Computing Primer for Applied Linear Regression, Third Edition
Using R and S-Plus

Sanford Weisberg
University of Minnesota
School of Statistics
February 8, 2010

©2005, Sanford Weisberg

Home Website: www.stat.umn.edu/alr
Contents

Introduction 1

0.1 Organization of this primer 4

0.2 Data files 5

0.2.1 Documentation 5

0.2.2 R data files and a package 6

0.2.3 Two files missing from the R library 6

0.2.4 S-Plus data files and library 7

0.2.5 Getting the data in text files 7

0.2.6 An exceptional file 7

0.3 Scripts 7

0.4 The very basics 8

0.4.1 Reading a data file 8

0.4.2 Reading Excel Files 9

0.4.3 Saving text output and graphs 10

0.4.4 Normal, F, t and χ² tables 11

0.5 Abbreviations to remember 12

0.6 Packages/Libraries for R and S-Plus 12

0.7 Copyright and Printing this Primer 13

1 Scatterplots and Regression 13
CONTENTS

1.1 Scatterplots 13
1.2 Mean functions 16
1.3 Variance functions 16
1.4 Summary graph 16
1.5 Tools for looking at scatterplots 16
1.6 Scatterplot matrices 16

2 Simple Linear Regression 19
 2.1 Ordinary least squares estimation 19
 2.2 Least squares criterion 19
 2.3 Estimating σ^2 20
 2.4 Properties of least squares estimates 20
 2.5 Estimated variances 20
 2.6 Comparing models: The analysis of variance 21
 2.7 The coefficient of determination, R^2 22
 2.8 Confidence intervals and tests 23
 2.9 The Residuals 26

3 Multiple Regression 27
 3.1 Adding a term to a simple linear regression model 27
 3.2 The Multiple Linear Regression Model 27
 3.3 Terms and Predictors 27
 3.4 Ordinary least squares 28
 3.5 The analysis of variance 30
 3.6 Predictions and fitted values 31

4 Drawing Conclusions 33
 4.1 Understanding parameter estimates 33
 4.1.1 Rate of change 34
 4.1.2 Sign of estimates 34
 4.1.3 Interpretation depends on other terms in the mean function 34
 4.1.4 Rank deficient and over-parameterized models 34
 4.2 Experimentation versus observation 34
 4.3 Sampling from a normal population 34
 4.4 More on R^2 34
 4.5 Missing data 34
 4.6 Computationally intensive methods 36
CONTENTS

5 Weights, Lack of Fit, and More 41
 5.1 Weighted Least Squares 41
 5.1.1 Applications of weighted least squares 42
 5.1.2 Additional comments 42
 5.2 Testing for lack of fit, variance known 42
 5.3 Testing for lack of fit, variance unknown 43
 5.4 General F testing 44
 5.5 Joint confidence regions 45

6 Polynomials and Factors 47
 6.1 Polynomial regression 47
 6.1.1 Polynomials with several predictors 48
 6.1.2 Using the delta method to estimate a minimum or a maximum 49
 6.1.3 Fractional polynomials 51
 6.2 Factors 51
 6.2.1 No other predictors 53
 6.2.2 Adding a predictor: Comparing regression lines 53
 6.3 Many factors 54
 6.4 Partial one-dimensional mean functions 54
 6.5 Random coefficient models 56

7 Transformations 59
 7.1 Transformations and scatterplots 59
 7.1.1 Power transformations 59
 7.1.2 Transforming only the predictor variable 59
 7.1.3 Transforming the response only 62
 7.1.4 The Box and Cox method 64
 7.2 Transformations and scatterplot matrices 64
 7.2.1 The 1D estimation result and linearly related predictors 66
 7.2.2 Automatic choice of transformation of the predictors 66
 7.3 Transforming the response 68
 7.4 Transformations of non-positive variables 68

8 Regression Diagnostics: Residuals 69
 8.1 The residuals 69
 8.1.1 Difference between \(\hat{e} \) and \(e \) 69
 8.1.2 The hat matrix 69
 8.1.3 Residuals and the hat matrix with weights 70
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1.4</td>
<td>The residuals when the model is correct</td>
<td>70</td>
</tr>
<tr>
<td>8.1.5</td>
<td>The residuals when the model is not correct</td>
<td>70</td>
</tr>
<tr>
<td>8.1.6</td>
<td>Fuel consumption data</td>
<td>70</td>
</tr>
<tr>
<td>8.2</td>
<td>Testing for curvature</td>
<td>71</td>
</tr>
<tr>
<td>8.3</td>
<td>Nonconstant variance</td>
<td>72</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Variance Stabilizing Transformations</td>
<td>72</td>
</tr>
<tr>
<td>8.3.2</td>
<td>A diagnostic for nonconstant variance</td>
<td>72</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Additional comments</td>
<td>73</td>
</tr>
<tr>
<td>8.4</td>
<td>Graphs for model assessment</td>
<td>73</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Checking mean functions</td>
<td>73</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Checking variance functions</td>
<td>74</td>
</tr>
<tr>
<td>9</td>
<td>Outliers and Influence</td>
<td>75</td>
</tr>
<tr>
<td>9.1</td>
<td>Outliers</td>
<td>75</td>
</tr>
<tr>
<td>9.1.1</td>
<td>An outlier test</td>
<td>75</td>
</tr>
<tr>
<td>9.1.2</td>
<td>Weighted least squares</td>
<td>76</td>
</tr>
<tr>
<td>9.1.3</td>
<td>Significance levels for the outlier test</td>
<td>76</td>
</tr>
<tr>
<td>9.1.4</td>
<td>Additional comments</td>
<td>76</td>
</tr>
<tr>
<td>9.2</td>
<td>Influence of cases</td>
<td>76</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Cook's distance</td>
<td>77</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Magnitude of (D_i)</td>
<td>77</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Computing (D_i)</td>
<td>77</td>
</tr>
<tr>
<td>9.2.4</td>
<td>Other measures of influence</td>
<td>77</td>
</tr>
<tr>
<td>9.3</td>
<td>Normality assumption</td>
<td>77</td>
</tr>
<tr>
<td>10</td>
<td>Variable Selection</td>
<td>79</td>
</tr>
<tr>
<td>10.1</td>
<td>The Active Terms</td>
<td>79</td>
</tr>
<tr>
<td>10.1.1</td>
<td>Collinearity</td>
<td>80</td>
</tr>
<tr>
<td>10.1.2</td>
<td>Collinearity and variances</td>
<td>80</td>
</tr>
<tr>
<td>10.2</td>
<td>Variable selection</td>
<td>80</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Information criteria</td>
<td>80</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Computationally intensive criteria</td>
<td>80</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Using subject-matter knowledge</td>
<td>81</td>
</tr>
<tr>
<td>10.3</td>
<td>Computational methods</td>
<td>81</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Subset selection overstates significance</td>
<td>86</td>
</tr>
<tr>
<td>10.4</td>
<td>Windmills</td>
<td>86</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Six mean functions</td>
<td>86</td>
</tr>
<tr>
<td>10.4.2</td>
<td>A computationally intensive approach</td>
<td>86</td>
</tr>
</tbody>
</table>
A.8 Least squares using matrices 101
 A.8.1 Properties of estimates 101
 A.8.2 The residual sum of squares 101
 A.8.3 Estimate of variance 101
A.9 The QR factorization 101
A.10 Maximum likelihood estimates 103
A.11 The Box-Cox method for transformations 103
 A.11.1 Univariate case 103
 A.11.2 Multivariate case 103
A.12 Case deletion in linear regression 103

References 105

Index 107
This computer primer supplements the book *Applied Linear Regression* (ALR), third edition, by Sanford Weisberg, published by John Wiley & Sons in 2005. It shows you how to do the analyses discussed in ALR using one of several general-purpose programs that are widely available throughout the world. All the programs have capabilities well beyond the uses described here. Different programs are likely to suit different users. We expect to update the primer periodically, so check www.stat.umn.edu/alr to see if you have the most recent version. The versions are indicated by the date shown on the cover page of the primer.

