1

with B = 999 rows. The ith row is the estimates of the three parameters
from the ith bootstrap replication; the macro does no summarization. You
can summarize the data using any of several tools. The simple program

proc univariate data=work.bootout;

histogram;

run;

will produce histograms for each predictor separately, along with a prodigious
amount of output that includes the percentiles needed to get the bootstrap

COMPUTATIONALLY INTENSIVE METHODS 43

confidence intervals. Alternatively, you can select Solutions→Analysis→ Interactive
data analysis, and from the resulting window select the data set bootout from
the work library. You can then select Analyze→Distribution to get a nice
summary of the bootstraps.

We also provide in the script file for this chapter SAS programs that re-
produce the summaries given in alr. These are relatively obscure, and so we
skip them here.

The simulation in alr[4.6.3] employs a different idea, which is to add nor-
mal random noise to both the predictor and the response. The standard devia-
tions for added random noise are obtained from data itself, namely, SECPUE
and SEdens. The only arguments you can change in the macro below are
the number of bootstrap B, the random seed seed and the output data set
outputdata. They all have default values. All the bootstrap estimates of the
parameter value are saved to the outputdata, whose name can be changed as
an argument of the macro. In the output window, the point estimate and a
95% bootstrap confidence interval are displayed.

%macro boots2(B=1, seed=1234, outputdata=temp2);

%do i=1 %to &B;

data analysis;

set alr3.npdata;

rerr1=rannor(&seed*&i)*SECPUE;

rerr2=rannor(&seed*&i*(&i+21))*SEdens;

Y=CPUE+rerr1;

X=Density+rerr2;

proc reg data=analysis noprint outest=outests (keep=X);

model Y=X /noint;

run;

proc append base=&outputdata data=outests; run;

%end;

proc univariate data=&outputdata noprint;

output out=boot2stat mean=beta_mean

pctlpts=2.5, 97.5 pctlpre=beta;

run;

proc print data=boot2stat; run;

%mend boots2;

example as in the book, with B=999 bootstrap estimates;

%boots2(B=999, seed=2004, outputdata=supp4boot2);

With B=999 and seed=2004, the results are:

Obs beta_mean beta2_5 beta97_5

1 0.30745 0.23519 0.40662

5
Weights, Lack of Fit, and

More

5.1 WEIGHTED LEAST SQUARES

SAS The weights option in proc reg or in proc glm is used for wls.

data phy;

set alr3.physics;

w=1/SD**2;

proc reg data=phy;

model y=x;

weight w;

run;

Since the weights are the inverses of the SDs, we need to compute them in a
data step before calling proc reg.

Prediction intervals and standard errors with wls depend on the weight
assigned to the future value. This means that the standard error of prediction
is (σ̂2/w∗+sefit(y|X = x∗)

2)1/2, where w∗ is the weight assigned to the future
observation. The following SAS code obtains prediction interval for x∗=.1 and
w∗=.04, and it uses the append-data technique we have used previously. The
cli option on the model statement will generate prediction intervals.

data phy2;

input x w;

cards;

.1 .04

;

data phy2; set phy phy2;

proc reg data=phy2;

45

46 WEIGHTS, LACK OF FIT, AND MORE

model y=x /cli;

weight w;

run;

In Table 5.1 the Std Error Mean Predict is sefit. The 95% t-confidence inter-
vals for prediction correctly used sepred.

Table 5.1 Predictions and prediction confidence intervals for the physics data.

The REG Procedure

Model: MODEL1

Dependent Variable: y

Output Statistics

Weight Dep Var Predicted Std Error

Obs Variable y Value Mean Predict 95% CL Predict Residual

1 0.003460 367.0000 331.6115 9.7215 262.9116 400.3113 35.3885

2 0.0123 311.0000 300.8230 7.2080 262.6362 339.0098 10.1770

3 0.0123 295.0000 281.7129 5.7614 244.8555 318.5704 13.2871

4 0.0204 268.0000 267.9112 4.8259 238.9482 296.8742 0.0888

5 0.0204 253.0000 258.3562 4.2688 229.8621 286.8502 -5.3562

6 0.0278 239.0000 247.2086 3.7634 222.7009 271.7164 -8.2086

7 0.0278 220.0000 233.9377 3.4542 209.6733 258.2021 -13.9377

8 0.0278 213.0000 218.5435 3.5893 194.1751 242.9120 -5.5435

9 0.0400 193.0000 193.0634 4.7764 171.0153 215.1116 -0.0634

10 0.0400 192.0000 180.3234 5.6291 157.2300 203.4167 11.6766

11 0 . 201.5568 4.2832 180.0542 223.0593 .

Sum of Residuals 0

Sum of Squared Residuals 21.95265

Predicted Residual SS (PRESS) 41.05411

NOTE: The above statistics use observation weights or frequencies.

5.1.1 Applications of weighted least squares

SAS To run polynomial regression, create polynomial terms in the data step,
like squared terms and cubic terms, and then use proc reg to fit model with
the original variables as well as these higher-order terms. Alternatively, you
can use proc glm and specify the polynomials in the model statement. For a
polynomial of degree two:

proc glm data=phy;

model y=x x*x/ss1;

weight w;

run; quit;

The ANOVA tables with Type I SS, the sequential sum of squares described
in alr are shown in Table 5.2.

TESTING FOR LACK OF FIT, VARIANCE KNOWN 47

Table 5.2 wls quadratic regression model with proc glm for the physics data.

The GLM Procedure

Number of observations 10

Dependent Variable: y

Weight: w

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 2 360.7184868 180.3592434 391.41 <.0001

Error 7 3.2255311 0.4607902

Corrected Total 9 363.9440179

R-Square Coeff Var Root MSE y Mean

0.991137 0.295019 0.678815 230.0922

Source DF Type I SS Mean Square F Value Pr > F

x 1 341.9913694 341.9913694 742.18 <.0001

x*x 1 18.7271174 18.7271174 40.64 0.0004

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept 183.830465 6.4590630 28.46 <.0001

x 0.970902 85.3687565 0.01 0.9912

x*x 1597.504726 250.5868546 6.38 0.0004

To do prediction using this polynomial model, we append the new data to
the original data set, fit the regression model and obtain the predictions.

data phy2;

input x w;

cards;

.1 .04

;

data phy2; set phy phy2;

proc glm data=phy2;

model y=x x*x /predicted;

weight w;

output out=m2 predicted=ypred2;

run; quit;

5.1.2 Additional comments

5.2 TESTING FOR LACK OF FIT, VARIANCE KNOWN

SAS A SAS program to reproduce alr[F5.1] is included in the script file
for this chapter. The program is rather lengthy and complicated.

Calculations for the test for lack of fit are easily done using output from
either proc glm or proc reg. To get significance levels, you need to be able
to compute a p-value using a χ2 distribution, and for this you can use the
chiprob function in a data step. For example,

48 WEIGHTS, LACK OF FIT, AND MORE

data qt;

pval = 1-probchi(30,25);

critval = cinv(.95,25);

output;

proc print data=qt; run;

returns the output

Obs pval critval

1 0.22429 37.6525

The first value is p-value based on the χ2(25) distribution when the value of
the test is 30, while the second is the critical value for the χ2(25) distribution
at level α = 1 − .05 = 0.05. Similar functions are available for virtually
all standard distributions. For example, to get a two-tailed p-value from
the t(30) distribution, if the value of the statistic is x, use the statement
2*(1-probt(abs(x),30)).

5.3 TESTING FOR LACK OF FIT, VARIANCE UNKNOWN

SAS If we have one predictor x, we make use of the fact that the sum of
squares for lack of fit is the residual sum of squares for the regression of the
response on x treated as a factor. Thus, if we fit a model first with x and
then with x as a factor, the (sequential) F -test for the factor will be F -test
for lack of fit:

data temp;

input x y;

x2=x;

cards;

1 2.55

1 2.75

1 2.57

2 2.40

3 4.19

3 4.70

4 3.81

4 4.87

4 2.93

4 4.52

;

run;

proc glm data=temp;

class x2;

model y=x x2/ss1;

run; quit;

The SAS output in Table 5.3 shows that the p-value is about 0.39, providing
no evidence for lack of fit. In a mean function with several terms, finding the

GENERAL F TESTING 49

Table 5.3 Lack of fit test result with proc glm.

The GLM Procedure

Dependent Variable: y

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 3 6.42749833 2.14249944 5.45 0.0378

Error 6 2.35839167 0.39306528

Corrected Total 9 8.78589000

Source DF Type I SS Mean Square F Value Pr > F

x 1 4.56925025 4.56925025 11.62 0.0143

x2 2 1.85824808 0.92912404 2.36 0.1750

sum of squares for lack of fit is more of a challenge, and is omitted here. Code
for this purpose is provided with the R and S-Plus languages.

5.4 GENERAL F TESTING

SAS SAS has a very general language using either proc reg or proc glm for
performing specific F -tests. Using the fuel consumption data, proc reg can
be used with the test statement:

data fuel;

set alr3.fuel2001;

Dlic=Drivers*1000/Pop;

Fuel=FuelC*1000/Pop;

Income=Income/1000;

logMiles=log2(Miles);

proc reg data=fuel;

model Fuel=Tax Dlic Income logMiles;

test Dlic=Income=0;

test Dlic=Income=Tax=0;

run;

The first test statement gives the F -test

NH: E(Fuel|X) = β0 + β1Tax + β3log(Miles)
AH: E(Fuel|X) = β0 + β1Tax + β2Dlic + β3log(Miles) + β4Income

while the second test is of

NH: E(Fuel|X) = β0 + β3log(Miles)
AH: E(Fuel|X) = β0 + β1Tax + β2Dlic + β3log(Miles) + β4Income

The output for these tests is shown in Table 5.4. proc glm also has a test

statement, but the syntax is different and the tests are more general. If your

50 WEIGHTS, LACK OF FIT, AND MORE

Table 5.4 Anova for nested models with proc reg for the fuel2001 data.

Test 1 Results for Dependent Variable Fuel

Mean

Source DF Square F Value Pr > F

Numerator 2 54246 12.88 <.0001

Denominator 46 4210.86989

Test 2 Results for Dependent Variable Fuel

Mean

Source DF Square F Value Pr > F

Numerator 3 43839 10.41 <.0001

Denominator 46 4210.86989

mean function includes factors (or class variables), then the usual tests of main
effects and interactions will be produced by the program. For this purpose
we once again suggest using Type II tests, so, for example,

proc glm data=fuel;

model Fuel=Tax Dlic Income logMiles/e e2;

run;

will give an ANOVA table that has the correct F -tests for each term adjusted
for each other term in the model.

5.5 JOINT CONFIDENCE REGIONS

SAS The code below will reproduce the confidence ellipse in alr[F5.3]. It
is included here for completeness, but is sufficiently complex that it is not of
much use for data analysis, and so this may be skipped.

proc reg data=alr3.UN2 alpha=.05 outest=m1 tableout covout;

model logFertility=logPPgdp Purban /noprint;

run;

proc iml;

use m1;

read all var {_RMSE_ logPPgdp Purban} into X;

sigmahat2=X[1,1]**2; *extract the variance estimate;

X=X[,2:3];

beta1=X[1,1]; *extract the coefficient estimate;

beta2=X[1,2]; *extract the coefficient estimate;

se=X[2,];

cov=X[8:9,]; *extract the covariance;

invcov=inv(cov); *the inverse of the covariance matrix;

z_val=probit(.975)*{1 -1};

int1=beta1+z_val*se[1];

int2=beta2+z_val*se[2];

one=j(1,2,1);

JOINT CONFIDENCE REGIONS 51

Fig. 5.1 95% confidence region for the UN2 data.

f_val=2*finv(.95,2,49); *the cutoff value for the ellipse;

call eigen(V,E,invcov);

t=((1:1000)-1)#atan(1)#8/(1000-1);

a1=cos(t)*sqrt(f_val/V[1]);

a2=sin(t)*sqrt(f_val/V[2]);

invE=inv(E);

b1=invE[1,1]*a1+invE[1,2]*a2+beta1;

b2=invE[2,1]*a1+invE[2,2]*a2+beta2;

beta1=beta1*one;

beta2=beta2*one;

create cr var{b1 b2 int1 int2 beta1 beta2};

append var{b1 b2 int1 int2 beta1 beta2};

close cr;

quit;

goptions reset=all;

symbol v=point i=join l=1;

axis1 label=(’Coefficient for log(PPgdp)’);

axis2 label=(a=90 ’Coefficient for Purban’);

proc gplot data=cr;

plot b2*b1 beta2*int1 int2*beta1

/overlay haxis=axis1 hminor=0 vaxis=axis2 vminor=0;

run; quit;

To find the two main axes for the ellipse, the above code uses eigenvalue
decomposition macro inside SAS: eigen(V E matrix), and the keyword call

has to be used before the macro eigen. V is used to save eigenvalues, E is

52 WEIGHTS, LACK OF FIT, AND MORE

used to save eigenvectors, both appear before the you want to decompose.
Before we save the output, namely, the points on the ellipse, the confidence
limits for each of the two variables, we multiply a two-vector of one’s to
the beta estimates. This is simply for drawing one-dimensional confidence
intervals later on. Without doing this, SAS will only draw a single point for
you, namely, only one endpoint of the interval, due to the way the output
from proc iml is saved. If you are not convinced, try it again without the
multiplication and you will see what is going to happen. The program could
be converted to a SAS macro.

Problems

5.3.
The bootstrap used in this problem is different from the bootstrap discussed

in alr[4.6] because rather than resampling cases we are resampling residuals.
Here is the general outline of the method:

1. Fit the model of interest to the data. In this case, the model is just the
simple linear regression of the response y on the predictor x. Compute
the test statistic of interest, given by alr[E5.23]. Save the fitted values
ŷ and the residuals ê.

2. A bootstrap sample will consist of the original x and a new y∗, where
y∗ = ŷ+ e∗. The ith element of e∗ is obtained by sampling from ê with
replacement.

3. Given the bootstrap data (x, y∗), compute and save alr[E5.23].

4. Repeat steps 2 and 3 B times, and summarize results.

6
Polynomials and Factors

6.1 POLYNOMIAL REGRESSION

SAS The following program reproduces alr[F6.2]. We add uniform random
noise to the data to get jittering.

data jitter;

set alr3.cakes;

X1=X1+.2*(ranuni(-1)-0.5); *add some noise to data;

X2=X2+.5*(ranuni(-1)-0.5);

goptions reset=all;

symbol v=circle h=1;

proc gplot data=jitter;

plot X2*X1 /hminor=0 vminor=0;

run; quit;

The uniform random number generator ranuni(seed) is used, with −1 indi-
cating a system-chosen random seed. You can also change the multipliers, the
values 0.2 and 0.5 used in the program, to control the magnitude of jittering.

There are at least two options for doing polynomial regression. One is to
use proc reg with polynomial terms defined in the data step, or to use proc

glm, where polynomial terms can be specified in model statement directly. For
example, x*x is a quadratic term. Improved computational accuracy can be
obtained using orthogonal polynomial regression in proc orthoreg; we will not
further discuss this latter option.

53

54 POLYNOMIALS AND FACTORS

6.1.1 Polynomials with several predictors

SAS Polynomial regression with multiple predictors can be fit with proc

reg with pre-defined higher-order terms, or using proc glm, which allows the
definition of higher-order terms in the model statement. The following uses
proc glm to fit a full quadratic model. See output in Table 6.1.

proc glm data=alr3.cakes;

model Y=X1 X1*X1 X2 X2*X2 X1*X2/ss1;

run; quit;

Table 6.1 Full quadratic model by proc glm for the cakes data.

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 5 27.20482661 5.44096532 29.60 <.0001

Error 8 1.47074482 0.18384310

Corrected Total 13 28.67557143

R-Square Coeff Var Root MSE Y Mean

0.948711 6.100376 0.428769 7.028571

Source DF Type I SS Mean Square F Value Pr > F

X1 1 4.32315980 4.32315980 23.52 0.0013

X1*X1 1 2.13083104 2.13083104 11.59 0.0093

X2 1 7.43319538 7.43319538 40.43 0.0002

X2*X2 1 10.54541539 10.54541539 57.36 <.0001

X1*X2 1 2.77222500 2.77222500 15.08 0.0047

Standard

Parameter Estimate Error t Value Pr > |t|

Intercept -2204.484988 241.5807402 -9.13 <.0001

X1 25.917558 4.6589114 5.56 0.0005

X1*X1 -0.156875 0.0394457 -3.98 0.0041

X2 9.918267 1.1665592 8.50 <.0001

X2*X2 -0.011950 0.0015778 -7.57 <.0001

X1*X2 -0.041625 0.0107192 -3.88 0.0047

To draw alr[F6.3a], we again use proc glm to generate the predicted val-
ues, then use proc gplot to plot all the points on one graph. Once again, the
program for this plot is very long, and uses proc iml, the interactive matrix
language.

proc iml; *create new data;

x1=j(3,50,.); x2=j(1,150,.);

x1[1,]=32+(0:49)*(38-32)/49; x2[1:50]=j(1,50,340);

x1[2,]=32+(0:49)*(38-32)/49; x2[51:100]=j(1,50,350);

x1[3,]=32+(0:49)*(38-32)/49; x2[101:150]=j(1,50,360);

create newdata var {x1 x2};

append var {x1 x2};

close newdata; quit;

data cakes; set newdata alr3.cakes;

POLYNOMIAL REGRESSION 55

Fig. 6.1 Estimated response curve (alr[F6.3A]).

proc glm data=cakes;

model Y=X1 X1*X1 X2 X2*X2 X1*X2 /predicted;

output out=m1 predicted=yhat; *save the predicted values;

run; quit;

symbol v=point i=join l=1;

proc gplot data=m1; where Y eq .; *choose the new data only;

plot yhat*x1=x2

/haxis=(32 to 38 by 1) hminor=0

vaxis=(3 to 9 by 1) vminor=0;

run; quit;

To get estimated response curves, we need to get the predicted values. Thus
we first generate these new predictor values, then obtain the prediction via
predicted option in proc glm. Then we draw three estimated response curves
from the output data set m1. The command j(3,50,.) gives a 3 by 50 matrix
of “.”, the missing value code, and the command (0:49) gives a sequence of
integers from 0 to 49.

6.1.2 Using the delta method to estimate a minimum or a maximum

SAS The delta method is used to compute approximate standard errors of
functions of parameter estimates. The computations can be done with proc

iml using the formulas given in alr. In this example, the cakes data is used.
The mean function is E(y|X) = β0+β1x2+β2x

2

2
, and the nonlinear function of

interest is xm = −β1/(2β2). As in the text, we ignore X1 in this computation.

56 POLYNOMIALS AND FACTORS

Use a data step to get a new data set
data cakes;

set alr3.cakes;

X2sq=X2**2;

Use proc reg to get the covariance matrix of the estimates
proc reg data=cakes outest=m1 covout;

model Y=X2 X2sq;

run;

Start proc iml, and do the computation
proc iml; *compute se based on delta method;

use m1;

read all var X2 X2sq into X;

b=X[1,];

cov=X[3:4,];

est=-b[1]/(2*b[2]);

db1=-1/(2*b[2]);

db2=b[1]/(2*b[2]**2);

se=sqrt(cov[1,1]*db1*db1+2*cov[1,2]*db1*db2+cov[2,2]*db2*db2);

print "-b1/(2*b2)", est [format=10.4];

print "StdErr (based on delta method)", se [format=10.4];

quit;

giving the results:

-b1/(2*b2)

EST

354.2029

StdErr (based on delta method)

SE

2.0893

est is the estimate of xm, se is the approximate standard error of it.
The procedure proc nlmixed uses the delta method to estimate nonlin-

ear combinations of coefficients and their standard errors, using the estimate

statement. For the cakes data, however, numerical problems arise, so we need
to center and scale X2 before fitting. We set Z2 = (X2 − 350)/10, and then
fit the mean function

E(Y |Z2) = γ0 + γ1Z2 + γ2Z
2

2

= γ0 + γ1

(

X2 − 350

10

)

+ γ2

(

X2 − 350

10

)2

Differentiating this last equation and setting the result to zero, we find that
this this parameterization the maximum will occur at xm = 350 − 5γ1/γ2.
Here is the SAS code:

data cakes;

set alr3.cakes;

Z2 = (X2-350)/10;

FACTORS 57

proc nlmixed data = cakes;

parms gam0-gam2=0 s2=1;

yhat=gam0+gam1*Z2+gam2*Z2*Z2;

model Y~normal(yhat,s2);

estimate ’350-5*gam1/gam2’ 350-5*gam1/gam2;

run; quit;

which gives the following (edited) output:

Parameter Estimates

Standard

Parameter Estimate Error DF t Value Pr > |t|

gam0 7.6838 0.3075 14 24.99 <.0001

gam1 0.9639 0.3201 14 3.01 0.0093

gam2 -1.1467 0.3322 14 -3.45 0.0039

s2 0.8196 0.3098 14 2.65 0.0192

Additional Estimates

Standard

Label Estimate Error DF Lower Upper

350-5*gam1/gam2 354.20 1.8519 14 350.23 358.17

The point estimate agrees with the value computed with proc iml, but the
standard error is smaller. The discrepancy is caused by computation of the
estimate of variance. When using proc iml, we used the estimate of σ2 com-
puted in the usual way as the RSS divided by its df, which is 11 for this
problem. proc nlmixed estimates σ2, by RSS divided by n, which for this
problem is 14. If we multiply the standard error by

√

14/11, we get 2.0892,
essentially agreeing with the solution computed with proc iml. The lesson
to be learned is that different programs do different things, and you need to
know what your program is doing.

6.1.3 Fractional polynomials

6.2 FACTORS

Factors are a slippery topic because different computer programs will handle
them in different ways. In particular, while SAS and SPSS use the same
default for defining factors, JMP, R and S-Plus all used different defaults. A
factor represents a qualitative variable with say a levels by a − 1 (or, if no
intercept is in the model, possibly a) dummy variables. alr[E6.16] describes
one method for defining the dummy variables, using the following rules:

1. If a factor A has a levels, create a dummy variables U1, . . . , Ua, such that
Uj has the value one when the level of A is j, and value zero everywhere
else.

2. Obtain a set of a−1 dummy variables to represent factor A by dropping
one of the dummy variables. For example, using the default coding in

58 POLYNOMIALS AND FACTORS

Table 6.2 How proc glm creates dummies.

Data Design Matrix

A B

A B mu A1 A2 A3 B1 B2 B3

1 1 1 1 0 0 1 0 0

1 2 1 1 0 0 0 1 0

2 3 1 0 1 0 0 0 1

3 1 1 0 0 1 1 0 0

3 2 1 0 0 1 0 1 0

3 3 1 0 0 1 0 0 1

R, the first dummy variable U1 is dropped, while in SAS and SPSS the
last dummy variable is dropped.

3. JMP and S-Plus use a completely different method.

Most of the discussion in alr assumes the R default for defining dummy
variables.

SAS One way to work with factors is to create your own dummy variables
and work with them in place of the factors. For some users, this may make
computations and results clearer. When using proc reg, there is no choice
because this procedure does not recognize factors. Dummy variables can be
created with if statements in a data step. For example, if D=1 then D1=1;

else D1=0; if D=2 then D2=1; else D2=0; creates two dummy variables. The
dummies can be used to fit regression model as factors in proc reg.

With proc glm, you can use class variables, which treats all the variables
listed in that statement as factors, so you can fit model with those factors
directly. Think of a class variable with m levels as a collection of m dummy
variables, one for each level. In fitting one of the dummies is usually redun-
dant, and SAS will drop the one corresponding to the last level. The default
order of the levels is their alphabetical order; this order can be controlled
with the order=option in the proc glm statement. Table 6.2 shows the default
class variable parameterization in proc glm. If you fit a mean function using
model Y = A B;, from Table 6.2 the columns for A3 and B3 would not be used
in fitting.

6.2.1 No other predictors

SAS To obtain alr[T6.1a], which is part of Table 6.3, one can use the
following SAS code:

proc glm data=alr3.sleep1;

class D;

model TS=D /ss1 noint solution clparm;

run;

FACTORS 59

We used the ss1 option to get only Type I sums of squares; the noint option
to fit with no intercept, the solution option to print estimates, and the clparm

option to print confidence intervals for the estimates.

Table 6.3 Complete output from proc glm with only one factor for the sleep1 data.

The GLM Procedure

Dependent Variable: TS

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 5 6891.717825 1378.343565 97.09 <.0001

Error 53 752.412175 14.196456

Uncorrected Total 58 7644.130000

R-Square Coeff Var Root MSE TS Mean

0.378001 35.77238 3.767818 10.53276

Source DF Type I SS Mean Square F Value Pr > F

D 5 6891.717825 1378.343565 97.09 <.0001

Standard

Parameter Estimate Error t Value Pr > |t|

D 1 13.08333333 0.88808333 14.73 <.0001

D 2 11.75000000 1.00699185 11.67 <.0001

D 3 10.31000000 1.19148882 8.65 <.0001

D 4 8.81111111 1.25593949 7.02 <.0001

D 5 4.07142857 1.42410153 2.86 0.0061

Parameter 95% Confidence Limits

D 1 11.30206374 14.86460292

D 2 9.73023014 13.76976986

D 3 7.92017607 12.69982393

D 4 6.29201550 11.33020672

D 5 1.21504264 6.9278145

alr[T6.1b] uses the default parameterization for R, which drops the first
level by default. If you fit in SAS without the noint option, you will get output
similar to alr[T6.1b], except the “baseline” level will be the last level, not
the first level. You could get exactly the same estimates as in alr[T6.1b]
using the following:

data s2;

set alr3.sleep1;

D2 = D;

if D=1 then D2=6;

output;

prog glm data=s2;

class D2;

model TS=D2/solution;

run;

60 POLYNOMIALS AND FACTORS

We have reordered the factor D so its first level is alphabetically the last level,
and it becomes the baseline as in the text.

6.2.2 Adding a predictor: Comparing regression lines

SAS Suppose Y is the generic name of the response variable, X the generic
name of the continuous predictor, and D is a SAS class variable. The four
models described in alr[6.2.2] can be fit using proc glm using the following
four model statements:

model Y = X D X*D; Model 1, most general
model Y = D X*D/noint;

model Y = X D; Model 2, parallel lines
model Y = X D/noint;

model Y = X D*X; Model 3, common intercept
model Y = D*X;

model Y = X; Model 4, coincident lines

The different choices for the model statements will use different parameters
to specify the same mean function. For example, assuming D has 3 levels,
and D1, D2 and D3, are, respectively, dummy variables for levels 1, 2, 3 of D,
model Y = X D X*D; will specify

E(Y |X) = β0 + β1X + β2D1 + β3D2 + β4D1X + β5D2X

while model Y = D X*D/noint; specifies

E(Y |X) = η1D1 + η2D2 + η3D3 + η4D1X + η5D2X + η6D3X

Both of these will have the same residual sum of squares, and that is all that
is needed for the F -tests.

For the sleep data, the following four models can be fit:

data sleep;

set alr3.sleep1;

logBodyWt=log2(BodyWt);

proc glm data=sleep; *general model;

class D;

model TS=D D*logBodyWt /noint;

run; quit;

proc glm data=sleep; *parallel model;

class D;

model TS=D logBodyWt /noint;

run; quit;

proc glm data=sleep; *common intercept;

MANY FACTORS 61

f
ff f

ff
f

f
ff

f
f

f

f
ff ff

f
f
ff

ff

ff
f

f

f

ff
f fff

f
f

f
f

fff ff
f

fff f

f

ff ff
f
ff fff

ff
ff

f
f ff

f

f
f f

f
f

f

f

f
f

f
f

f
f f

ff
f

ff f ff

f
f

f
f

ff
f

f
f

m
m

m
mm

mm
mm

m

m

m

m

mmm

m

mmm

m

mmmm
m

m
m

m

m

mm

m
mm

m
m

m
m

m

m

mmm

m
m

m

m
mmm

mm

m

m

mm

m m

m

m
m

m

m

m
mm

mmm
mmmm

m

mm m

m

mm
m

m

m
mmm

m

m

mm
m

m

mmm

m

m

m
m

m

m

50 60 70 80 90 100 120

40
60

80
10

0

Linear Predictor, pod mean function

LB
M

, G
ro

up
s

=
 S

ex

Fig. 6.2 alr[F6.8] in color.

class D;

model TS=D*logBodyWt;

run; quit;

proc glm data=sleep; *coincident lines;

class D;

model TS=logBodyWt;

run; quit;

Given the residual sums of squares from these models, computing the F -test
by hand is probably easiest.

6.3 MANY FACTORS

6.4 PARTIAL ONE-DIMENSIONAL MEAN FUNCTIONS

alr[F6.8] is much more compelling in color, and is shown here as Figure 6.2.

62 POLYNOMIALS AND FACTORS

SAS Since POD models are really nonlinear regression models, they can
be fit in SAS using the general procedure proc nlmixed. This procedure is
sufficiently general that we can use POD models with other types of errors,
such as binomial errors or Poisson errors; see Cook and Weisberg (2004). The
output is given by Table 6.4 with the iteration history omitted.