Our purpose is largely limited to using the packages with ALR, and we will not attempt to provide a complete introduction to the packages. If you are new to the package you are using you will probably need additional reference material.

There are a number of methods discussed in ALR that are not (as yet) a standard part of statistical analysis, and some methods are not possible without writing your own programs to supplement the package you choose. *The exceptions to this rule are R and S-Plus. For these two packages we have written functions you can easily download and use for nearly everything in the book.*

Here are the programs for which primers are available.

R is a *command line* statistical package, which means that the user types a statement requesting a computation or a graph, and it is executed immediately. You will be able to use a package of functions for R that
will let you use all the methods discussed in ALR; we used R when writing the book.

R also has a programming language that allows automating repetitive tasks. R is a favorite program among academic statisticians because it is free, works on Windows, Linux/Unix and Macintosh, and can be used in a great variety of problems. There is also a large literature developing on using R for statistical problems. The main website for R is www.r-project.org. From this website you can get to the page for downloading R by clicking on the link for CRAN, or, in the US, going to cran.us.r-project.org.

Documentation is available for R on-line, from the website, and in several books. We can strongly recommend two books. The book by Fox (2002) provides a fairly gentle introduction to R with emphasis on regression. We will from time to time make use of some of the functions discussed in Fox’s book that are not in the base R program. A more comprehensive introduction to R is Venables and Ripley (2002), and we will use the notation \texttt{vr[3.1]} for example, to refer to Section 3.1 of that book. Venables and Ripley has more computerese than does Fox’s book, but its coverage is greater and you will be able to use this book for more than linear regression. Other books on R include Verzani (2005), Maindonald and Braun (2002), Venables and Smith (2002), and Dalgaard (2002). We used R Version 2.0.0 on Windows and Linux to write the package. A new version of R is released twice a year, so the version you use will probably be newer. If you have a fast internet connection, downloading and upgrading R is easy, and you should do it regularly.

\textbf{S-Plus} is very similar to R, and most commands that work in R also work in S-Plus. Both are variants of a statistical language called “S” that was written at Bell Laboratories before the breakup of AT&T. Unlike R, S-Plus is a commercial product, which means that it is not free, although there is a free student version available at elms03.e-academy.com/splus. The website of the publisher is www.insightful.com/products/splus. A library of functions very similar to those for R is also available that will make S-Plus useful for all the methods discussed in ALR.

S-Plus has a well-developed graphical user interface or GUI. Many new users of S-Plus are likely to learn to use this program through the GUI, not through the command-line interface. In this primer, however, we make no use of the GUI.

If you are using S-Plus on a Windows machine, you probably have the manuals that came with the program. If you are using Linux/Unix, you may not have the manuals. In either case the manuals are available online; for Windows see the Help — Online Manuals, and for Linux/Unix use

\begin{verbatim}
> cd ‘Splus SHOME’/doc
\end{verbatim}
and see the pdf documents there. Chambers and Hastie (1993) provides the basics of fitting models with S languages like S-Plus and R. For a more general reference, we again recommend Fox (2002) and Venables and Ripley (2002), as we did for R. We used S-Plus Version 6.0 Release 1 for Linux, and S-Plus 6.2 for Windows. Newer versions of both are available.

SAS is the largest and most widely distributed statistical package in both industry and education. SAS also has a GUI. While it is possible to do some data analysis using the SAS GUI, the strength of this program is in the ability to write SAS programs, in the editor window, and then submit them for execution, with output returned in an output window. We will therefore view SAS as a batch system, and concentrate mostly on writing SAS commands to be executed. The website for SAS is www.sas.com.

SAS is very widely documented, including hundreds of books available through amazon.com or from the SAS Institute, and extensive on-line documentation. Muller and Fetterman (2003) is dedicated particularly to regression. We used Version 9.1 for Windows. We find the on-line documentation that accompanies the program to be invaluable, although learning to read and understand SAS documentation isn’t easy.

Although SAS is a programming language, adding new functionality can be very awkward and require long, confusing programs. These programs could, however, be turned into SAS macros that could be reused over and over, so in principle SAS could be made as useful as R or S-Plus. We have not done this, but would be delighted if readers would take on the challenge of writing macros for methods that are awkward with SAS. Anyone who takes this challenge can send us the results (sandy@stat.umn.edu) for inclusion in later revisions of the primer.

We have, however, prepared script files that give the programs that will produce all the output discussed in this primer; you can get the scripts from www.stat.umn.edu/alr.

JMP is another product of SAS Institute, and was designed around a clever and useful GUI. A student version of JMP is available. The website is www.jmp.com. We used JMP Version 5.1 on Windows.

Documentation for the student version of JMP, called JMP-In, comes with the book written by Sall, Creighton and Lehman (2005), and we will write jmp-start[3] for Chapter 3 of that book, or jmp-start[P360] for page 360. The full version of JMP includes very extensive manuals; the manuals are available on CD only with JMP-In. Freund, Littell and Creighton (2003) discusses JMP specifically for regression.

JMP has a scripting language that could be used to add functionality to the program. We have little experience using it, and would be happy
to hear from readers on their experience using the scripting language to extend JMP to use some of the methods discussed in ALR that are not possible in JMP without scripting.

SPSS evolved from a batch program to have a very extensive graphical user interface. In the primer we use only the GUI for SPSS, which limits the methods that are available. Like SAS, SPSS has many sophisticated tools for data base management. A student version is available. The website for SPSS is www.spss.com. SPSS offers hundreds of pages of documentation, including SPSS (2003), with Chapter 26 dedicated to regression models. In mid-2004, amazon.com listed more than two thousand books for which “SPSS” was a keyword. We used SPSS Version 12.0 for Windows. A newer version is available.

This is hardly an exhaustive list of programs that could be used for regression analysis. If your favorite package is missing, please take this as a challenge: try to figure out how to do what is suggested in the text, and write your own primer! Send us a PDF file (sandy@stat.umn.edu) and we will add it to our website, or link to yours.

One program missing from the list of programs for regression analysis is Microsoft’s spreadsheet program Excel. While a few of the methods described in the book can be computed or graphed in Excel, most would require great endurance and patience on the part of the user. There are many add-on statistics programs for Excel, and one of these may be useful for comprehensive regression analysis; we don’t know. If something works for you, please let us know!

A final package for regression that we should mention is called Arc. Like R, Arc is free software. It is available from www.stat.umn.edu/arc. Like JMP and SPSS, it is based around a graphical user interface, so most computations are done via point-and-click. Arc also includes access to a complete computer language, although the language, lisp, is considerably harder to learn than the S or SAS languages. Arc includes all the methods described in the book. The use of Arc is described in Cook and Weisberg (1999), so we will not discuss it further here; see also Weisberg (2005).

0.1 ORGANIZATION OF THIS PRIMER

The primer often refers to specific problems or sections in ALR using notation like ALR[3.2] or ALR[A.5], for a reference to Section 3.2 or Appendix A.5, ALR[P3.1] for Problem 3.1, ALR[F1.1] for Figure 1.1, ALR[E2.6] for an equation and ALR[T2.1] for a table. Reference to, for example, “Figure 7.1,” would refer to a figure in this primer, not to ALR. Chapters, sections, and homework problems are numbered in this primer as they are in ALR. Consequently, the section headings in primer refers to the material in ALR, and not necessarily the material in the primer. Many of the sections in this primer don’t have any
material because that section doesn’t introduce any new issues with regard to computing. The index should help you navigate through the primer.

There are four versions of this primer, one for R and S-Plus, and one for each of the other packages. All versions are available for free as PDF files at www.stat.umn.edu/alr.

Anything you need to type into the program will always be in this font. Output from a program depends on the program, but should be clear from context. We will write File to suggest selecting the menu called “File,” and Transform → Recode to suggest selecting an item called “Recode” from a menu called “Transform.” You will sometimes need to push a button in a dialog, and we will write “push OK” to mean “click on the button marked ‘OK’.” For non-English versions of some of the programs, the menus may have different names, and we apologize in advance for any confusion this causes.

R and S-Plus Most of the graphs and computer output in ALR were produced with R. The computer code we give in this primer may not reproduce the graphs exactly, since we have tweaked some of the graphs to make them look prettier for publication, and the tweaking arguments work a little differently in R and S-Plus. If you want to see the tweaks we used in R, look at the scripts, Section 0.3.

0.2 DATA FILES

0.2.1 Documentation

Documentation for nearly all of the data files is contained in ALR; look in the index for the first reference to a data file. Separate documentation can be found in the file alr3data.pdf in PDF format at the web site www.stat.umn.edu/alr.

The data are available in a package for R, in a library for S-Plus and for SAS, and as a directory of files in special format for JMP and SPSS. In addition, the files are available as plain text files that can be used with these, or any other, program. Table 0.1 shows a copy of one of the smallest data files called htxt.txt, and described in ALR[P3.1]. This file has two variables, named Ht and Wt, and ten cases, or rows in the data file. The largest file is wms.txt with 62,040 cases and 14 variables. This latter file is so large that it is handled differently from the others; see Section 0.2.6.

A few of the data files have missing values, and these are generally indicated in the file by a placeholder in the place of the missing value. For example, for R and S-Plus, the placeholder is NA, while for SAS it is a period “.” Different programs handle missing values a little differently; we will discuss this further when we get to the first data set with a missing value in Section 1.5.
Table 0.1 The data file `htwt.txt`

<table>
<thead>
<tr>
<th>Ht</th>
<th>Wt</th>
</tr>
</thead>
<tbody>
<tr>
<td>169.6</td>
<td>71.2</td>
</tr>
<tr>
<td>166.8</td>
<td>58.2</td>
</tr>
<tr>
<td>157.1</td>
<td>56</td>
</tr>
<tr>
<td>181.1</td>
<td>64.5</td>
</tr>
<tr>
<td>158.4</td>
<td>53</td>
</tr>
<tr>
<td>165.6</td>
<td>52.4</td>
</tr>
<tr>
<td>166.7</td>
<td>56.8</td>
</tr>
<tr>
<td>166.9</td>
<td>56.8</td>
</tr>
<tr>
<td>168.1</td>
<td>55.6</td>
</tr>
<tr>
<td>156.5</td>
<td>49.2</td>
</tr>
</tbody>
</table>

0.2.2 R data files and a package

All the data files and a few additional functions that automate methods discussed in ALR are collected into an R package named `alr3`. We recommend that you install the package on your computer. You can simply start R and type

```R
> install.packages("alr3")
```

Follow the on-screen instructions to select a mirror site close to your home, and then select `alr3` from the list of available packages.

Once you have installed the package, two commands are required to access a data file. First, the command

```R
> library(alr3)
```

(or `library(alr3,lib.loc="mylib/"`) if you installed your own Linux/Unix library) to load the package opens the package for your use. To read a particular file, say `forbes.txt`, for example, type

```R
> data(forbes)
```

without the `.txt` suffix that is shown in ALR. This will create a data frame with the name `forbes`. If you then type simply `forbes`, the data will be listed. You can add a new variable to the data frame by typing, for example

```R
> forbes$logTemp <- log(forbes$Temp,2)
```

to add the base-two logarithm of Temperature to the data frame.

You can view the documentation for the data sets on-line. The most elegant method is to enter the command `help.start()` into R. This will start your web browser, if it is not already running. Click on “Packages,” and then on “alr3.” You will then get an alphabetical listing of all the data files and functions in the `alr3` package, and you can select the one you want to see.

0.2.3 Two files missing from the R library

The two datafiles `anscombe` and `longley` are available, with those names, in the `datasets` library that is part of R. For `anscombe` the variable names are
as described in the textbook on page 12. For \texttt{longley} the variable names are slightly different from the names given on page 94; type \texttt{?longley} to get the variable names.

0.2.4 S-Plus data files and library

The S-Plus data files are also available as a library; see \url{www.stat.umn.edu/alr} for instructions on downloading and installing.

In S-Plus, you don’t need the \texttt{data} command to access a data set in a library; indeed, the \texttt{data} command doesn’t exist in S-Plus. To use the Forbes data set, for example, you can use the following commands

\begin{verbatim}
> library(alr3)
> f <- forbes
> f$logTemp <- logb(f$Temp,2)
> f
\end{verbatim}

This will load the library, and make \texttt{f} be a local copy of the data set \texttt{forbes}. In S-Plus, you need to make a local copy of the data set if you want to change it, as we have done here by adding a new variable. In S-Plus, the command \texttt{log} computes natural logs; we need to use \texttt{logb} to compute logs to some other base. The final command prints \texttt{f} in the text window.

0.2.5 Getting the data in text files

You can download the data as a directory of plain text files, or as individual files; see \url{www.stat.umn.edu/alr/data}. Missing values on these files are indicated with a \texttt{?}. If your program does not use this missing value character, you may need to substitute a different character using an editor.

0.2.6 An exceptional file

The file \texttt{wm5.txt} is not included in any of the compressed files, or in the libraries. This one file is nearly five megabytes long, requiring as much space as all the other files combined. If you need this file, for \texttt{alr}[P10.12], you can download it separately from \url{www.stat.umn.edu/alr/data}.

0.3 SCRIPTS

For R, S-Plus, and SAS, we have prepared \textit{script files} that can be used while reading this primer. For R and S-Plus, the scripts will reproduce nearly every computation shown in \texttt{ALR}; indeed, these scripts were used to do the calcu-

\footnote{A library in S-Plus is called a package in R.}
lations in the first place. For SAS, the scripts correspond to the discussion given in this primer, but will not reproduce everything in ALR. The scripts can be downloaded from www.stat.umn.edu/alr for R, S-Plus or SAS.

Although both JMP and SPSS have scripting or programming languages, we have not prepared scripts for these programs. Some of the methods discussed in ALR are not possible in these programs without the use of scripts, and so we encourage readers to write scripts in these languages that implement these ideas. Topics that require scripts include bootstrapping and computer intensive methods, ALR[4.6]; partial one-dimensional models, ALR[6.4], inverse response plots, ALR[7.1, 7.3], multivariate Box-Cox transformations, ALR[7.2], Yeo-Johnson transformations, ALR[7.4], and heteroscedasticity tests, ALR[8.3.2]. There are several other places where usability could be improved with a script.

If you write scripts you would like to share with others, let me know (sandy@stat.umn.edu) and I’ll make a link to them or add them to the website.

0.4 THE VERY BASICS

Before you can begin doing any useful computing, you need to be able to read data into the program, and after you are done you need to be able to save and print output and graphs. All the programs are a little different in how they handle input and output, and we give some of the details here.

0.4.1 Reading a data file

Reading data into a program is surprisingly difficult. We have tried to ease this burden for you, at least when using the data files supplied with ALR, by providing the data in a special format for each of the programs. There will come a time when you want to analyze real data, and then you will need to be able to get your data into the program. Here are some hints on how to do it.