Call proc nlmixed to fit the POD model
proc nlmixed data=alr3.ais;

Starting values for parameters are required, and you may need better ones
parms beta0=1 beta1=1 beta2=1 beta3=1 beta4=1 eta1=1 sig2=1;

g=beta2*Ht+beta3*Wt+beta4*RCC;

LBM_exp=beta0+beta1*Sex+g+eta1*Sex*g;

model LBM~normal(LBM_exp,sig2);

predict g out=m1;

predict LBM_exp out=m2;

run; quit;

Table 6.4 Edited output of the POD model with proc nlmixed for the ais data.

Parameter Estimates

Standard

Param Estimate Error DF t Value Pr > |t| Alpha Lower Upper Gradient

beta0 -14.6563 6.3486 202 -2.31 0.0220 0.05 -27.1744 -2.1382 0.000016

beta1 12.8472 3.6889 202 3.48 0.0006 0.05 5.5735 20.1208 0.00001

beta2 0.1463 0.03376 202 4.33 <.0001 0.05 0.07969 0.2128 0.002007

beta3 0.7093 0.02380 202 29.81 <.0001 0.05 0.6624 0.7563 0.000578

beta4 0.7248 0.5768 202 1.26 0.2104 0.05 -0.4126 1.8621 0.000051

eta1 -0.2587 0.03402 202 -7.61 <.0001 0.05 -0.3258 -0.1917 0.001157

sig2 5.8708 0.5842 202 10.05 <.0001 0.05 4.7190 7.0227 -0.00006

The following will plot separately for each group in the POD direction.

data m1; set m1; g=Pred; keep LBM g Sex;

data pod; set m1; set m2; LBM_exp=Pred; keep LBM g LBM_exp Sex;

proc sort data=pod; by g;

goptions reset=all;

symbol1 v=point c=black i=join l=1;

symbol2 v=point c=red i=join l=2;

axis2 label=(a=90 ’LBM’);

axis3 label=(a=90 ’’);

proc gplot data=pod;

plot LBM_exp*g=Sex /vaxis=axis2 hminor=0 vminor=0;

plot2 LBM*g=Sex /vaxis=axis3 vminor=0 nolegend;

run; quit;

RANDOM COEFFICIENT MODELS 63

Fig. 6.3 Summary graph for the POD mean function for the ais data.

6.5 RANDOM COEFFICIENT MODELS

SAS Random coefficient models can be fit in SAS using proc mixed. We
illustrate with the chloride data and the output is shown in Table 6.5 and
Table 6.6.

proc mixed data=alr3.chloride method=reml covtest;

class Marsh Type;

model Cl=Type Month /noint cl;

random INTERCEPT /type=un subject=Marsh;

run; quit;

proc mixed data=alr3.chloride method=reml covtest;

class Marsh Type;

model Cl=Type Month /noint cl;

random Type /type=un subject=Marsh;

run; quit;

Each of the two mixed procedures gives parameter estimates (with confi-
dence limits), estimated covariance matrix, and model fit statistics like −2×log-
likelihood.

method=reml specifies that the method to estimate the parameters is REML
(REstricted Maximum Likelihood). covtest tells SAS to output the stan-
dard errors for covariance parameter estimates. Option cl gives Wald con-
fidence intervals for parameter estimates (for fixed effects). The keyword
INTERCEPT in the random statement refers to random intercept for each level of
subject=Marsh. Similarly, random Type /subject=Marsh assumes random Type

64 POLYNOMIALS AND FACTORS

Table 6.5 Random intercept for each level of Marsh with proc mixed for the
chloride data.

The Mixed Procedure

Convergence criteria met.

Covariance Parameter Estimates

Standard Z

Cov Parm Subject Estimate Error Value Pr Z

UN(1,1) Marsh 177.83 102.61 1.73 0.0415

Residual 40.7964 12.3276 3.31 0.0005

Fit Statistics

-2 Res Log Likelihood 219.7

AIC (smaller is better) 223.7

AICC (smaller is better) 224.2

BIC (smaller is better) 224.1

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

1 23.61 <.0001

Solution for Fixed Effects

Standard

Effect Type Estimate Error DF t Value Pr > |t| Alpha Lower Upper

Type Isolated -5.5038 7.7172 22 -0.71 0.4832 0.05 -21.5084 10.5007

Type Roadside 45.0680 7.0916 22 6.36 <.0001 0.05 30.3610 59.7751

Month 1.8538 0.5299 22 3.50 0.0020 0.05 0.7549 2.9527

Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

Type 2 22 22.56 <.0001

Month 1 22 12.24 0.0020

effect within each level of Marsh. Option type=UN specifies a unstructured co-
variance matrix. The default is type=VC, which refers to variance components.

SAS does not provide ANOVA comparison for nested models, and it does
not provide confidence limits for covariance parameter estimates. The ANOVA
model comparison is made by likelihood ratio test, which compares the differ-
ence in −2×log-likelihood with a χ2 distribution (the corresponding degrees
of freedom is equal to the difference in number of parameters between the
large model and the small model). The output gives the change in −2×log-
likelihood from 219.7 to 214.1, which equals 5.6, with two degrees of freedom.
Hence p-value=1-probchi(5.6,2)= 0.061. SAS gives p-values for covariance
parameter estimates based on normal distribution, which is appropriate only
in large samples.

RANDOM COEFFICIENT MODELS 65

Table 6.6 Random intercept and random Type effect for each level of Marsh with
proc mixed for the chloride data.

The Mixed Procedure

Convergence criteria met.

Covariance Parameter Estimates

Standard Z

Cov Parm Subject Estimate Error Value Pr Z

UN(1,1) Marsh 4.3219 12.2704 0.35 0.3623

UN(2,1) Marsh 0 . . .

UN(2,2) Marsh 312.87 230.95 1.35 0.0878

Residual 40.0770 11.9382 3.36 0.0004

Fit Statistics

-2 Res Log Likelihood 214.1

AIC (smaller is better) 222.1

AICC (smaller is better) 223.8

BIC (smaller is better) 222.9

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

3 29.16 <.0001

Solution for Fixed Effects

Standard

Effect Type Estimate Error DF t Value Pr > |t| Alpha Lower Upper

Type Isolated -5.3342 3.9873 7 -1.34 0.2228 0.05 -14.7626 4.0942

Type Roadside 45.1451 8.7550 7 5.16 0.0013 0.05 24.4429 65.8473

Month 1.8279 0.5171 22 3.53 0.0019 0.05 0.7555 2.9002

Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

Type 2 7 18.65 0.0016

Month 1 22 12.50 0.0019

7
Transformations

7.1 TRANSFORMATIONS AND SCATTERPLOTS

7.1.1 Power transformations

7.1.2 Transforming only the predictor variable

SAS Many of the methods described in alr center on looking at a graph or
a few graphs to select transformations. The graphs generally consist of both
data and fitted curves, and these seem to be very tedious to produce. For
example, alr[F7.3] is a simple scatterplot with three different fitted curves
added to it. The following program will draw the graph.

data ufcwc;

set alr3.ufcwc;

Dbh_tran1=(Dbh**(-1)-(-1))/(-1);

Dbh_tran2=log(Dbh);

proc reg data=ufcwc;

model Height=Dbh;

output out=trans predicted=Hhat;

run;

proc reg data=ufcwc;

model Height=Dbh_tran1;

output out=trans1 predicted=Hhat1;

run;

proc reg data=ufcwc;

model Height=Dbh_tran2;

output out=trans2 predicted=Hhat2;

67

68 TRANSFORMATIONS

Fig. 7.1 Heights versus Diameter for the ufcwc data.

run;

data trans; set trans; set trans1; set trans2;

proc sort data=trans; by Dbh;

goptions reset=all;

symbol1 v=circle h=1 c=black;

symbol2 v=point h=1 c=black i=join l=1;

symbol3 v=point h=1 c=black i=join l=2;

symbol4 v=point h=1 c=black i=join l=3;

axis2 label=(a=90 ’Height’);

legend1 label=none value=(h=1 font=swiss ’Height’ ’1’ ’-1’ ’0’)

position=(top right inside) cborder=black;

proc gplot data=trans;

plot Height*Dbh=1 Hhat*Dbh=2 Hhat1*Dbh=3 Hhat2*Dbh=4

/overlay hminor=0 vaxis=axis2 vminor=0 legend=legend1;

run; quit;

From the three regressions, we keep the predicted values, called Hat, Hat1 and
Hat2, and then combine them into another data set with a data step. The
remainder of the code sets up and draws the plot.

Rather than relying on visualization to select a transformation, we can
use a numerical method. The idea is to use least squares to estimate the
parameters in the mean function:

E(Y |X = x) = β0 + β1ψS(x, λ) (7.1)

This will estimate β0, β1 and λ simultaneously. This can be done using non-
linear least squares (see Chapter 11), with a program similar to the following:

TRANSFORMATIONS AND SCATTERPLOTS 69

proc nlin data=alr3.ufcwc;

parms beta0 = 111 beta1=.3 lam=1;

model Height = beta0 +

beta1*(if(abs(lam) < .001) then log(Dbh) else (Dbh**lam -1)/lam);

output out=nlinout predictor=yhat;

run;

Nonlinear least squares is fit using proc nlin. In this procedure, the user must
specify starting values for the parameters, and for this we set lam= 1, and the
values for beta0 and beta1 were obtained by first fitting the regression of Dbh
on Height using proc reg. The model statement matches (7.1), substituting
the definition of ψS(x, λ). The output from this fit is, in part,

Approx

Parameter Estimate Std Error Approximate 95% Conf. Limits

th0 -378.0 249.8 -872.0 116.0

th1 90.8127 79.5272 -66.4586 248.1

lam 0.0479 0.1522 -0.2531 0.3488

from which we estimate λ to be about 0.05, with an interval estimate of be-
tween about −.25 and +.35. Any transformation in is range is likely to be
useful, and since λ = 0 is included, we would use the logarithmic transforma-
tion.

The following program will use the output from the last program to draw
a graph of the data with the fitted line superimposed.

proc sort data=nlinout; by Dbh;

goptions reset=all;

symbol1 v=circle h=1 c=black;

symbol2 v=point h=1 c=black i=join l=1;

proc gplot data=nlinout;

plot Height*Dbh=1 yhat*Dbh=2/overlay;

run; quit;

proc sort is used to order the data according to the values on the horizontal
axis of the plot, and the remaining statements draw the plot.

7.1.3 Transforming the response only

SAS The inverse response plots like alr[F7.2] are very inconvenient in SAS
(although writing a macro that would automate this process would make an
interesting and useful student project); a sample program that will give this
plot is included in the script file for this chapter. SAS does have a procedure
that implements the Box-Cox method, however.

7.1.4 The Box and Cox method

SAS The procedure proc transreg implements the Box-Cox procedure for
selecting a response transformation; the other options in this procedure are

70 TRANSFORMATIONS

not covered in alr. Here is the syntax for getting Box-Cox transformations,
using the highway data:

data highway;

set alr3.highway;

logLen=log2(Len); logADT=log2(ADT);

logTrks=log2(Trks); logSigs1=log2((Len*Sigs+1)/Len);

proc transreg data=highway;

model boxcox(Rate /convenient lambda=-1 to 1 by .005)=

identity(logLen logADT logTrks Slim Shld logSigs1);

run;

Table 7.1 Box-Cox transformation for Rate in the highway data.

The TRANSREG Procedure

Transformation Information

for BoxCox(Rate)

Lambda R-Square Log Like

...

-0.830 0.67 -0.57565

-0.825 0.67 -0.54340

-0.820 0.67 -0.51140 *

-0.815 0.67 -0.47963 *

...

-0.245 0.70 1.40755 *

-0.240 0.70 1.40780 <

-0.235 0.70 1.40774 *

...

-0.010 0.70 1.09198 *

-0.005 0.70 1.07794 *

0.000 + 0.70 1.06359 *

0.005 0.70 1.04893 *

0.025 0.70 0.98725 *

...

0.315 0.70 -0.45778 *

0.320 0.70 -0.49165 *

0.325 0.70 -0.52582

0.330 0.70 -0.56028

...

< - Best Lambda

* - Confidence Interval

+ - Convenient Lambda

The required keyword identity specifies no further transformation of the pre-
dictors. In the example, zero for log transformation is a convenient power if it
is in the confidence interval, labelled by the +. As usual, we have transformed
predictors in the data step, although proc transreg does have some facility
for this within the command. The response is specified by boxcox(Rate). The
keywords specify marking a convenient power, and also the search range for

TRANSFORMATIONS AND SCATTERPLOT MATRICES 71

Fig. 7.2 Scatterplot matrix for the highway data.

λ, here between −1 and 1 by steps of .005. Table 7.1 shows the result using
the Box-Cox method, where the “Lambda” denoted by a < is optimal, and
the “Lambda” denoted by a + is a convenient choice.

7.2 TRANSFORMATIONS AND SCATTERPLOT MATRICES

The scatterplot matrix is the central graphical object in learning about re-
gression models. You should draw them all the time; all problems with many
continuous predictors should start with one.

SAS Use Solutions→Analysis→ Interactive Data Analysis to get a scatterplot
matrix. The equivalent proc insight code is

proc insight data=alr3.highway;

scatter Rate Len ADT Trks Slim Shld Sigs

*Rate Len ADT Trks Slim Shld Sigs;

run;

72 TRANSFORMATIONS

You must type the variable names twice so that you can get all the pairwise
scatterplots. The symbol * connects the variables to be plotted on the vertical
axis and the variables to be plotted on the horizontal axis. And there is no
easy procedure for adding loess smooth curves and ols regression lines to the
scatterplot matrix.

7.2.1 The 1D estimation result and linearly related predictors

7.2.2 Automatic choice of transformation of the predictors

SAS No SAS tools for multivariate Box-Cox transformations are available,
although once again this could be a reasonable student project to write macro
for this purpose.

7.3 TRANSFORMING THE RESPONSE

SAS One can follow Section 7.1.4 on the Box-Cox method in SAS proc

transreg to obtain the a Box-Cox transformation power for the response.
An alternative is to do a grid search over an interval of interest. You need
to define power transformations for the response in the data step, then fit
multiple models for the transformed responses and pick the power that gives
you the smallest RSS.

7.4 TRANSFORMATIONS OF NON-POSITIVE VARIABLES

SAS Using the Yeo-Johnson transformations in SAS requires writing your
own code for the Box-Cox procedure. The example below shows how to com-
pute the Yeo-Johnson transformation for a particular choice of λ, but not how
to select the optimal value of λ.

data highway;

set alr3.highway;

*to get the Yeo-Johnson transformation power lambda=1.25;

if (Rate ge 0) then Rate_YJ=((Rate+1)**1.25-1)/1.25;

else Rate_YJ=-((1-Rate)**(2-1.25)-1)/(2-1.25);

8
Regression Diagnostics:

Residuals

8.1 THE RESIDUALS

SAS Options to proc glm and proc reg are used to compute and save diag-
nostic quantities to a data file. Additionally, residuals and related quantities
can be used to draw simple graphs inside these procedures. The following
program

proc reg data=alr3.ufcwc;

model Height=Dbh;

output out=m1 predicted=pred residual=res h=hat press=pres;

run;

will fit the regression mean function specified, and create a new data set
(work.m1) consisting of the original data, plus new variables called pred for
the predicted values, res for the residuals, hat for the leverages, and pres for
the PRESS residuals. Table 8.1 gives relevant diagnostic quantities that can
be saved.