R and S-Plus If you have installed the R or S-Plus library and want to read one of the data files described in ALR, you can follow the instructions in Section 0.2.2–0.2.4. If you have not installed the library, or you want to read a different file, use the command read.table to read a plain data file. The general form of this command is:

> d <- read.table("filename", header=TRUE, na.strings="?")
The filename is a quoted string, like "C:/My Documents/data.txt", giving the name of the data file and its path. The argument `header=TRUE` indicates that the first line of the file has variable names (you would say `header=FALSE` if this were not so, and then the program would assign variable names like X1, X2 and so on), and the `na.strings` argument can be omitted because this file has no missing data. As a result of this command, a data.frame, roughly like a matrix, is created named `d`. The two columns of `d` are called `d$Ht` and `d$Wt`, with the column names read from the first row of the file because `header=TRUE`.

In R, you can also read the data directly from the internet:

```r
> d <- read.table(url("http://www.stat.umn.edu/alr/data/htwt.txt"), header=TRUE)
```

With Windows, always replace the backslashes \ by forward slashes /. While this replacement may not be necessary in all versions of R and S-Plus, the forward slashes always work. The `na.strings` argument can be omitted because this file has no missing data. As a result of this command, a data.frame, roughly like a matrix, is created named `d`. The two columns of `d` are called `d$Ht` and `d$Wt`, with the column names read from the first row of the file because `header=TRUE`.

In R, you can also read the data directly from the internet:

```r
> d <- read.table(url("http://www.stat.umn.edu/alr/data/htwt.txt"), header=TRUE)
```

You can get any data file in the book in this way by substituting the file’s name, and using the rest of the web address shown.

Both R and S-Plus are case sensitive, which means that a variable called `weight` is different from `Weight`, which in turn is different from `WEIGHT`. Also, the command `read.table` would be different from `READ.TABLE`. Path names are case-sensitive on Linux, but not on Windows.

0.4.2 Reading Excel Files

In S-Plus, the command `importData` can be used to read a file created by Microsoft Excel (as well as files in many other standard formats). For example, if you have created an Excel file called “ais.xls” with (1) variable names in the first row and (2) data in all the following rows, then the S-Plus statement

```r
> data <- importData("ais.xls")
```

will read the file and and import it as a data frame called `data`. You will need to replace the name of the file by the complete pathname if the file is

Getting the path right can be frustrating. If you are using R, select `File → Change dir`, and then use `browse` to select the directory that includes your data file. In `read.table` you can then specify just the file name without the path.
not in the directory from which you started S-Plus. This command has many options; see help(importData) for more information.

R is less friendly in working with Excel files3 and you must start in Excel by saving the file as a “.csv” file, which is a plain text file, with the items in each row of the file separated by commas. You can then read the “.csv” file with the command read.csv,

```r
> data <- read.csv("ais.csv",header=TRUE)
```

where once again the complete path to the file is required.

0.4.3 Saving text output and graphs

All the programs have many ways of saving text output and graphs. We will make no attempt to be comprehensive here.

R and S-Plus When using R or a command-line interface for S-Plus, the easiest way to save printed output is to select it, copy to the clipboard, and paste it into an editor or word processing program. Be sure to use a monospaced-font like Courier so columns line up properly. In R on Windows, you can select File → Save to file to save the contents of the text window to a file.

The easiest way to save a graph in R on Windows or Macintosh is via a menu item. The plot has its own menus, and select File → Save as → filetype, where filetype is the format of the graphics file you want to use. In both R and S-Plus, you can copy a graph to the clipboard with a menu item, and then paste it into a word processing document.

In all versions of R and S-Plus, you can also save files using a relatively complex method of defining a *device* for the graph. For example,

```r
> postscript("myhist.eps", horizontal=FALSE,height=5,width=5)
> hist(rnorm(100))
> dev.off()
```

defines a device of type *postscript* to be saved in the file “myhist.eps” in the current directory. It will consist of a histogram of 100 normal random numbers. This device remains active until the dev.off command closes the device. The default with *postscript* is to save the file in “landscape,” or horizontal mode to fill the page. The argument horizontal=FALSE orients the graph vertically, and height and width to 5 makes the plotting region a 5 inches by 5 inches square.

R has many devices available, including pdf, *postscript*, jpeg and others; S-Plus has different devices. In either system, see help(Devices) for a list of devices, and then, for example, help(*postscript*) for a list of the (many) arguments to the *postscript* command. See also VR[4.1].

3Experienced users can read about, and install the the dcom package for using R with Excel; see cran.r-project.org/contrib/extra/dcom/.
0.4.4 Normal, F, t and χ^2 tables

ALR does not include tables for looking up critical values and significance levels for standard distributions like the t, F and χ^2. Although these values can be computed with any of the programs we discuss in the primers, doing so is easy only with R and S-Plus. Also, the computation is fairly easy with Microsoft Excel. Table 0.2 shows the functions you need using Excel.

Table 0.2 Functions for computing p-values and critical values using Microsoft Excel.
The definitions for these functions are not consistent, sometimes corresponding to two-tailed tests, sometimes giving upper tails, and sometimes lower tails. Read the definitions carefully. The algorithms used to compute probability functions in Excel are of dubious quality, but for the purpose of determining p-values or critical values, they should be adequate; see Knüsel (2005) for more discussion.

<table>
<thead>
<tr>
<th>Function</th>
<th>What it does</th>
</tr>
</thead>
<tbody>
<tr>
<td>normsinv(p)</td>
<td>Returns a value q such that the area to the left of q for a standard normal random variable is p.</td>
</tr>
<tr>
<td>normsdist(q)</td>
<td>The area to the left of q. For example, normsdist(1.96) equals 0.975 to three decimals.</td>
</tr>
<tr>
<td>tinv(p, df)</td>
<td>Returns a value q such that the area to the left of $-</td>
</tr>
<tr>
<td>tdist(q, df, tails)</td>
<td>Returns p, the area to the left of q for a t(df) distribution if tails = 1, and returns the sum of the areas to the left of $-</td>
</tr>
<tr>
<td>finv(p, df1, df2)</td>
<td>Returns a value q such that the area to the right of q on a F(df_1, df_2) distribution is p. For example, finv(.05, 3, 20) returns the 95% point of the F(3, 20) distribution.</td>
</tr>
<tr>
<td>fdist(q, df1, df2)</td>
<td>Returns p, the area to the right of q on a F(df_1, df_2) distribution.</td>
</tr>
<tr>
<td>chiinv(p, df)</td>
<td>Returns a value q such that the area to the right of q on a χ^2(df) distribution is p.</td>
</tr>
<tr>
<td>chidist(q, df)</td>
<td>Returns p, the area to the right of q on a χ^2(df) distribution.</td>
</tr>
</tbody>
</table>

R and S-Plus Table 0.3 lists the six commands that are used to compute significance levels and critical values for t, F and χ^2 random variables. For example, to find the significance level for a test with value -2.51 that has a $t(17)$ distribution, type into the text window

$> \text{pt}(-2.51, 17)$
which returns the area to the left of the first argument. Thus the lower-tailed p-value is 0.011241, the upper tailed p-value is $1 - 0.011241 = 0.98876$, and the two-tailed p-value is $2 \times 0.011241 = 0.022482$.

Table 0.3 Functions for computing p-values and critical values using R and S-Plus. These functions may have additional arguments useful for other purposes.

<table>
<thead>
<tr>
<th>Function</th>
<th>What it does</th>
</tr>
</thead>
<tbody>
<tr>
<td>qnorm(p)</td>
<td>Returns a value q such that the area to the left of q for a standard normal random variable is p.</td>
</tr>
<tr>
<td>pnorm(q)</td>
<td>Returns a value p such that the area to the left of q on a standard normal is p.</td>
</tr>
<tr>
<td>qt(p, df)</td>
<td>Returns a value q such that the area to the left of q on a $t(df)$ distribution equals q.</td>
</tr>
<tr>
<td>pt(q, df)</td>
<td>Returns p, the area to the left of q for a $t(df)$ distribution.</td>
</tr>
<tr>
<td>qt(p, df1, df2)</td>
<td>Returns a value q such that the area to the left of q on a $F(df_1, df_2)$ distribution is p. For example, $qt(0.95, 3, 20)$ returns the 95% points of the $F(3, 20)$ distribution.</td>
</tr>
<tr>
<td>pf(q, df1, df2)</td>
<td>Returns p, the area to the left of q on a $F(df_1, df_2)$ distribution.</td>
</tr>
<tr>
<td>qchisq(p, df)</td>
<td>Returns a value q such that the area to the left of q on a $\chi^2(df)$ distribution is p.</td>
</tr>
<tr>
<td>pchisq(q, df)</td>
<td>Returns p, the area to the left of q on a $\chi^2(df)$ distribution.</td>
</tr>
</tbody>
</table>

0.5 ABBREVIATIONS TO REMEMBER

ALR refers to the textbook, Weisberg (2005). VR refers to Venables and Ripley (2002), our primary reference for R and S-Plus. JMP-START refers to Sall, Creighton and Lehman (2005), the primary reference for JMP. Information typed by the user looks like this. References to menu items looks like File or Transform → Recode. The name of a button to push in a dialog uses this font.

0.6 PACKAGES/LIBRARIES FOR R AND S-PLUS

The alr3 package described previously includes several new commands in addition to the data sets that will make many of the computations easier. We will also make use of a few other packages that others have written that will be helpful for working through ALR. The packages are all described in Table 0.4. Since all the packages are free, we recommend that you obtain and install
them immediately. In particular, instructors should be sure the packages are installed for their students using a Unix/Linux system where packages need to be installed by a superuser.

Table 0.4 R/S-Plus that are useful with alr. All the R packages are available from CRAN, cran.us.r-project.org; sources are given for the S-Plus versions.

<table>
<thead>
<tr>
<th>Package</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>air3</td>
<td>Contains all the data files used in the book, and additional commands that implement ideas in the book that are not already part of these programs. The R version is available from CRAN; for the S-Plus version, see www.stat.umn.edu/alr.</td>
</tr>
<tr>
<td>MASS</td>
<td>MASS is a companion to Venables and Ripley (2002), and is included in the distribution of R, so there is nothing to download. For S-Plus, see www.stats.ox.ac.uk/pub/MASS3/Software.html</td>
</tr>
<tr>
<td>car</td>
<td>The companion to Fox (2002), it is available from CRAN for R and from socserv.mcmaster.ca/jfox/Books/Companion/car.html for both R and S-Plus.</td>
</tr>
<tr>
<td>nlme</td>
<td>This library fits linear and nonlinear mixed-effects models, which are briefly discussed in Section 6.5. This package is included with the base distribution of both R and S-Plus; with S-Plus, it may be called nlme4, or some other last digit. This library is described by Pinheiro and Bates (2000).</td>
</tr>
</tbody>
</table>
| sm | This is a library for local linear smoothing, and used only in Chapter 12. The R version is available from CRAN, and the S-Plus version is available from www.stats.gla.ac.uk/~adrian/sm/.

Libraries for S-Plus only

<table>
<thead>
<tr>
<th>Package</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>resample</td>
<td>Bootstrapping and other resampling methods, available from www.insightful.com/downloads/libraries/. Similar methods, although not as elegant, are part of the air3 package for R.</td>
</tr>
<tr>
<td>missing</td>
<td>This package includes helpful commands for working with data files that have missing values, meaning that the values for some variables are not observed for some cases, also available from www.insightful.com/downloads/libraries/.</td>
</tr>
</tbody>
</table>

0.7 COPYRIGHT AND PRINTING THIS PRIMER

Copyright © 2005, by Sanford Weisberg. Permission is granted to download and print this primer. Bookstores, educational institutions, and instructors are granted permission to download and print this document for student use. Printed versions of this primer may be sold to students for cost plus a reasonable profit. The website reference for this primer is www.stat.umn.edu/alr. Newer versions may be available from time to time.
1

Scatterplots and Regression

1.1 SCATTERPLOTS

A principal tool in regression analysis is the two-dimensional scatterplot. All statistical packages can draw these plots. We concentrate mostly on the basics of drawing the plot. Most programs have options for modifying the appearance of the plot. For these, you should consult documentation for the program you are using.

R and S-Plus
R and S-Plus scatterplots can be drawn using the function `plot`. A simple application of the function will draw ALR [F1.1]:

```r
> library(alr3)
> data(heights)  # R only, not needed in S-Plus
> attach(heights)
> plot(Mheight,Dheight,xlim=c(55,75),ylim=c(55,75),pch=20)
```

The `library` command loads the `alr3` library that contains all the data sets discussed in ALR. The `data` command tells R to load the data frame called `heights`; this command is not needed (and may cause an error message to appear) with S-Plus. The function `attach` allows reference to the variables in `heights` without specifying the data frame, so we can type `Mheight` rather than `heights$Mheight`. The first argument to `plot` is the quantity to be plotted on the horizontal axis, followed by the quantity on the vertical axis. These are the only two required arguments; all the remaining arguments modify the way the plot looks, and you can skip them.
The arguments `xlim` and `ylim` give the limits on the horizontal and vertical axes, respectively. In the example, both have been set to range from 55 to 75. The statement `c(55,75)` should be read as *collect the values 55 and 75 into a vector*. The argument `pch` selects the plotting character. Here we have use character 20, which is a small filled circle in R and a plus sign in S-Plus. `VR[4.2]` give a listing of all the characters available. You can also plot a letter, for example `pch="f"` would use a lower-case “f” as the plotting character. The argument `cex=.3` controls the size of the plotting symbol, here .3 times the default size. This graph has many points, so a very small symbol is desirable. `VR[4.2]` discusses most of the other settings for a scatterplot; we will introduce others as we use them. The documentation in R/S-Plus for the function `par` describes many of the arguments that control the appearance of a plot. The arguments are not all the same in R and S-Plus.

Figure `ALR[F1.2]` is obtained from `ALR[F1.1]` by deleting most of the points. Some packages may allow the user to remove/restore points interactively, but this is not so in R/S-Plus. You need to redraw the figure, after selecting the points you want to appear:

```R
> sel <- (57.5 < Mheight) & (Mheight <= 58.5) |
  (62.5 < Mheight) & (Mheight <= 63.5) |
  (67.5 < Mheight) & (Mheight <= 68.5)
> plot(Mheight[sel],Dheight[sel],xlim=c(55,75),ylim=c(55,75),
  pty="s",pch=20,cex=.3,xlab="Mheight",ylab="Dheight")
```

The variable `sel` that results from the first calculation is a vector of values equal to either TRUE and FALSE. It is equal to TRUE if either $57.5 < Mheight \leq 58.5$, or $62.5 < Mheight \leq 63.5$ or $67.5 < Mheight \leq 68.5$. The vertical bar `|` is the logical “or” operator; type `help("|")` to get the syntax for other logical operators. `Mheight[sel]` selects the elements of `Mheight` with `sel` equal to TRUE. The `xlab` and `ylab` labels are used to label the axes, or else the label for the x-axis would have been, for example, `Mheight[sel]`.