You can also use residuals and related statistics within the call to proc reg

or proc glm. In particular

proc reg data=alr3.ufcwc;

model Height=Dbh;

plot residual.*predicted.;

plot press.*Dbh;

run;

will produce two scatterplots, the first of residuals versus fitted values, and
the second of PRESS versus Dbh. (To plot a keyword like residual, you

73

74 REGRESSION DIAGNOSTICS: RESIDUALS

Table 8.1 Selected quantities with a value for every case that can be saved using the
output statement in proc reg or proc glm.

SAS name Quantity

residuals ordinary residuals alr[E8.4]
student standardized residuals alr[E9.3]
rstudent Studentized residuals alr[E9.4]
cookd Cook’s distance alr[E9.6]
h leverages alr[E8.7]
press PRESS residuals alr[Prob8.4]
stdi sepred for predicting new data at old X-values, alr[E3.23]
stdp sefit at old X-values alr[E3.24]

predicted fitted values Xβ̂

must append a period to the end of the name.) A disadvantage to using this
plotting mechanism is that you can’t add smoothers or other enhancements.

Also,

proc reg data=alr3.ufcwc;

model Height=Dbh;

print all;

run;

will print lists of many diagnostic statistics. This should only be used with
very small sample sizes!

8.1.1 Difference between ê and e

8.1.2 The hat matrix

SAS To find the leverages hii, the diagonals of the hat matrix, using proc

reg, type:

data ufcwc;

set alr3.ufcwc;

proc reg data=ufcwc;

model Height=Dbh;

output out=m1 h=hat;

run;

This code saves the leverages, so they are available to other procedures for
summarization or graphing.

THE RESIDUALS 75

8.1.3 Residuals and the hat matrix with weights

As pointed out in alr[8.1.3], the residuals for wls are
√
wi × (yi − ŷi).

Whatever computer program you are using, you need to check to see how
residuals are defined.

SAS SAS defines the residuals as in alr[E8.4] to be unweighted residuals.
In wls regression, these are not the correct residuals to use in diagnostic
procedures.1 Other diagnostic statistics, such as leverages, alr[E8.7], the
standardized residuals, alr[E9.3], called STUDENT in SAS, and the outlier test
alr[E9.2], called RSTUDENT in SAS, are correctly computed by SAS. We rec-
ommend that with wls residual plots should use standardized or Studentized
residuals, not raw residuals.

If you want to use the correct weighted (or Pearson) residuals alr[E8.13],
the following SAS code computes, prints, and plots them for the physics data.

data physics;

set alr3.physics;

w=1/sd**2;

proc reg data=physics;

model y=x;

weight w;

output out=m1 residual=res predicted=yhat h=hat;

run;

data m1; set m1;

pearson_res=sqrt(w)*res; *compute correct residuals;

proc print data=m1; run;

proc gplot data=m1;

plot pearson_res*yhat=1 /vref=0 hminor=0 vaxis=axis2 vminor=0;

run;

quit;

8.1.4 The residuals when the model is correct

8.1.5 The residuals when the model is not correct

8.1.6 Fuel consumption data

SAS Solutions→Analysis→ Interactive Data Analysis starts proc insight, which
can be used to produce multiple residual plots. You can also start this proce-
dure with the following program.

data fuel2001;

set alr3.fuel2001;

Dlic=Drivers*1000/Pop;

Fuel=FuelC*1000/Pop;

1SAS also uses the unweighted residuals in proc insight.

76 REGRESSION DIAGNOSTICS: RESIDUALS

Income=Income/1000;

logMiles=log2(Miles);

proc insight data=fuel2001;

fit Fuel=Tax Dlic Income logMiles;

scatter R_Fuel*Tax Dlic Income logMiles P_Fuel /label=State;

scatter Fuel*P_Fuel /label=State;

run;

The label option allows user to specify a labelling variable. The variables
R yname for residuals and P yname for fitted values are computed by the fit

statement. These graphs are interactive, and you can use the mouse to identify
the labels for individual cases.

8.2 TESTING FOR CURVATURE

SAS The following SAS code will reproduce alr[T8.1], as shown in Ta-
ble 8.2.

data fuel2001;

set alr3.fuel2001;

Dlic=Drivers*1000/Pop;

Fuel=FuelC*1000/Pop;

Income=Income/1000;

logMiles=log2(Miles);

proc reg data=fuel2001; *this proc reg is simply to retrieve fitted values;

model Fuel=Tax Dlic Income logMiles /noprint;

output out=m1 predicted=pred;

run;

data m1; *this data step is to add quadratic terms to the old data set;

set m1;

Tax2=Tax**2; Dlic2=Dlic**2;

Income2=Income**2; logMiles2=logMiles**2;

pred2=pred**2;

proc reg data=m1; *fit models with one quadratic term added each time;

model Fuel=Tax Tax2 Dlic Income logMiles;

model Fuel=Tax Dlic Dlic2 Income logMiles;

model Fuel=Tax Dlic Income Income2 logMiles;

model Fuel=Tax Dlic Income logMiles logMiles2;

model Fuel=Tax Dlic Income logMiles pred2;

ods output ParameterEstimates=est;

*save the parameter estimates and t-test results;

run;

data est; set est; Term=scan(Variable,1,’2’);

data est; set est; where Term ne Variable;

*keep the test statistics for added terms only;

if Term=’pred’ then do;

Probt=2*probnorm(tValue); Term=’Tukey test’; end;

proc print data=est; var Term tValue Probt; run;

NONCONSTANT VARIANCE 77

Table 8.2 Tests for curvature for the fuel2001 data.

Obs Term tValue Probt

1 Tax -1.08 0.2874

2 Dlic -1.92 0.0610

3 Income -0.08 0.9334

4 logMiles -1.35 0.1846

5 Tukey test -1.45 0.1482

8.3 NONCONSTANT VARIANCE

8.3.1 Variance Stabilizing Transformations

8.3.2 A diagnostic for nonconstant variance

SAS The score test for nonconstant variance can be computed in SAS using
the proc model method; the score test is the same as the Bruesch-Pagan test.
The use of proc model is relatively complex and is beyond the scope of this
primer.

If you don’t mind doing a side calculation by hand, you con compute the
score test using the following program:

proc reg data=alr3.snowgeese;

model photo=obs1;

output out=m1 residual=res predicted=fit;

run;

data m2;

set m1;

u = res*res;

proc reg data=m2;

model u=obs1;

run;

According to the discussion in alr[8.3.3], if RSS1 is the residual sum of
squares from the first of the regressions above, and SSreg2 is the regression
sum of squares from the second regression, then the score test (for variance as
a function of obs1) is .5SSreg

2
/(RSS1/n), with df given by the df for SSreg, in

the example equal to one. To get the score test as a function of fitted values,
replace the second regression above by

proc reg data=m2;

model u=fit;

run;

With only one term in the mean function beyond the intercept, the score test
for variance proportional to the mean is the same as the score test for variance
as a function of the single predictor, so both of the above tests will have the
same value (81.414) for the test statistic.

78 REGRESSION DIAGNOSTICS: RESIDUALS

The SAS data step can be used to provide statistical tables. For example,
the score test described above has value 81.414 and 1 df. Although computa-
tion of the significance level for this test is unnecessary because the value of
the statistic is so large, we illustrate the computation:

data temp;

pvalue = 1-probchi(81.414,1);

proc print data=temp; run;

We provide in the scripts for this chapter a program that uses proc iml to
get the score test without the side calculation.

8.3.3 Additional comments

8.4 GRAPHS FOR MODEL ASSESSMENT

8.4.1 Checking mean functions

SAS There is no automated procedure in SAS for producing model checking
plots. You have to save all the fitted values, including ols prediction and
smoother, use proc gplot to display all the information. In the ufcwc data, for
example, the mean function has only one predictor Dbh and response Height.
Unless you write a macro, possibly based on the programs given below, this
methodology is unusable in SAS.

We can reproduce alr[F8.11] as follows:

proc loess data=alr3.ufcwc;

model Height=Dbh /smooth=.6;

ods output OutputStatistics=m1;

run;

proc reg data=ufcwc;

model Height=Dbh;

output out=m2 predicted=OLS_pred;

run;

data fit; set m1; set m2;

proc sort data=fit; by Dbh;

goptions reset=all;

symbol1 v=circle c=black;

symbol2 v=point c=black i=join l=33;

symbol3 v=point c=black i=join l=1;

axis2 label=(a=90 ’Height’);

proc gplot data=fit;

plot DepVar*Dbh=1 OLS_pred*Dbh=2 Pred*Dbh=3

/overlay hminor=0 vaxis=axis2 vminor=0;

run;

For a model with multiple predictors, the following SAS code generates
mean checking plots alr[F8.13] for the UN2 data:

proc reg data=alr3.UN2;

GRAPHS FOR MODEL ASSESSMENT 79

Fig. 8.1 SAS mean checking plot for the ufcwc data.

model logFertility=logPPgdp Purban;

output out=ols predicted=OLS_pred;

run;

goptions reset=all;

symbol1 v=circle h=1 c=black;

symbol2 v=point c=black i=join l=33;

symbol3 v=point c=black i=join l=1;

axis2 label=(a=90 ’log(Fertility)’);

*--;

*BEGIN plotting alr{F8.13A};

proc reg data=ols;

model OLS_pred=logPPgdp;

output out=mmp1 predicted=mmp1;

run;

proc loess data=ols;

model logFertility=logPPgdp /smooth=.67;

ods output OutputStatistics=loess1;

run;

data fit1; set mmp1; set loess1;

proc sort data=fit1;

by logPPgdp; *sort by logPPgdp before plotting alr{F8.13A};

proc gplot data=fit1;

plot DepVar*logPPgdp=1 mmp1*logPPgdp=2 Pred*logPPgdp=3

/overlay hminor=0 vaxis=axis2 vminor=0;

run;

quit;

80 REGRESSION DIAGNOSTICS: RESIDUALS

*END plotting alr{F8.13A};

*--;

*BEGIN plotting alr{F8.13B};

proc reg data=ols;

model OLS_pred=Purban;

output out=mmp2 predicted=mmp2;

run;

proc loess data=ols;

model logFertility=Purban /smooth=.67;

ods output OutputStatistics=loess2;

run;

data fit2; set mmp2; set loess2;

proc sort data=fit2;

by Purban; *sort by Purban before plotting alr{F8.13B};

proc gplot data=fit2;

plot DepVar*Purban=1 mmp2*Purban=2 Pred*Purban=3

/overlay hminor=0 vaxis=axis2 vminor=0;

run;

quit;

*END plotting alr{F8.13B};

*--;

*BEGIN plotting alr{F8.13C};

data mmp3; set ols; mmp3=OLS_pred; FittedValues=OLS_pred;

proc loess data=ols;

model logFertility=OLS_pred /smooth=.67;

ods output OutputStatistics=loess3;

run;

data fit3; set mmp3; set loess3;

proc sort data=fit3;

by FittedValues; *sort by FittedValues before plotting alr{F8.13C};

proc gplot data=fit3;

plot DepVar*FittedValues=1 mmp3*FittedValues=2 Pred*FittedValues=3

/overlay hminor=0 vaxis=axis2 vminor=0;

run;

quit;

*END plotting alr{F8.13C};

*--;

*BEGIN plotting alr{F8.13D};

data random;

set ols; a1=ranuni(-1); a2=ranuni(-1);

RandomDirection=a1*logPPgdp+a2*Purban;

proc reg data=random;

model OLS_pred=RandomDirection;

output out=mmp4 predicted=mmp4;

run;

proc loess data=random;

model logFertility=RandomDirection /smooth=.67;

ods output OutputStatistics=loess4;

run;

GRAPHS FOR MODEL ASSESSMENT 81

data fit4; set mmp4; set loess4;

proc sort data=fit4; by RandomDirection;

*sort by RandomDirection before plotting alr{F8.13D};

proc gplot data=fit4;

plot DepVar*RandomDirection=1

mmp4*RandomDirection=2

Pred*RandomDirection=3

/overlay hminor=0 vaxis=axis2 vminor=0;

run;

quit;

*END plotting alr{F8.13D};

The part of the SAS program generates a random combination of logPPgdp
and Purban in the data step, where a1 and a2 are both uniform random
numbers with a random seed −1. You can change the seed to any arbitrary
value by the statement seed=value. Finally, the RandomDirection is used as
predictor in proc reg and proc loess.