`ALR[F1.3]` adds several new features to scatterplots. First, two graphs are drawn in one window. This is done using the `par` function, which sets global parameters for graphical windows,

```R
> par(mfrow=c(1,2))
```

meaning that the graphical window will hold an array of graphs with one row and two columns. This choice for the window will be kept until either the graphical window is closed or it is reset using another `par` command.

To draw `ALR[F1.3]` we need to find the equation of the line to be drawn, and this is done using the `lm` command, the workhorse in R/S-Plus for fitting linear regression models. We will discuss this at much greater length in the next two chapters beginning in Section [2.3] but for now we will simply use the function.

1 Although not used in the example, `Mheight[!sel]` would select the elements of `Mheight` with `sel` equal to FALSE.
First, `forbes` is accessed and attached. Then, the OLS fit is computed using the `lm` function and named `m0`. The first plot draws the scatterplot of `Pressure` versus `Temp`. We add the regression line with the function `abline`. When the argument to `abline` is the name of a regression model, the function gets the information needed from the model to draw the OLS line. The second plot draws the second graph, this time of the residuals from model `m0` on the vertical axis versus `Temp` on the horizontal axis. A horizontal dashed line is added to this graph by specifying intercept `a` equal to zero and slope `b` equal to zero. The argument `lty=2` specifies a dashed line; `lty=1` would have given a solid line.

`alr[F1.5]` has two lines added to it, the OLS line and the line joining the mean for each value of `Age`. Here are the commands that draw this graph:

```r
> data(wblake) # R-only
> attach(wblake)
> plot(Age,Length)
> abline(lm(Length~Age))
> lines(1:8,tapply(Length,Age,mean),lty=2)
```

There are a few new features here. First, the call to `lm` is combined with `abline` into a single command. The `lines` command adds lines to an existing plot, joining the points specified. The points have horizontal coordinates 1:8, the integers from one to eight for the `Age` groups, and vertical coordinates given by the mean `Length` at each `Age`. The function `tapply` can be read “apply the function `mean` to the variable `Length` separately for each value of `Age`.”

`alr[F1.7]` adds two new features: a separate plotting character for each of the groups, and a legend or key. Here is how this was drawn in R:

```r
> data(turkey) # R only
> attach(turkey)
> plot(A,Gain,pch=S, xlab="Amount(percent of diet)",
col=S, ylab="Weight gain, g")
> legend(.02,780,legend=c("1","2","3"),pch=1:3,cex=.6)
```

`S` is a variable in the data frame with the values 1, 2, or 3, so setting `pch=S` sets the plotting character to be a “1,” “2” or “3” depending on the value of `S`. Similarly, setting `col=S` will set the color of the plotted points to be different for each of the three groups. The first two arguments to the `legend` set its upper left corner, the argument `legend` is a list of text to show in the legend, and the `pch` argument tells to show the plotting characters. There are many other options; see the help page for `legend` or `vr[4.3]`.

> data(forbes) # R only
> attach(forbes)
> m0 <- lm(Pressure~Temp)
> plot(Temp,Pressure,xlab="Temperature",ylab="Pressure")
> abline(m0)
> plot(Temp,residuals(m0), xlab="Temperature", ylab="Residuals")
> abline(a=0,b=0,lty=2)
Changing plotting symbols or colors is more tedious in S-Plus because you can only have one plotting symbol at a time:

```r
# S-Plus version
plot(turkey$A[turkey$S==1],turkey$Gain[turkey$S==1],pch="O",
     xlab="Amount (percent of diet)", ylab="Weight gain, g")
points(turkey$A[turkey$S==2],turkey$Gain[turkey$S==2],pch="+")
points(turkey$A[turkey$S==3],turkey$Gain[turkey$S==3],pch="*")
legend(.02,780,legend=c("1","2","3"),pch="O+*")
```

The `plot` command only draws the graph for the points with $S = 1$, and it uses the symbol equivalent to a capital “O”. The points for the other groups are added with `points` helpers. The format of the legend is a little different, too. In S-Plus, the `pch` argument must be given as a character string, rather than as a vector for R. While the `points` and `plot` commands will work in both R and S-Plus, the two legend commands are different.

1.2 MEAN FUNCTIONS

1.3 VARIANCE FUNCTIONS

1.4 SUMMARY GRAPH

1.5 TOOLS FOR LOOKING AT SCATTERPLOTS

R and S-Plus ALR[F1.10] adds a smoother to ALR[F1.1]. R/S-Plus have a great variety of smoothers available, and all can be added to a scatterplot. Here is how to add a loess smooth using the `lowess` function.

```r
> data(heights) # R only
> attach(heights)
> plot(Dheight~Mheight,cex=.1,pch=20)
> abline(lm(Dheight~Mheight),lty=1)
> lines(lowess(Dheight~Mheight,f=6/10,iter=1),lty=2)
```

The `lowess` specifies the response and predictor in the same way as `lm`. It also requires a smoothing parameter, which we have set to 0.6. The argument `iter` also controls the behavior of the smoother; we prefer to set `iter=1`, not the default value of 3.

1.6 SCATTERPLOT MATRICES

R and S-Plus R and S-Plus include at least two functions for obtaining scatterplot matrices, `pairs` and `splom`; we will only use `pairs`. To reproduce an approximation to ALR[F1.11], we must first transform the data to get the
variables that are to be plotted, and then draw the plot. R and S-Plus are a little different. Here is the code that will work for both:

```r
> data(fuel2001) # R only
> f <- fuel2001 # Required in S-Plus, OK in R but not needed
> f$Dlic <- 1000*f$Drivers/f$Pop
> f$Fuel <- 1000*f$FuelC/f$Pop
> f$Income <- f$Income/1000
> f$logMiles <- logb(f$Miles,2)
> names(f)
[1] "Drivers" "FuelC" "Income" "Miles" "MPC" "Pop"
[7] "Tax" "State" "Dlic" "Fuel" "logMiles"
> attach(f)
> pairs(~Tax+Dlic+Income+logMiles+Fuel)

With R, we must first obtain the data from the library with the `data` command; this is not necessary in S-Plus. The next line makes a local copy of `fuel2001` called `f`. This is unnecessary with R, and necessary in S-Plus only if you plan to add to the data frame, as is done here. Four new transformed variables were added to the data frame. The syntax for the transformations is similar to the language C. The variable \( \text{Dlic} = 1000 \times \text{Drivers/Pop} \) is the fraction of the population that has a driver’s license times 1000. The variable \( \text{logMiles} \) is the base-two logarithm of \( \text{Miles} \). The `logb` function in R/S-Plus can be used to compute logarithms to any base, given by the second argument; the default is natural logarithms. In R only, the command `log` is equivalent to `logb`, but in S-Plus, `log` is used only for natural logarithms.

Typing `names(f)` gives variable names in the order they appear in the data frame. Next, we used the `attach` command so we can refer to variables by their names without preappending the name of the data frame; we can now use `Dlic` rather than `f$Dlic`. We specify the variables we want to appear in the plot using a one-sided formula, which consists of a “\( \sim \)” followed by the variable names separated by \(+\) signs. In place of the one-sided formula, you could also use a two-sided formula, putting the response `Fuel` to the left of the \( \sim \), but not on the right. Finally, you can replace the formula by a matrix or data frame, so

```r
> pairs(f[,c(7,9,3,11,10)])
```

would give the scatterplot matrix for columns 7, 9, 3, 11, 10 of the data frame `f`, resulting in the same plot as before.

In R, the `pairs` command also has an argument `data`, which would allow us to specify the name of the data frame in the call to `pairs` without the `attach` command. This is not so in S-Plus; the command