8.4.2 Checking variance functions

SAS Variance checking plots also require several steps, and are generated
following alr[A.5]. One important step in the SAS code below is proc sql,
which appends a single-number data set to another larger data set. The
general form of its create table statement is: create table newdata-name as

select variable-list from olddata-name1, olddata-name2 <,olddata-name3,...>;.
The * in the create table statement refers to “all available variables in the

selected data sets”. What this procedure below does is to assign the single
value (for example, sigma in anova1) to each row of the larger data set (for
example, ols1). By doing this, we then can use the appended variable in later
calculation. The following will reproduce alr[F8.15A] and alr[F8.15B] for
the UN2 data:

data UN2;

set alr3.UN2;

Purban2=Purban**2;

goptions reset=all;

symbol1 v=circle h=1 c=black;

symbol2 v=point c=black i=join l=33;

symbol3 v=point c=black i=join l=1;

axis1 label=(’Fitted values, original model’);

axis2 label=(’Fitted values, quadratic term added’);

axis3 label=(a=90 ’log(Fertility)’);

*--;

*BEGIN plotting alr{F8.15A};

proc reg data=UN2;

model logFertility=logPPgdp Purban;

output out=ols1 predicted=OLS_pred;

ods output Anova=anova1;

run;

82 REGRESSION DIAGNOSTICS: RESIDUALS

data anova1; set anova1; sigma=sqrt(MS); where Source=’Error’; keep sigma;

proc sql; create table ols1 as select * from ols1, anova1; quit;

data mmp1; *compute OLS_mean+/-se;

set ols1; FittedValues=OLS_pred;

upper1=FittedValues+sigma; lower1=FittedValues-sigma;

proc print data=mmp1; run;

proc loess data=ols1;

model logFertility=OLS_pred /smooth=.67 residual;

ods output OutputStatistics=loess1;

run;

data loess1; set loess1; r2=Residual**2; mean_loess=Pred; y=DepVar;

proc loess data=loess1; *following alr{A.5};

model r2=OLS_pred /smooth=.67;

ods output OutputStatistics=loess_se1;

run;

data loess1; *compute loess+/-se;

set loess1; set loess_se1;

if Pred le 0 then do;

upper_loess1=mean_loess; lower_loess1=mean_loess; end;

else do;

upper_loess1=mean_loess+sqrt(Pred);

lower_loess1=mean_loess-sqrt(Pred); end;

data fit1; set mmp1; set loess1; *combine data sets to draw alr{F8.15A};

proc sort data=fit1;

by FittedValues; *sort by FittedValues before plotting;

proc gplot data=fit1;

plot y*FittedValues=1 (FittedValues upper1 lower1)*FittedValues=2

(mean_loess upper_loess1 lower_loess1)*FittedValues=3

/overlay haxis=axis1 hminor=0 vaxis=axis3 vminor=0;

run;

quit;

*END plotting alr{F8.15A};

*--;

*BEGIN plotting alr{F8.15B};

proc reg data=UN2;

model logFertility=logPPgdp Purban Purban2;

output out=ols2 predicted=OLS_pred;

ods output Anova=anova2;

run;

data anova2; set anova2; sigma=sqrt(MS); where Source=’Error’; keep sigma;

proc sql; create table ols2 as select * from ols2, anova2; quit;

data mmp2; *compute OLS_mean+/-se;

set ols2; FittedValues=OLS_pred;

upper2=FittedValues+sigma; lower2=FittedValues-sigma;

proc print data=mmp2; run;

proc loess data=ols2;

model logFertility=OLS_pred /smooth=.67 residual;

ods output OutputStatistics=loess2;

run;

GRAPHS FOR MODEL ASSESSMENT 83

Fig. 8.2 Marginal model plots with standard deviation smooths as in alr[F8.15].

data loess2; set loess2; r2=Residual**2; mean_loess=Pred; y=DepVar;

proc loess data=loess2; *following alr{A.5};

model r2=OLS_pred /smooth=.67;

ods output OutputStatistics=loess_se2;

run;

data loess2; *compute loess+/-se;

set loess2; set loess_se2;

if Pred le 0 then do;

upper_loess2=mean_loess; lower_loess2=mean_loess; end;

else do;

upper_loess2=mean_loess+sqrt(Pred);

lower_loess2=mean_loess-sqrt(Pred); end;

data fit2; set mmp2; set loess2; *combine data sets to draw alr{F8.15A};

proc sort data=fit2;

by FittedValues; *sort by FittedValues before plotting;

proc gplot data=fit2;

plot y*FittedValues=1 (FittedValues upper2 lower2)*FittedValues=2

(mean_loess upper_loess2 lower_loess2)*FittedValues=3

/overlay haxis=axis2 hminor=0 vaxis=axis3 vminor=0;

run;

quit;

*END plotting alr{F8.15B};

9
Outliers and Influence

9.1 OUTLIERS

9.1.1 An outlier test

SAS Both proc glm and proc reg can compute the studentized residuals
rstudent that are used as the basis of the outlier test. Finding the maximum
absolute residual, and then using the Bonferroni inequality as outlined in alr,
requires writing a complex SAS program, which we describe below.

9.1.2 Weighted least squares

9.1.3 Significance levels for the outlier test

SAS In the following example, an outlier test is performed, assuming that
assumptions for outlier test in alr[9.1.1] are met. This test uses the largest
absolute Studentized residual. The df is also from the output from proc reg

using the ods statement. The data we use here is UN2.

proc reg data=alr3.UN2;

model logFertility=logPPgdp Purban;

output out=m1 rstudent=rstu;

run;

data m1;

set m1;

retain casenum 0;

casenum=casenum+1;

85

86 OUTLIERS AND INFLUENCE

absrstu=abs(rstu);

proc sort data=m1; by descending absrstu; run;

data m1; set m1 (obs=10); p=min(1,193*2*(1-probt(absrstu,190-1)));

proc print data=m1; run;

We first use proc reg to get the Studentized residuals, ti. In the next data

step, we create the absolute values ti| of rstudent and a variable casenum that
gives the observation number. This latter variable can serve as an identifier
in problems in which the points are not labelled. proc sort ordered the data
according to the values of |ti|. The next data step sets p equal to the Bon-
ferroni p-values; you must supply the sample size, n = 193 in the example,
and the number of df for error, 190, in the example suitable for your problem.
The statistics for the 10 cases with the largest |ti| are then printed:

Obs logPPgdp logFertility Purban Locality absrstu p

1 8.434628 0.33647224 41 Moldova 2.73895 1

2 9.424166 0.13976194 67 Armenia 2.69971 1

3 9.575539 0.13976194 68 Ukraine 2.63789 1

4 10.663558 0.09531018 67 Bulgaria 2.38718 1

5 10.125413 0.26236426 43 Bosnia-Herzeg 2.34340 1

6 9.231221 0.33647224 57 Georgia 2.32188 1

7 12.857398 1.60140574 77 Oman 2.30490 1

8 9.157347 0.3435897 61 N.Korea 2.29487 1

9 10.249113 0.18232156 70 Belarus 2.27244 1

10 11.94398 1.773256 49 Equatorial.Gu 2.19654 1

None of the Studentized residuals are particularly large in this example, and
all the Bonferroni-adjusted p-values are equal to one.

For problems that are not too large, you can identify the largest Studentized
residual simply by examining a list of them. Suppose, for example, that
n = 100, p′ = 5, and the largest absolute Studentized residual has the value
3.83. You can compute the significance level for the outlier test from

data temp;

pvalue = min(1,100*2*(1-probt(3.83,200-5-1)));

proc print data=temp; run;

Giving the following output:
Obs pvalue

1 0.017292

9.1.4 Additional comments

9.2 INFLUENCE OF CASES

SAS You can obtain various influence statistics from SAS output. For ex-
ample, the following SAS code will give you raw residual, studentized residual,
leverage and Cook’s distance:

proc reg data=alr3.UN2;

INFLUENCE OF CASES 87

model logFertility=logPPgdp Purban;

output out=m1 residual=res rstudent=rstu h=hat cookd=cookd;

run;

The reweight and refit options in proc reg provide a simple mechanism
for refitting after deleting a few cases. In the following example, we fit the
mean function log(Fertility) = β0 + β1log(PPgdp) + β2Purban using the UN2

data. We first delete case 2 and refit. We then replace it, and remove cases
1, 3 and 6. Finally, we restore all the deleted cases.

data UN2;

set alr3.UN2;

retain casenum 0;

casenum=casenum+1;

proc reg data=UN2;

model logFertility=logPPgdp Purban;

run;

reweight casenum=2; refit; print; run; *delete case 2;

reweight undo; *restore the last deleted case;

reweight casenum=1;

reweight casenum=3;

reweight casenum=6;

refit; print; run; *delete case 1,3,6 from the data set;

reweight allobs /reset; *restore all previously deleted cases;

The key statements here are reweight condition(s) and refit. reweight

changes the weights on the selected cases. You can specify the new (common)
weight for the selected cases that satisfy certain condition(s). We choose to
omit the weight=value option because the default is to set the weights of those
cases to zero. Another option for reweight statement is reset, for example, in
the last reweight statement in the code above. What that statement does is
to reset the weights of allobs (namely, all observations) to their initial values.
The statement reweight undo; will undo the last reweight statement.

9.2.1 Cook’s distance

SAS The plot of Cook’s distance versus observation number using the rat

data can be obtained as follows:

goptions reset=all;

proc reg data=rat;

model y=BodyWt LiverWt Dose;

output out=m1 cookd=cookd;

plot cookd.*obs.;

run;

88 OUTLIERS AND INFLUENCE

9.2.2 Magnitude of Di

SAS We present in the script for this chapter a program to reproduce a
version of alr[F9.3].

9.2.3 Computing Di

9.2.4 Other measures of influence

SAS Added variable plots are discussed in Chapter 3.

9.3 NORMALITY ASSUMPTION

SAS QQ plots can be drawn with the plot statement in proc reg.

data heights;

infile "c:/My Documents/alr3/heights.txt" firstobs=2;

input Mheight Dheight;

goptions reset=all;

*********************************;

qqnorm plot for heights data*;

*********************************;

proc reg data=heights;

model Dheight=Mheight;

title ’QQ Plot’;

plot r.*nqq. /noline mse cframe=ligr;

run;

*********************************;

qqnorm plot for transact data;

*********************************;

data transact;

infile "c:/My Documents/alr3/transact.txt" firstobs=2;

input T1 T2 Time;

proc reg data=transact;

model Time=T1 T2;

title ’QQ Plot’;

plot r.*nqq. /noline mse cframe=ligr;

run;

The mysterious keyword nqq. is simply the normal quantiles. The three op-
tions in the plot statement are used to, respectively, delete the horizontal
reference line, display mean squared error statistic on the graph and change
the background of the graph from white to grey.

NORMALITY ASSUMPTION 89

Fig. 9.1 QQnorm plots of residuals for the heights data (left) and for the transact

data (right).

10
Variable Selection

10.1 THE ACTIVE TERMS

The first example in this chapter uses randomly generated data. This can be
helpful in trying to understand issues against a background where we know
the right answers. Generating random data is possible in most statistical
packages, though doing so may not be easy or intuitive.

SAS The function rannor is used in the data step to generate standard nor-
mal (psuedo) random numbers. rannor has an optional argument seed that
can be any positive integer. By setting the seed, you will always use the exact
same “random” numbers. (How can they be random if you always get the
same ones?) If seed is set to −1, the system selects the starting values for the
random numbers. Only one seed can be specified per data step. The data set
generates data only one observation at a time, so you need a do loop to get a
vector of random numbers. A output statement must be included in the loop,
or else only the last generated value will be kept.

The following SAS program generates one hundred pseudo-random numbers
for each xi’s and e, then y is generated as a function of x1, x2 and e. Finally,
proc reg is called to fit a linear model of y on all the xi’s, as in alr[10.1].
See the fitted model in Table 10.1.

data case1; *create a dataset called case1;

seed=20040622; *use this seed to get the same random numbers;

do i=1 to 100; *repeat to get 100 observations;

x1=rannor(seed);

x2=rannor(seed);

91

92 VARIABLE SELECTION

x3=rannor(seed);

x4=rannor(seed);

e=rannor(seed);

y=1+x1+x2+e;

output; *REQUIRED to keep what you just did;

end; *all do loops end with ’end’;

* the next line prints the first 3 and last 3 observations;

proc print data=case1; where (i le 3 | i ge 98); run;

proc reg data=case1;

model y=x1 x2 x3 x4/vif;

run;

Table 10.1 Excerpt of proc reg output with simulated independent predictors.

Parameter Estimates

Parameter Standard Variance

Variable DF Estimate Error t Value Pr > |t| Inflation

Intercept 1 0.99662 0.10738 9.28 <.0001 0

x1 1 0.97910 0.10870 9.01 <.0001 1.01447

x2 1 0.85222 0.10990 7.75 <.0001 1.01517

x3 1 0.01066 0.10833 0.10 0.9218 1.00133

x4 1 -0.06222 0.11079 -0.56 0.5757 1.01860

The second case in alr[9.1] involves a non-diagonal variance-covariance
matrix, Σ. Most computer programs, including SAS, can only generate un-
correlated random numbers. Suppose that X is an n× p matrix, all of whose
elements are N(0, 1), random numbers, and suppose further we can find a
matrix C such that Σ = C′C. This matrix C is called a square root of Σ.
Then the matrix X∗ = XC′ will be a matrix of random numbers, still with
mean zero, but the covariance matrix will now be C′C = Σ.

The square root of a matrix is not unique, but any square root will work.
proc iml has several routines for computing a square root; we will use the one
called the Cholesky decomposition computed by the root macro.

data temp (drop=y); *set case1; *temp = case1 with y dropped;

proc iml; *use proc iml to do computing

use temp;

read all var {x1 x2 x3 x4} into x; *x is a matrix;

read all var {e} into e;

SIGMA={ 1 0 .95 0,

0 1 0 -.95,

.95 0 1 0,

0 -.95 0 1}; *define SIGMA;

r=root(SIGMA); *compute its Cholesky factorization

x=x*r; *each row of this x has a 4-dim;

*multivariate normal distribution;

*with mean 0 and variance SIGMA;

x1=x[,1]; x2=x[,2]; x3=x[,3]; x4=x[,4]; *convert to vectors;

THE ACTIVE TERMS 93

create case2 var {x1 x2 x3 x4 e}; *create new data set;

append var {x1 x2 x3 x4 e};

close case2; *close the data set;

quit; *quit iml;

data case2; set case2; y=x1+x2+e;

proc reg data=case2;

model y=x1-x4/vif;

run;

The response y is generated from the same function of xi’s and e, and we fit
the same linear model of y on xi’s, as in Case 1. See output in Table 10.2.
Unlike the results in the book, in this particular random data set the active
predictors are correctly identified, as will sometimes happen. As correlations
get bigger, the frequency of correct identification gets lower.

Table 10.2 proc reg with simulated correlated predictors.

Parameter Estimates

Parameter Standard Variance

Variable DF Estimate Error t Value Pr > |t| Inflation

Intercept 1 -0.00338 0.10738 -0.03 0.9749 0

X1 1 0.94667 0.34410 2.75 0.0071 10.16563

X2 1 0.66293 0.36497 1.82 0.0725 11.19670

X3 1 0.03413 0.34695 0.10 0.9218 10.15189

X4 1 -0.19926 0.35480 -0.56 0.5757 11.16227

10.1.1 Collinearity

SAS Variance inflation factors are computed in proc reg by adding the /

vif option to the model statement. In the two simulations, the VIF are all
close to one for the first simulation, and equal to about 11 in the second; see
output in Tables 10.1-10.2.

proc reg data=case1;

model y=x1 x2 x3 x4 /vif;

run;

proc reg data=case2;

model y=x1 x2 x3 x4 /vif;

run;

94 VARIABLE SELECTION

10.1.2 Collinearity and variances

10.2 VARIABLE SELECTION

10.2.1 Information criteria

The information criteria alr[E10.7]–alr[E10.9] depend only on the RSS,
p′, and possibly an estimate of σ2, and so if these are needed for a particular
model, they can be computed from the usual summaries available in a fitted
regression model.

SAS We can retrieve AIC, BIC, Cp and PRESS statistics directly from proc

reg. For proc reg in SAS, the definitions of AIC, Cp and PRESS are the same
as alr[E10.7], alr[E10.9] and alr[E10.10]. However, the definition of BIC
is different from alr[E10.8]. It is defined in SAS as

BIC = n log(RSSC/n) + 2(p+ 2)q − 2q2

where
q = nσ̂2/RSSC

BIC in alr[E10.8] is called SBC in SAS. Since the fullmodel and the submodel

in the following program produce different estimates of the error variance σ2,
each model uses its own σ̂ in the calculation of Cp. This means that the Cp

statistic from the submodel is not the value described in alr. See output in
Table 10.3.

data highway;

set alr3.highway;

logLen=log2(Len); logADT=log2(ADT);

logTrks=log2(Trks); logSigs1=log2((Len*Sigs+1)/Len);

*create dummies for variable Hwy;

if (Hwy eq 1) then Hwy1=1; else Hwy1=0;

if (Hwy eq 2) then Hwy2=1; else Hwy2=0;

if (Hwy eq 3) then Hwy3=1; else Hwy3=0;

logRate=log2(Rate);

proc reg data=highway outest=m1

(keep=_model_ _aic_ _bic_ _cp_ _press_ _p_ _sse_ _mse_ _sbc_);

fullmodel: model logRate=logADT logTrks Lane Acpt logSigs1 Itg Slim

logLen Lwid Shld Hwy1 Hwy2 Hwy3

/noprint aic bic cp press sse mse sbc;

submodel: model logRate=logLen Slim Acpt logTrks Shld

/noprint aic bic cp press sse mse sbc;

run;

goptions reset=all;

title ’Model fit and diagnostic statistics for the highway data’;

proc print data=m1; run;

*print some statistics for the full model, as;

*in alr{10.2.1}. BIC as in alr{E10.7} is displayed as SBC;

COMPUTATIONAL METHODS 95

Table 10.3 Combined output of information criteria with the highway data.

Model fit and diagnostic statistics for the highway data

Obs _MODEL_ _PRESS_ _P_ _SSE_ _MSE_ _CP_ _AIC_ _BIC_ _SBC_

1 fullmodel 11.2722 14 3.53696 0.14148 14 -65.6115 -48.5587 -42.3216

2 submodel 7.6880 6 5.01595 0.15200 6 -67.9866 -63.8709 -58.0052

10.2.2 Computationally intensive criteria

Computation of PRESS, alr[E10.10], is not common in regression programs,
but it is easy to obtain given the residuals and leverages from a fitted model.

SAS SAS does allow computing PRESS by adding / press to the model
statement in proc reg. The results are shown in Table 10.3 using the program
in Section 10.2.1.

10.2.3 Using subject-matter knowledge

10.3 COMPUTATIONAL METHODS

SAS The SAS procedure proc reg has an option selection that is added to
the model statement for choosing a numerical procedure for selecting a subset
of terms. While several choices are available for this option, the most relevant
seem to be forward for forward selection; backward for backward elimination,
and cp, to find the subsets that minimize Cp. This latter option users the
Furnival and Wilson (1974) algorithm discussed in alr[10.3]. Since proc reg

does not permit factors, using Cp is essentially the same as using any of the
other criteria discussed in alr. If you have factors, you must code them
yourself using dummy variables (an example is below), and you apparently
can’t force terms into every mean function, and add/delete terms as a group.

The first example uses the Furnival and Wilson algorithm to find subsets
that minimize Mallow’s Cp. As in alr[10.3], we use the highway data. We
start by coding the factor Hwy as a set of dummy variables.

goptions reset=all;

data highway;

set alr3.highway;

logLen=log2(Len); logADT=log2(ADT);

logTrks=log2(Trks); logSigs1=log2((Len*Sigs+1)/Len);

logRate=log2(Rate);

if (Hwy eq 1) then Hwy1=1; else Hwy1=0;

if (Hwy eq 2) then Hwy2=1; else Hwy2=0;

if (Hwy eq 3) then Hwy3=1; else Hwy3=0;

proc reg data=highway;

model logRate=logADT logTrks Lane Acpt logSigs1 Itg Slim

96 VARIABLE SELECTION

logLen Lwid Shld Hwy1 Hwy2 Hwy3

/selection=cp aic best=10;

run; quit;

We have requested the 10 subsets with minimum Cp, and have also requested
that AIC be printed for each of these subsets. The output is shown in Ta-
ble 10.4. Many of these subsets include one, but not all, of the dummy
variables for Hwy, so these are not likely to be of much interest.

Table 10.4 Variable selection based on Mallow’s Cp for the highway data.

C(p) Selection Method

Number in

Model C(p) R-Square AIC Variables in Model

7 3.4857 0.7789 -75.3600 logADT logTrks Acpt

logSigs1 Slim logLen Hwy1

5 3.5203 0.7453 -73.8303 logSigs1 Slim logLen Lwid Hwy2

5 3.5544 0.7450 -73.7868 logADT logSigs1 Slim logLen Hwy1

7 3.5744 0.7782 -75.2297 logADT Acpt logSigs1 Slim

logLen Hwy1 Hwy2

5 3.6065 0.7445 -73.7204 logSigs1 Slim logLen Shld Hwy2

6 3.6289 0.7611 -74.3254 logADT logTrks logSigs1

Slim logLen Hwy1

6 3.7028 0.7604 -74.2249 logSigs1 Itg Slim logLen

Hwy2 Hwy3

7 3.8174 0.7762 -74.8747 logADT logSigs1 Slim logLen

Lwid Hwy2 Hwy3

7 3.9278 0.7753 -74.7143 logADT logSigs1 Slim logLen

Hwy1 Hwy2 Hwy3

7 3.9477 0.7751 -74.6855 logADT logSigs1 Slim logLen

Lwid Hwy1 Hwy2

The program below illustrates forward selection.

proc reg data=highway;

model logRate=logADT logTrks Lane Acpt logSigs1 Itg Slim

logLen Lwid Shld Hwy1 Hwy2 Hwy3

/selection=forward;

ods output SelectionSummary=submodels;

run; quit;

proc print data=submodels; run;

The summary of forward selection from proc reg is given in Table 10.5.

WINDMILLS 97

Table 10.5 Summary of forward variable selection for the highway data.

Summary of Forward Selection

Var Number Partial Model

Obs Model Dependent Step Entered In RSquare Rsquare Cp FValue ProbF

1 MODEL1 logRate 1 Slim 1 0.4765 0.4765 27.7232 33.68 <.0001

2 MODEL1 logRate 2 logLen 2 0.1629 0.6394 10.2021 16.27 0.0003

3 MODEL1 logRate 3 Acpt 3 0.0354 0.6748 7.9587 3.81 0.0589

4 MODEL1 logRate 4 logTrks 4 0.0212 0.6961 7.4145 2.38 0.1325

5 MODEL1 logRate 5 Hwy2 5 0.0192 0.7152 7.1199 2.22 0.1458

6 MODEL1 logRate 6 logSigs1 6 0.0386 0.7539 4.4903 5.02 0.0321

7 MODEL1 logRate 7 logADT 7 0.0158 0.7697 4.5933 2.13 0.1544

8 MODEL1 logRate 8 Hwy3 8 0.0171 0.7868 4.5427 2.41 0.1312

10.3.1 Subset selection overstates significance

10.4 WINDMILLS

10.4.1 Six mean functions

10.4.2 A computationally intensive approach

The data for the windmill example in alr[10.4.2] is not included with the
alr3 library, and must be downloaded separately from www.stat.umn.edu/alr.

SAS The SAS code used to compute alr[F10.1] are given in the script for
this chapter.

11
Nonlinear Regression

11.1 ESTIMATION FOR NONLINEAR MEAN FUNCTIONS

11.2 INFERENCE ASSUMING LARGE SAMPLES

SAS SAS includes several procedures and tools for fitting nonlinear regres-
sion models. We will discuss only two of them, proc nlin and proc nlmixed.
proc nlmixed is newer and more general, and so we will mainly discuss using
this procedure. An example of using proc nlin is also given. The syntax in
these two procedures is much more complicated than is the syntax for proc

reg or proc glm because these two programs are more general.
We begin by illustrating fitting a mean function

E(Gain|A) = θ1 + θ2(1 − e−θ3A) (11.1)

with the turk0 data.
Here are the commands needed for proc nlmixed:

proc nlmixed data=alr3.turk0 corr;

parms th1=620 th2=200 th3=10 sig2=10;

fitGain=th1+th2*(1-exp(-th3*A));

model Gain~Normal(fitGain,sig2);

predict fitGain out=ghat;

run; quit;

Plot the fitted function
goptions reset=all;

symbol1 v=circle c=black;

99

100 NONLINEAR REGRESSION

symbol2 v=point c=black i=join l=1;

proc gplot data=ghat;

plot Gain*A=1 Pred*A=2 /overlay hminor=0 vminor=0;

run; quit;

Table 11.1 Modified output from proc nlmixed for the turk0 data.

The NLMIXED Procedure

Iteration History

Iter Calls NegLogLike Diff MaxGrad Slope

1 3 733.498721 1022.171 238.637 -2272.58

2 4 658.723273 74.77545 120.8772 -502.002

... ...

24 46 152.343619 0.000015 0.000243 -0.00003

25 48 152.343619 2.268E-8 0.000019 -4.24E-8

NOTE: GCONV convergence criterion satisfied.

Fit Statistics

-2 Log Likelihood 304.7

AIC (smaller is better) 312.7

AICC (smaller is better) 314.0

BIC (smaller is better) 318.9

Parameter Estimates

Standard

Parameter Estimate Error DF t Value Pr > |t| Alpha

th1 622.96 5.6064 35 111.12 <.0001 0.05

th2 178.25 10.9596 35 16.26 <.0001 0.05

th3 7.1222 1.1071 35 6.43 <.0001 0.05

sig2 353.35 84.4669 35 4.18 0.0002 0.05

Parameter Estimates

Parameter Lower Upper Gradient

th1 611.58 634.34 5.031E-6

th2 156.00 200.50 1.557E-6

th3 4.8748 9.3697 0.000019

sig2 181.88 524.83 -3.1E-7

Correlation Matrix of Parameter Estimates

Row Parameter th1 th2 th3 sig2

1 th1 1.0000 -0.3388 -0.3928 0.000012

2 th2 -0.3388 1.0000 -0.6052 -3.17E-6

3 th3 -0.3928 -0.6052 1.0000 -4.21E-6

4 sig2 0.000012 -3.17E-6 -4.21E-6 1.0000

The parms statement specifies the parameters that will appear in the model.
These include the θs, which we have called th, and also the variance σ2 that we
call sig2. Unlike proc reg, you must specify starting values for the parameter

INFERENCE ASSUMING LARGE SAMPLES 101

Fig. 11.1 Prediction curve of Gain on A for the turk0 data.

estimates, as discussed in alr[11.2], and if the starting values are poor, the
computational algorithm may fail to find the estimates. Next, we define a
mean function fitGain to be equal the kernel mean function, a rewriting of
(11.1) using notation that SAS understands. The model statement specifies
the whole model, not just the mean function. This corresponds to the use of
the term “model” in alr as referring to the mean function plus any other
assumptions. For the example, the model assumes that Gain is normally
distributed with mean fitGain and constant variance sig2. The option corr

in the proc nlmixed statement tells SAS to display the correlation matrix of the
parameter estimates. proc nlmixed permits many other distributions besides
the normal. In addition, it has another statement called random for specifying
random effects that we will not be using in this primer, except for computing
the random coefficient models presented in Section 6.5. Finally, the predict

statement is used to get a prediction and prediction standard error for each
observation. The option out saves the output as a data file that is required
to draw the graph of the fitted function. The output in Table 11.1 includes
the parameter estimates and the estimated correlation matrix. The remaining
part of the program uses proc gplot to graph the fitted curve and the data
shown in Figure 11.1.

The next SAS program will give a lack-of-fit test, as shown in Table 11.2,
for the above nonlinear model of Gain on A, using the turk0 data:

goptions reset=all;

data turk0;

infile "c:/My Documents/alr3/turk0.txt" firstobs=2;

102 NONLINEAR REGRESSION

input A Gain;

proc nlmixed data=turk0;

parms th1=620 th2=200 th3=10 s2=10;

fitGain=th1+th2*(1-exp(-th3*A));

model Gain~Normal(fitGain,s2);

ods output ParameterEstimates=a1;

run; quit;

data a1; set a1; where (Parameter=’sig2’); SS=Estimate*DF; DF=32;

proc glm data=turk0;

class A;

model Gain=A;

ods output OverallAnova=a2;

run; quit;

data a2; set a2; where (Source=’Error’);

data lof (keep=DF SS); set a1 a2;

proc sort data=lof; by descending DF;

proc iml;

use lof;

read all var {DF} into resDF;

read all var {SS} into resSS;

DF=j(2,1,.); Sumsq=j(2,1,.); F=j(2,1,.); pval=j(2,1,.);

DF[2]=resDF[1]-resDF[2];

Sumsq[2]=resSS[1]-resSS[2];

F[2]=Sumsq[2]/DF[2]/(resSS[2]/resDF[2]);

pval[2]=1-probF(F[2],DF[2],resDF[2]);

title ’lack of fit test’;

print resDF resSS DF Sumsq F pval;

quit;

proc iml is used to do the F -test comparing the nonlinear model to the simple
one-way ANOVA, since proc nlmixed has neither class statement nor test

statement.

Table 11.2 Lack of fit test for a nonlinear model with the turk0 data.

lack of fit test

RESDF RESSS DF SUMSQ F PVAL

32 12367.34

29 9823.6 3 2543.7399 2.5031033 0.0789298

For fitting nonlinear models with factors, you need to define dummy vari-
ables for factor variables in the data step. Then you can fit nonlinear model
with these dummies. We fit four different models and compare them with F -
tests. Since proc nlmixed does not provide correct error degrees of freedom,
we present such an example using proc nlin for the turkey data. The syntax
for nlin is a little simpler for nonlinear regression models because the method
is much less general. The parms statement is the same as in proc nlmixed.

INFERENCE ASSUMING LARGE SAMPLES 103

The model statement in nlin specifies only the mean function, as constant
variance and normality as assumed by this procedure.

goptions reset=all;

data turkey;

set alr3.turkey;

S1=(S eq 1);

S2=(S eq 2);

S3=(S eq 3);

w=sqrt(m);

wGain=w*Gain;

proc nlin data=turkey; *most general;

parms th11=620 th12=620 th13=620

th21=200 th22=200 th23=200

th31=10 th32=10 th33=10;

model wGain=w*(S1*(th11+th21*(1-exp(-th31*A)))+

S2*(th12+th22*(1-exp(-th32*A)))+

S3*(th13+th23*(1-exp(-th33*A))));

ods output Anova=a1;

run;

proc nlin data=turkey; *common intercept;

parms th1=620

th21=200 th22=200 th23=200

th31=10 th32=10 th33=10;

model wGain=w*(th1+

S1*(th21*(1-exp(-th31*A)))+

S2*(th22*(1-exp(-th32*A)))+

S3*(th23*(1-exp(-th33*A))));

ods output Anova=a2;

run;

proc nlin data=turkey; *common intercept and asymptote;

parms th1=620 th2=200

th31=10 th32=10 th33=10;

model wGain=w*(th1+th2*(

S1*(1-exp(-th31*A))+

S2*(1-exp(-th32*A))+

S3*(1-exp(-th33*A))));

ods output Anova=a3;

run;

proc nlin data=turkey; *common regression;

parms th1=620 th2=200 th3=10;

model wGain=w*(th1+th2*(1-exp(-th3*A)));

ods output Anova=a4;

run;

**************************************;

Anova table for model 1, 2 and 4;

**************************************;

data anova (keep=DF SS); set a1 a2 a4; where (Source eq ’Residual’);

proc sort data=anova; by descending DF;

104 NONLINEAR REGRESSION

proc iml;

use anova;

read all var {DF} into resDF;

read all var {SS} into resSS;

DF=j(3,1,.); Sumsq=j(3,1,.); F=j(3,1,.); pval=j(3,1,.);

DF[2]=resDF[1]-resDF[2]; DF[3]=resDF[2]-resDF[3];

Sumsq[2]=resSS[1]-resSS[2]; Sumsq[3]=resSS[2]-resSS[3];

F[2]=Sumsq[2]/DF[2]/(resSS[2]/resDF[2]);

F[3]=Sumsq[3]/DF[3]/(resSS[3]/resDF[3]);

pval[2]=1-probF(F[2],DF[2],resDF[2]);

pval[3]=1-probF(F[3],DF[3],resDF[3]);

title ’Analysis of Variance Table’;

print resDF resSS DF Sumsq F pval;

quit;

**************************************;

Anova table for model 1, 3 and 4;

**************************************;

data anova (keep=DF SS); set a1 a3 a4; where (Source eq ’Residual’);

proc sort data=anova; by descending DF;

proc iml;

use anova;

read all var {DF} into resDF;

read all var {SS} into resSS;

DF=j(3,1,.); Sumsq=j(3,1,.); F=j(3,1,.); pval=j(3,1,.);

DF[2]=resDF[1]-resDF[2]; DF[3]=resDF[2]-resDF[3];

Sumsq[2]=resSS[1]-resSS[2]; Sumsq[3]=resSS[2]-resSS[3];

F[2]=Sumsq[2]/DF[2]/(resSS[2]/resDF[2]);

F[3]=Sumsq[3]/DF[3]/(resSS[3]/resDF[3]);

pval[2]=1-probF(F[2],DF[2],resDF[2]);

pval[3]=1-probF(F[3],DF[3],resDF[3]);

title ’Analysis of Variance Table’;

print resDF resSS DF Sumsq F pval;

quit;

We fit weighted nonlinear regression models with one continuous variable and
one factor. Model 1, 2, 3 and 4 are most general, common intercept, com-
mon intercept and asymptote and common regression, respectively. We first
code the dummies S1, S2 and S3 for S, and create the weighted response in
the data step, namely, wGain here, using

√
m as weights. Then we fit four

different nonlinear models and run two ANOVA for comparing model 1, 2, 4
and comparing models 1, 3, 4, respectively. See ANOVA tables in Table 11.3.
Finally, we compute all the F -values and p-values in proc iml.

BOOTSTRAP INFERENCE 105

Table 11.3 ANOVA tables for comparing four different nonlinear models with the
turk0 data.

ANOVA table for comparing model 1, 2 and 4;

Analysis of Variance Table

RESDF RESSS DF SUMSQ F PVAL

10 4326.0797

6 2040.0059 4 2286.0738 1.6809318 0.2710972

4 1151.1523 2 888.85359 1.5442849 0.3184218

ANOVA table for comparing model 1, 3 and 4;

Analysis of Variance Table

RESDF RESSS DF SUMSQ F PVAL

10 4326.0797

8 2568.3882 2 1757.6915 2.7374233 0.1242409

4 1151.1523 4 1417.2359 1.2311454 0.4225784

11.3 BOOTSTRAP INFERENCE

SAS We give code for the bootstrap discussed in alr[11.3]. See also the
documentation for the macro boots for more information. The result with
B=999 and seed=2004 is given in Table 11.4.

***;

A similar macro appeared in chapter 4;

***;

%let n=39; *#obs in the data;

%macro nlsboot(B=1, seed=1234, outputdata=temp);

%do i=1 %to &B;

*the following command tells SAS to clear both;

*the log window and the output window;

dm ’log; clear; output; clear; ’;

data analysis;

choice=int(ranuni(&seed*&i)*&n)+1;

set alr3.segreg point=choice;

j+1;

if j>&n then STOP;

proc nlmixed data=analysis;

parms th0=70 th1=.5 gamma=40 sig2=1;

fitC=th0+th1*max(0,Temp-gamma);

model C~Normal(fitC,sig2);

ods output ParameterEstimates=pe;

run; quit;

proc sql; create table outests as (select Estimate,

sum(Estimate*(Parameter=’th0’)) as th0,

sum(Estimate*(Parameter=’th1’)) as th1,

sum(Estimate*(Parameter=’gamma’)) as gamma from pe);

quit;

106 NONLINEAR REGRESSION

Table 11.4 Summary of bootstrap estimation for the segreg data with proc nlmixed,
based on 999 resamples.

th0 th1 gamma

Mean 74.757751 0.6059323 42.874274

SD 1.6226234 0.1274196 5.1164431

2.5% 71.472186 0.4577865 36

97.5% 77.657143 0.9673802 54.599069

data outests (keep=th0 th1 gamma); set outests (obs=1);

proc append base=&outputdata data=outests; run;

%end;

%mend nlsboot;

example as in the book, with B=999 resample estimates;

%nlsboot(B=999, seed=2004, outputdata=mynlboot);

proc univariate data=mynlboot noprint;

var th0 th1 gamma;

output out=mynlbootstat mean=mean_th0 mean_th1 mean_gamma

std=sd_th0 sd_th1 sd_gamma

pctlpts=2.5, 97.5 pctlpre=th0 th1 gamma;

run;

goptions reset=all;

proc iml; *we launch proc iml to have a formatted output;

use mynlbootstat;

read all var _all_ into summary;

out=j(4,3,.);

out[1,]=t(summary[1:3]);

out[2,]=t(summary[4:6]);

out[3,]=t(summary[{7,9,11}]);

out[4,]=t(summary[{8,10,12}]);

print out[rowname={’Mean’ ’SD’ ’2.5%’ ’97.5%’}

colname={’th0’ ’th1’ ’gamma’} label=""];

quit;

We obtain bootstrap estimate by taking average over all available estimates
from the resamples, bootstrap standard error for each estimate is given by the
sample standard deviation of B=999 sets of estimates available. Accompanied
are 95% confidence intervals.

11.4 REFERENCES

12
Logistic Regression

Both logistic regression and the normal linear models that we have discussed
in earlier chapters are examples of generalized linear models. Many programs,
including SAS, R, and S-Plus, have procedures that can be applied to any
generalized linear model. Both JMP and SPSS seem to have separate pro-
cedures for logistic regression. There is a possible source of confusion in the
name. Both SPSS and SAS use the name general linear model to indicate a
relatively complex linear model, possibly with continuous terms, covariates,
interactions, and possibly even random effects, but with normal errors. Thus
the general linear model is a special case of the generalized linear models.

12.1 BINOMIAL REGRESSION

12.1.1 Mean Functions for Binomial Regression

12.2 FITTING LOGISTIC REGRESSION

SAS There is more than one way to fit logistic regression models in SAS,
using, for example, proc logistic and proc genmod. We choose to use proc

genmod that not only fits binary regression models, but also other general-
ized linear models such as Poisson and gamma regression (and linear mod-
els, too). This procedure can be used to fit logistic model with the option
/dist=binomial link=logit. When SAS fits a logistic regression model with a
response y equal to 0 or 1, and terms x, it will by default model Prob(y = 0|x),

107

108 LOGISTIC REGRESSION

which is not standard. You can get SAS to model Prob(y = 1|x) by adding
the option descending after the proc genmod statement; see examples in the
next section.

12.2.1 One-predictor example

SAS First we fit logistic regression with one term. In this example, the
variable y contains only two different levels, 0 and 1. The option descending

in the proc genmod statement tells SAS to model Prob(y = 1|x) instead of
Prob(y = 0|x).

data blowBF;

set alr3.blowBF;

logD=log2(D);

proc genmod descending data=blowBF;

model y=logD /dist=binomial link=logit;

run; quit;

Edited output is given in Table 12.1. All the values shown are described in
alr, except the “Wald 95% confidence limits”, which are simply given by the
estimate plus or minus 1.96 times the standard error of the estimate.

Table 12.1 Output from proc genmod for the blowBF data.

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 657 655.2420 0.9973

Scaled Deviance 657 655.2420 0.9973

Pearson Chi-Square 657 677.4535 1.0311

Scaled Pearson X2 657 677.4535 1.0311

Log Likelihood -327.6210

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 -7.8925 0.6326 -9.1322 -6.6527 155.68 <.0001

logD 1 2.2626 0.1914 1.8875 2.6378 139.74 <.0001

Scale 0 1.0000 0.0000 1.0000 1.0000

If the response is the number of events out of a known number of trials,
the model statement will look like model y/m=x1 x2;, where y is the variable
name for the number of events and m is the variable name for the number of
trials. We will illustrate this in the next section with the titanic data.

alr[F12.1–3] are provided more as pedagogical tools than as data ana-
lytic tools, and in any case they are difficult to draw using SAS. We provide
programs for them in the scripts for this chapter.

FITTING LOGISTIC REGRESSION 109

12.2.2 Many Terms

SAS Like proc glm, proc genmod permits the use of factors and interactions
in model statements. In the example below, a class statement is added to
tell SAS to treat Class, Age and Sex as factors. We also illustrate the use of
contrast statements make comparisons between levels of a factor or between
terms1. Choose the name for the contrast, in quotation marks. Then if you
want to test different levels of a factor, give its name followed by contrast
coefficients; the number of coefficients should equal the number of levels of
the factor. If you want to test the parameters for two continuous variables, say
βx1

= βx2
, you would have a contrast statement like: contrast "x1?=x2" x1 1

x2 -1 /wald;. The wald option tells SAS to use the Wald chi-square statistic,
which presumably is computed by squaring the estimated contrast divided by
its standard error. The following binomial model uses the titanic data, and
the output is given in Table 12.2.

goptions reset=all;

proc genmod data=alr3.titanic;

class Class Age Sex;

model Surv/N=Class Age Sex / dist=binomial link=logit;

contrast "Class crew?=Class first" Class 1 -1 0 0 /wald;

contrast "Class second?=Class third" Class 0 0 1 -1 /wald;

contrast "Female?=Male" Sex 1 -1 /wald;

run; quit;

The default parameterization method for factors is the same as used in
proc glm, which leaves off the last level. See Section 6.1.3 for details.

In proc genmod, you can define interactions and higher order polynomial
terms in the model statement. Here are two models listed in alr[T12.2]. In
the output, Wald chi-square tests are automatically done for each parameter.
We use the blowBF data, and the output from the second proc genmod is given
in Table 12.3.

goptions reset=all;

data blowBF;

set alr3.blowBF;

logD=log2(D);

proc genmod descending data=blowBF;

model y=logD S /dist=binomial link=logit;

output out=many1 p=pred_prob;

run; quit;

proc genmod descending data=blowBF;

model y=logD S logD*S /dist=binomial link=logit;;

output out=many2 p=pred_prob;

run; quit;

Programs for jittered scatterplots and for alr[F12.5] are given in the script
for this chapter.

1This statement can also be used with proc glm.

110 LOGISTIC REGRESSION

Table 12.2 Edited output from a binomial model using proc genmod for the titanic
data.

The GENMOD Procedure

Model Information

Data Set ALR3.TITANIC

Distribution Binomial

Link Function Logit

Response Variable (Events) Surv

Response Variable (Trials) N

Number of Observations Read 14

Number of Observations Used 14

Number of Events 711

Number of Trials 2201

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 8 112.5666 14.0708

Scaled Deviance 8 112.5666 14.0708

Pearson Chi-Square 8 103.8296 12.9787

Scaled Pearson X2 8 103.8296 12.9787

Log Likelihood -1105.0306

Analysis Of Parameter Estimates

Standard Wald 95% Confidence

Parameter DF Estimate Error Limits Square P-value

Intercept 1 -1.0924 0.2370 -1.5570 -0.6279 21.24 <.0001

Class Crew 1 0.9201 0.1486 0.6289 1.2113 38.34 <.0001

Class First 1 1.7778 0.1716 1.4415 2.1140 107.37 <.0001

Class Second 1 0.7597 0.1764 0.4140 1.1053 18.56 <.0001

Class Third 0 0.0000 0.0000 0.0000 0.0000 . .

Age Adult 1 -1.0615 0.2440 -1.5398 -0.5833 18.92 <.0001

Age Child 0 0.0000 0.0000 0.0000 0.0000 . .

Sex Female 1 2.4201 0.1404 2.1449 2.6953 297.07 <.0001

Sex Male 0 0.0000 0.0000 0.0000 0.0000 . .

Scale 0 1.0000 0.0000 1.0000 1.0000

Contrast Results

Chi-

Contrast DF Square Pr > ChiSq Type

Class crew?=Class first 1 29.71 <.0001 Wald

Class second?=Class third 1 18.56 <.0001 Wald

Female?=Male 1 297.07 <.0001 Wald

FITTING LOGISTIC REGRESSION 111

Table 12.3 Output from proc genmod with interaction for the blowBF data.

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 655 541.7456 0.8271

Scaled Deviance 655 541.7456 0.8271

Pearson Chi-Square 655 885.6535 1.3521

Scaled Pearson X2 655 885.6535 1.3521

Log Likelihood -270.8728

Algorithm converged.

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 -3.6782 1.4252 -6.4716 -0.8848 6.66 0.0099

logD 1 0.4007 0.4390 -0.4597 1.2611 0.83 0.3614

S 1 -11.2054 3.6387 -18.3371 -4.0738 9.48 0.0021

logD*S 1 4.9108 1.1403 2.6758 7.1457 18.55 <.0001

Scale 0 1.0000 0.0000 1.0000 1.0000

12.2.3 Deviance

SAS In the following example, we retrieve the Deviance and the error DF

from the output of proc genmod. We then store these information in the data
set test, and we use proc iml to do all Chi-square tests. Output is formatted
so that ANOVA results are presented in Table 12.4.

goptions reset=all;

data blowBF;

set alr3.blowBF

logD = log(D);

proc genmod descending data=blowBF;

model y=logD / dist=binomial link=logit;

ods output ModelFit=m1;

run; quit;

proc genmod descending data=blowBF;

model y=logD S / dist=binomial link=logit;

ods output ModelFit=m2;

run; quit;

proc genmod descending data=blowBF;

model y=logD S logD*S/ dist=binomial link=logit;

ods output ModelFit=m3;

run; quit;

data test (keep=DF value);

set m1 m2 m3; where (criterion eq ’Deviance’);

proc iml;

use test;

read all var _all_ into x; *_all_ stands for all variables in data ’test’;

resDF=x[,1]; resDev=x[,2];

112 LOGISTIC REGRESSION

Model={"m1", "m2", "m3"};

DF=j(3,1,.); Dev=j(3,1,.); pval=j(3,1,.);

DF[2]=resDF[1]-resDF[2]; DF[3]=resDF[2]-resDF[3];

Dev[2]=resDev[1]-resDev[2]; Dev[3]=resDev[2]-resDev[3];

pval[2]=1-probchi(Dev[2],DF[2]);

pval[3]=1-probchi(Dev[3],DF[3]);

title ’Analysis of Variance Table for model m1, m2 and m3’;

print Model resDF resDev DF Dev pval;

quit;

Table 12.4 ANOVA for comparing 3 logistic models using proc iml for the blowBF

data.

Analysis of Variance Table for model m1, m2 and m3

MODEL RESDF RESDEV DF DEV PVAL

m1 657 655.242 . . .

m2 656 563.90095 1 91.341046 0

m3 655 541.74561 1 22.155343 2.5146E-6

Just to remind you that the keyword all that appears in the proc iml

above simply tells SAS to read all variables in the referenced data set into this
procedure.

12.2.4 Goodness of Fit Tests

SAS There are several ways to test lack-of-fit. One is the Deviance/ErrorDF
type of statistics from proc genmod. It is treated as criterion for assessing
goodness-of-fit. An example is given below, with output shown in Table 12.5:

goptions reset=all;

data blowBF;

set alr3.blowBF;

logD=log2(D);

proc genmod descending data=blowBF;

model y=logD / dist=binomial link=logit;

run; quit;

BINOMIAL RANDOM VARIABLES 113

Table 12.5 Criteria for assessing goodness of fit from proc genmod for the blowBF

data.

The GENMOD Procedure

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 657 655.2420 0.9973

Scaled Deviance 657 655.2420 0.9973

Pearson Chi-Square 657 677.4535 1.0311

Scaled Pearson X2 657 677.4535 1.0311

Log Likelihood -327.6210

12.3 BINOMIAL RANDOM VARIABLES

12.3.1 Maximum likelihood estimation

12.3.2 The Log-likelihood for Logistic Regression

12.4 GENERALIZED LINEAR MODELS

Problems

SAS 12.5.1. SAS proc insight, or equivalently, the Interactive Data Anal-
ysis tool, can be used to assign colors to data points. After you launch the In-
teractive Data Analysis tool, choose Edit→Windows→Tools, which will open
a graphical panel as a new window. You can hold and drag your mouse cursor
to select data points in a rectangular region on any graph, then set color to
the selected points by clicking on one of the color buttons in the “SAStool”
window. SAS keeps track of the color, and any subsequent graphs will be in
different colors. Hint: The histogram of the response variable Y may help.

References

1. Chambers, J. and Hastie, T. (eds.) (1993). Statistical Models in S. Boca Raton,
FL: CRC Press.

2. Cook, R. D. and Weisberg, S. (1982). Residuals and Influence in Regression.
London: Chapman & Hall.

3. Cook, R. D. and Weisberg, S. (1999). Applied Regression Including Computing
and Graphics. New York: Wiley.

4. Cook, R. D. and Weisberg, S. (2004). Partial One-Dimensional Regression
Models.

5. Dalgaard, Peter (2002). Introductory Statistics with R. New York: Springer.

6. Davison, A. and Hinkley, D. (1997). Bootstrap Methods and their Application.
Cambridge: Cambridge University Press.

7. Efron, B. and Tibshirani, R. (1993). An Introduction to the Bootstrap. Boca
Raton: Chapman & Hall.

8. Fox, John (2002). An R and S-Plus Companion to Applied Regression. Thou-
sand Oaks, CA: Sage.

9. Fruend, R., Littell, R. and Creighton, L. (2003). Regression Using JMP. Cary,
NC: SAS Institute, Inc., and New York: Wiley.

10. Furnival, G. and Wilson, R. (1974). Regression by leaps and bounds. Techno-
metrics, 16, 499-511.

115

116 REFERENCES

11. Knüsel, Leo (2005). On the accuracy of statistical distributions in Microsoft
Excel 2003. Computational Statistics and Data Analysis, 48, 445–449.

12. Maindonald, J. and Braun, J. (2003). Data Analysis and Graphics Using R.
Cambridge: Cambridge University Press.

13. Muller, K. and Fetterman, B. (2003). Regression and ANOVA: An Integrated
Approach using SAS Software. Cary, NC: SAS Institute, Inc., and New York:
Wiley.

14. Nelder, J. (1977). A reformulation of linear models. Journal of the Royal
Statistical Society, A140, 48–77.

15. Pinheiro, J. and Bates, D. (2000). Mixed-Effects Models in S and S-plus. New
York: Springer.

16. Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. New
York: John Wiley & Sons, Inc.

17. Sall, J., Creighton, L. and Lehman, A. (2005). JMP Start Statistics, third
edition. Cary, NC: SAS Institite, and Pacific Grove, CA: Duxbury. Referred

to as jmp-start.

18. SPSS (2003). SPSS Base 12.0 User’s Guide. Chicago, IL: SPSS, Inc.

19. Thisted, R. (1988). Elements of Statistical Computing. New York: Chapman &
Hall.

20. Venables, W. and Ripley, B. (2000). S Programming. New York: Springer.

21. Venables, W. and Ripley, B. (2002). Modern Applied Statistics with S, 4th
edition. New York: Springer. referred to as vr.

22. Venables, W. and Smith, D. (2002). An Introduction to R. Network Theory,
Ltd.

23. Verzani, John (2005). Using R for Introductory Statistics. Boca Raton: Chap-
man & Hall.

24. Weisberg, S. (2005). Applied Linear Regression, third edition. New York: Wiley.
referred to as alr.

25. Weisberg, S. (2005). Lost opportunities: Why we need a variety of statistical
languages. Journal of Statistical Software, 13(1), www.jstatsoft.org.

Index

Analyze
Box Plot/Mosaic Plot(Y), 21
Distribution, 43
Scatter plot, 14

Arc, 5
Case-sensitive, 9
Chi-squared tables, 9
Cholesky decomposition, 92
Class variables, 26
CRAN, 2
Data files, 6

Documentation, 6
Missing values in, 6
wm5.txt, 7

Edit
Windows

Tools, 113
Excel, 5
Factor, 57
File

Export as Image, 9
Import data file, 8
Save As, 9

F tables, 9
Graphical user interface (GUI), 3
Help

Online Manuals, 2
Interactive, 20
Loess, 19, 72
Macro, 42

Macros, 4
Missing values, 6, 41
Normal tables, 9
Ordinary least squares, 23
Partial regression plot, 34
Polynomial regression, 53
Prediction, 27
Prediction, 47
Proc import, 8
Random coefficient model, 63
REML, 63
Residuals, 30
SAS

Anova
SAS sums of squares, 36

append, 25
axis1, 15
axis2, 15
betainv(p, a, b), 27
boots, 105
call, 51
cards, 29
CDF, 9
chiprob, 47
cinv(p, df), 27
circle, 16
cl, 63
class, 22, 58, 102, 109
clb, 27
cli, 27, 45

117

118 INDEX

close, 25
clparm, 59
contrast, 109
corr, 101
covtest, 63
create, 25
create table, 81
data, 15, 19–20, 47, 58, 86, 91
descending, 108
dist, 107
do, 91
eigen, 51
estimate, 56
finv(p, ndf, ddf), 27
gaminv(p, a), 27
goptions, 15–16
input, 29
into, 24
inv, 35
label, 76
link, 107
method, 63
mixed, 63
model, 16, 25, 27, 30, 33, 36, 45, 53–54,

60, 95, 101
nlin, 103
noint, 30
ods, 17, 85
ods output, 19
order, 58
output, 17–18, 26, 29–30, 33, 91
overlay, 17
parms, 100
partial, 34
plot, 16–18, 30, 88
predict, 101
predicted., 30
predicted, 55
print, 25
probit(p), 27
proc boxplot, 21
proc genmod, 107–113
proc glm, 26–28, 36, 41, 45–47, 49, 53–55,

58–60, 73, 85, 99, 109
proc gplot, 13–18, 54, 78, 101
proc iml, 24–25, 34–36, 52, 54–55, 57, 78,

92, 102, 104, 111–112
proc insight, 20, 71, 75, 113
proc loess, 17, 19, 81
proc logistic, 107
proc means, 22–23, 34
proc mi, 41
proc mianalyze, 41
proc mixed, 28, 63–65
proc model, 77

proc nlin, 69, 99, 102
proc nlmixed, 56–57, 62, 99–102, 106
proc orthoreg, 53
proc print, 30
proc reg, 16–17, 25–30, 33–34, 36–38, 41,

45–47, 49–50, 53–54, 58, 69, 73–74,
81, 85–88, 91–96, 99–100

proc sort, 17, 69, 86
proc sql, 81
proc summary, 22
proc transreg, 69–70, 72
quantile, 10
quit, 19
random, 63, 101
rannor, 91
ranuni(seed), 53
read all var, 24
refit, 87
reset, 87
residual., 30
reweight, 87
reweight undo;, 87
root, 92
run;, 16
seed, 43, 81
selection, 95
smooth, 19
solution, 59
subject, 63
symbol, 16–17
symbol3, 17
symbol

symbol1, 17
test, 49, 102
type, 64
use, 24
var, 41
wald, 109
weight, 87
where, 15, 24, 31

Scripts
to reproduce the book, 7

Solutions
Analysis

Interactive Data Analysis, 13, 20
Interactive data analysis, 43
Interactive Data Analysis, 71, 75

Analyze
Interactive data analysis, 14

Tables, 9
Transformations, 19
Transform

Recode, 5, 11
T tables, 9
Type I, 36
Variance components, 64

	Introduction
	0.1 Organization of this primer
	0.2 Data files
	0.2.1 Documentation
	0.2.2 SAS data library
	0.2.3 Getting the data in text files
	0.2.4 An exceptional file

	0.3 Scripts
	0.4 The very basics
	0.4.1 Reading a data file
	0.4.2 Saving text output and graphs
	0.4.3 Normal, F, t and 2 tables

	0.5 Abbreviations to remember
	0.6 Copyright and Printing this Primer

	1 Scatterplots and Regression
	1.1 Scatterplots
	1.2 Mean functions
	1.3 Variance functions
	1.4 Summary graph
	1.5 Tools for looking at scatterplots
	1.6 Scatterplot matrices

	2 Simple Linear Regression
	2.1 Ordinary least squares estimation
	2.2 Least squares criterion
	2.3 Estimating 2
	2.4 Properties of least squares estimates
	2.5 Estimated variances
	2.6 Comparing models: The analysis of variance
	2.7 The coefficient of determination, R2
	2.8 Confidence intervals and tests
	2.9 The Residuals

	3 Multiple Regression
	3.1 Adding a term to a simple linear regression model
	3.2 The Multiple Linear Regression Model
	3.3 Terms and Predictors
	3.4 Ordinary least squares
	3.5 The analysis of variance
	3.6 Predictions and fitted values

	4 Drawing Conclusions
	4.1 Understanding parameter estimates
	4.1.1 Rate of change
	4.1.2 Sign of estimates
	4.1.3 Interpretation depends on other terms in the mean function
	4.1.4 Rank deficient and over-parameterized models

	4.2 Experimentation versus observation
	4.3 Sampling from a normal population
	4.4 More on R2
	4.5 Missing data
	4.6 Computationally intensive methods

	5 Weights, Lack of Fit, and More
	5.1 Weighted Least Squares
	5.1.1 Applications of weighted least squares
	5.1.2 Additional comments

	5.2 Testing for lack of fit, variance known
	5.3 Testing for lack of fit, variance unknown
	5.4 General F testing
	5.5 Joint confidence regions

	6 Polynomials and Factors
	6.1 Polynomial regression
	6.1.1 Polynomials with several predictors
	6.1.2 Using the delta method to estimate a minimum or a maximum
	6.1.3 Fractional polynomials

	6.2 Factors
	6.2.1 No other predictors
	6.2.2 Adding a predictor: Comparing regression lines

	6.3 Many factors
	6.4 Partial one-dimensional mean functions
	6.5 Random coefficient models

	7 Transformations
	7.1 Transformations and scatterplots
	7.1.1 Power transformations
	7.1.2 Transforming only the predictor variable
	7.1.3 Transforming the response only
	7.1.4 The Box and Cox method

	7.2 Transformations and scatterplot matrices
	7.2.1 The 1D estimation result and linearly related predictors
	7.2.2 Automatic choice of transformation of the predictors

	7.3 Transforming the response
	7.4 Transformations of non-positive variables

	8 Regression Diagnostics: Residuals
	8.1 The residuals
	8.1.1 Difference between "705Ee and e
	8.1.2 The hat matrix
	8.1.3 Residuals and the hat matrix with weights
	8.1.4 The residuals when the model is correct
	8.1.5 The residuals when the model is not correct
	8.1.6 Fuel consumption data

	8.2 Testing for curvature
	8.3 Nonconstant variance
	8.3.1 Variance Stabilizing Transformations
	8.3.2 A diagnostic for nonconstant variance
	8.3.3 Additional comments

	8.4 Graphs for model assessment
	8.4.1 Checking mean functions
	8.4.2 Checking variance functions

	9 Outliers and Influence
	9.1 Outliers
	9.1.1 An outlier test
	9.1.2 Weighted least squares
	9.1.3 Significance levels for the outlier test
	9.1.4 Additional comments

	9.2 Influence of cases
	9.2.1 Cook's distance
	9.2.2 Magnitude of Di
	9.2.3 Computing Di
	9.2.4 Other measures of influence

	9.3 Normality assumption

	10 Variable Selection
	10.1 The Active Terms
	10.1.1 Collinearity
	10.1.2 Collinearity and variances

	10.2 Variable selection
	10.2.1 Information criteria
	10.2.2 Computationally intensive criteria
	10.2.3 Using subject-matter knowledge

	10.3 Computational methods
	10.3.1 Subset selection overstates significance

	10.4 Windmills
	10.4.1 Six mean functions
	10.4.2 A computationally intensive approach

	11 Nonlinear Regression
	11.1 Estimation for nonlinear mean functions
	11.2 Inference assuming large samples
	11.3 Bootstrap inference
	11.4 References

	12 Logistic Regression
	12.1 Binomial Regression
	12.1.1 Mean Functions for Binomial Regression

	12.2 Fitting Logistic Regression
	12.2.1 One-predictor example
	12.2.2 Many Terms
	12.2.3 Deviance
	12.2.4 Goodness of Fit Tests

	12.3 Binomial Random Variables
	12.3.1 Maximum likelihood estimation
	12.3.2 The Log-likelihood for Logistic Regression

	12.4 Generalized linear models

	References
	Index