```r
> pairs(~Tax+Dlic+Income+logMiles+Fuel)
```

2If you entered the `attach` command before doing the transformations, then the attached data frame would include only the variables in the original data frame but not the transformed variables. You would need to use `attach` again, after the transformations, to make the transformed variables available without specifying the name of the data frame.
> pairs(~Tax+Dlic+Income+logMiles+Fuel, data=f)

works fine in R, but gives an error in S-Plus.

Problems

1.1. Boxplots would be useful in a problem like this because they display level (median) and variability (distance between the quartiles) simultaneously.

R and S-Plus The `tapply` can be used to get the standard deviations for each value of `Age`. In R, the function `sd` computes the standard deviation. In S-Plus, you need to do something more complicated: `function(x) sqrt(var(x))`.

In R, the command `plot(Length as.factor(Age), data=wblake)` will produce the boxplot, while `plot(Length Age, data=wblake)` produces a scatterplot. the `as.factor` command converts a numeric variable into a categorical variable.

1.2.

R and S-Plus You can resize a graph without redrawing it by using the mouse to move the lower right corner on the graph.

1.3.

R and S-Plus Remember that `logb(UN1$Fertility,2)` gives the base-two logarithm.
2

Simple Linear Regression

2.1 ORDINARY LEAST SQUARES ESTIMATION

All the computations for simple regression depend on only a few summary statistics; the formulas are given in the text, and in this section we show how to do the computations step-by-step. All computer packages will do these computations automatically, as we show in Section 2.6.

2.2 LEAST SQUARES CRITERION

R and S-Plus All the sample computations shown in ALR are easily reproduced in R/S-Plus. First, get the right variables from the data frame, and compute means. The computation is simpler in R:

```r
> data(forbes) # R only
> # pick out the predictor (column 1) and the response (column 3)
> forbes1 <- forbes[,c(1,3)]
> fmeans <- mean(forbes1) ; fmeans # xbar and ybar

Temp Lpres
202.95294 139.60529
```

In S-Plus, you must explicitly get the mean for each column of the data frame:

```r
> # S-Plus
> # pick out the predictor (column 1) and the response (column 3)
> forbes1 <- forbes[,c(1,3)]
> fmeans <- apply(forbes1,2,mean) ; fmeans # xbar and ybar
```
The `apply` is read as “apply to the matrix `forbes1` on its dimension 2 (dimension 1 is rows, dimension 2 is columns) the function `mean`.” This also works in R.

Next, we need the sums of squares and cross-products. Since the sample covariance matrix is just \((n - 1)\) times the matrix of sums of squares and cross-products, we can use the function `cov`:

```r
> (fcov <- (17-1) * var(forbes1))
```

All the regression summaries depend only on the sample means and this matrix. Assign names to the components, and do the computations in the book:

```r
> SXX <- fcov[1,1] ; SXY <- fcov[1,2] ; SYY <- fcov[2,2]
> betahat1 <- SXY/SXX ; print(round(betahat1,3))
[1] 0.895
> betahat0 <- ybar - betahat1*xbar ; print(round(betahat0,3))
Lpres
-42.138
```

### 2.3 Estimating \(\sigma^2\)

**R and S-Plus** We can use the summary statistics computed previously to get the RSS and the estimate of \(\sigma^2\):

```r
> RSS <- SYY - SXY^2/SXX ; RSS
[1] 2.1549273
> sigmahat2 <- RSS/15 ; sigmahat2
[1] 0.14366182
> sigmahat <- sqrt(sigmahat2) ; sigmahat
[1] 0.37902746
```

### 2.4 Properties of Least Squares Estimates

### 2.5 Estimated Variances

The estimated variances of coefficient estimates are computed using the summary statistics we have already obtained. These will also be computed automatically linear regression fitting methods, as shown in the next section.
2.6 COMPARING MODELS: THE ANALYSIS OF VARIANCE

Computing the analysis of variance and $F$ test by hand requires only the value of $RSS$ and of $SS_{reg} = SYY - RSS$. We can then follow the outline given in ALR[2.6].

**R and S-Plus** We show how the function `lm` can be used for getting all the summaries in a simple regression model, and then the analysis of variance and other summaries. `lm` is also described in VR[6.1].

The basic form of the `lm` function is

```r
> lm(formula, data)
```

The argument `formula` describes the mean function to be used in fitting, and is the only required argument. `data` gives the name of the data frame that contains the variables in the formula, and may be ignored if the `attach` function has been used to specify the data frame. Other possible arguments will be described as we need them.

The formula is no more than a simplified version of the mean function. For the Forbes example, the mean function is $E(Lpres|Temp) = \beta_0 + \beta_1 Temp$, and the corresponding formula is

$Lpres \sim Temp$

The left-hand side of the formula is the response variable. The “=” sign in the mean function is replaced by “~”. In this and other formulas used with `lm`, the terms in the mean function are specified, but the parameters are omitted. Also, the intercept is included without being specified. You could put the intercept in explicitly by typing

$Lpres \sim 1 + Temp$

Although not relevant for Forbes data, you could fit regression through the origin by explicitly removing the term for the intercept,

$Lpres \sim Temp - 1$

You can also replace the variables in the mean function by transformations of them. For example,

$logb(Pressure,10) \sim Temp$

is exactly the same mean function because $Lpres$ is the base-ten logarithm of $Pressure$. See VR[3.7] for a discussion of formulas.

The usual procedure for fitting a simple regression via OLS is to fit using `lm`, and assign the result a name:

```r
> attach(forbes)
> m1 <- lm(Lpres~Temp)
```

The object `m1` contains all the information about the regression that was just fit. There are a number of helper functions that let you extract the
information, either for printing, plotting, or other computations. The `print` function displays a brief summary of the fitted model. The `summary` function displays a more complete summary:

```r
> summary(m1)
Call:
 lm(formula = Lpres ~ Temp)
Residuals:
 Min 1Q Median 3Q Max
-0.322200 -0.144731 -0.066640 0.021836 1.359775
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -42.137779 3.340199 -12.615 2.176e-09
Temp 0.895494 0.016452 54.432 < 2.2e-16
Residual standard error: 0.37903 on 15 degrees of freedom
Multiple R-Squared: 0.99496, Adjusted R-squared: 0.99463
F-statistic: 2962.8 on 1 and 15 DF, p-value: < 2.22e-16
```

You can verify that the values shown here are the same as those obtained by “hand” previously. The output contains a few items never discussed in `alr`, and these are edited out of the output shown in `alr`. These include the quantiles of the residuals, and the “Adjusted R-Squared.” Neither of these seem very useful. Be sure that you understand all the remaining numbers in this output.

The helper function `anova` has several uses in R/S-Plus, and the simplest is to get the analysis of variance described in `alr[2.6]`,

```r
> anova(m1)
Analysis of Variance Table
Response: Lpres
 Df Sum Sq Mean Sq F value Pr(>F)
Temp 1 425.64 425.64 2962.80 < 2.2e-16
Residuals 15 2.16 0.14
```

We have just scratched the surface of the options for `lm` and for specifying formulas. Stay tuned for more details later in this primer.

### 2.7 THE COEFFICIENT OF DETERMINATION, $R^2$

**R and S-Plus** For simple regression, $R^2$ can be computed as shown in the book. Alternatively, the correlation can be computed directly using the `cor` command:

```r
> R2 <- SSreg/SYY ; R2
```
and $0.99747817^2 = 0.9949627$. $R^2$ is also printed by the summary method shown in the last section.

2.8 CONFIDENCE INTERVALS AND TESTS

Confidence intervals and tests can be computed using the formulas in ALR[2.8], in much the same way as the previous computations were done.

**R and S-Plus** To use `lm` to compute confidence intervals, we need access to the estimates, their standard errors (for predictions we might also need the covariances between the estimates), and we also need to be able to compute multipliers from the appropriate $t$ distribution.

To get access to the coefficient estimates, use the helper function `coef`,

```r
> betahat <- coef(m1) ; betahat
 (Intercept) Temp
-42.1378 0.8955
```

In R, the command `vcov` can be used to get the matrix of variances and covariances of the estimates:

```r
> var <- vcov(m1) ; var
 (Intercept) Temp
(Intercept) 11.156929 -0.05493134
 Temp -0.054931 0.00027066
```

The estimated variance of the intercept $\hat{\beta}_0$, the square of the standard error, is 11.156929. The standard errors are the square roots of the diagonal elements of this matrix, given by `sqrt(diag(var))`. The covariance between $\hat{\beta}_0$ and $\hat{\beta}_1$ is $-0.05493134$. The command `vcov` is not part of S-Plus, but if you have loaded the `alr3` library, it is available just as it is in R. Alternatively, you would need to compute

```r
> s1 <- summary(m1)
> var <- s1$sigma^2 * s1$cov.unscaled
```

to get the estimated covariance matrix. If you have loaded the `alr3` library, the `sigma.hat` helper function will return the estimator $\hat{\sigma}$; without the library, type

```r
> sqrt(summary(m1)$sigma)
```

The last item we need to compute confidence intervals is the correct multiplier from the $t$ distribution. For a 95% interval, the multiplier is
The `qt` command computes quantiles of the $t$-distribution; similar functions are available for the normal (`qnorm`), $F$ (`qF`), and other distributions; see Section 4.4. The function `qt` finds the value $tval$ so that the area to the left of $tval$ is equal to the first argument to the function. The second argument is the degrees of freedom, which can be obtained from `m1` as shown above.

Finally, the confidence intervals for the two estimates are:

```
> data.frame(Est = betahat, lower=betahat-tval*sqrt(diag(var)),
+ upper=betahat+tval*sqrt(diag(var)))

 Est lower upper
(Intercept) -42.1378 -49.25724 -35.01831
Temp 0.8955 0.86043 0.93056
```

By creating a data frame, the values get printed in a nice table.

The standard R includes a function called `confint` that computes the confidence intervals for you. This function

```
> confint(m1, level=.95)

2.5% 97.5%
(Intercept) -42.25724 -35.01831
Temp 0.86043 0.93056
```

gives the same answer. In S-Plus, the `alr3` library includes a function `conf.interval` that gives similar output.

**Prediction and fitted values**

R and S-Plus. The `predict` command is a very powerful helper function for getting fitted and predictions from a model fit with `lm`, or, indeed, most other models in R/S-Plus. This command has different arguments in R and S-Plus. Here are the important arguments in R:

```
predict(object, newdata, se.fit = FALSE,
 interval = c("none", "confidence", "prediction"),
 level = 0.95)
```

The `object` argument is the name of the regression model that has already been computed. In the simplest case, we have

```
> predict(m1)
 1 2 3 4 5 6 7 8
132.04 131.86 135.08 135.53 136.42 136.87 137.77 137.95
 9 10 11 12 13 14 15 16 17
138.21 138.13 140.18 141.08 145.47 144.66 146.54 147.62 147.89
```

returning the fitted values (or predictions) for each observation. If you want predictions for particular values, say `Temp = 210` and `220`, use the command
The `newdata` argument is a powerful tool in using the `predict` command, as it allows computing predictions at arbitrary points. The argument should equal a data frame, with variables having the same names as the variables used in the mean function. For the Forbes data, the only term beyond the intercept is for `Temp`, and so only values for `Temp` must be provided. The argument `intervals="prediction"` gives prediction intervals at the specified level in addition to the point predictions; other intervals are possible, such as for fitted values; see `help(predict.lm)` for more information.

Additional arguments to `predict` will compute additional quantities. For example, `se.fit` will also return the standard errors of the fitted values (not the standard error of prediction). For example,

```r
> predvals <- predict(m1, newdata=data.frame(Temp=c(210,220)),
 + se.fit=TRUE)
> predvals
$fit
 1 2
145.92 154.87

$se.fit
 1 2
0.14796 0.29514

$df
[1] 15

$residual.scale
[1] 0.37903
```

You can do computations with these values. For example,

```r
> (150 - predvals$fit)/predvals$se.fit
```

computes the difference between 150 and the fitted values, and then divides each by its standard error of the fitted value. The `predict` helper function does not compute the standard error of prediction, but you can compute it using equation \(\text{ALR}[E2.26]\),

```r
se.pred <- sqrt(predvals$residual.scale^2 + predvals$se.fit^2)
```

In S-Plus 6, the key arguments of the `predict` command for linear models are not the same as in R, and are given by

`predict(object, newdata, se.fit = FALSE, conf.level = 0.95,`

```r
 ci.fit=FALSE, pi.fit=FALSE, conf.type="p")
```
The argument `ci.fit=TRUE` would compute the confidence intervals for fitted values. The argument `pi.fit=TRUE` computes confidence intervals for predictions. The argument `conf.type="p"` computes the point-wise intervals discussed in ALR[2.8.3–2.8.4], while `conf.type="s"` computes the simultaneous intervals also discussed in ALR[2.8.4] and displayed in ALR[F1.11]. S-Plus 4 does not automatically compute confidence intervals, and you must use the predictions, the standard errors of a fitted values, and the df for error in ALR[E2.26] and the first (unnumbered) equation in ALR[2.8.4].

### 2.9 THE RESIDUALS

**R and S-Plus** The command `residuals` computes the residuals for a model. A plot of residuals versus fitted values with a horizontal line at the origin is given by

```r
> plot(predict(m1), residuals(m1))
> abline(h=0,lty=2)
```

We will have more elaborate uses of `residuals` later in the primer. If you apply the `plot` helper function to the regression model `m1` by typing `plot(m1)`, you will also get the plot of residuals versus fitted values, along with a few other plots. We will generally not use the plot methods for models in this primer because it often includes plots not discussed in `ALR`.

**Problems**

#### 2.2.

**R and S-Plus** You need to fit the same model to both the `forbes` and `hooker` data sets. You can then use the `predict` command to get the predictions for Hooker’s data from the fit to Forbes’ data, and vice versa.

#### 2.7.

**R and S-Plus** The formula for regression through the origin explicitly removes the intercept, $y = x - 1$.

#### 2.10.
3

Multiple Regression

3.1 ADDING A TERM TO A SIMPLE LINEAR REGRESSION MODEL

**R and S-Plus** Fox (2002) has written a package for R and S-Plus called car, an acronym for *companion to applied regression*. His package can be downloaded in the same way as the alr3 package described in Section 0.2.2. The `avp` command in car will draw added variable plots after you have fit a multiple linear regression model. We therefore defer discussing the plots until after we have discussed using `lm` to fit multiple linear regression models.

3.2 THE MULTIPLE LINEAR REGRESSION MODEL

3.3 TERMS AND PREDICTORS

**R and S-Plus** Table 3.1 in ALR[3.3] gives the “usual” summary statistics for each of the interesting terms in a data frame. Oddly enough, the writers of R and S-Plus don’t seem to think these are the standard summaries. Here is what you get from `lm`.

```r
> data(fuel2001) # \R\ only
> fuel2001$Dlic <- 1000*fuel2001$Drivers/fuel2001$Pop
> fuel2001$Income <- fuel2001$Income/1000
```

1See Section 1.6 to see how to do this in S-Plus.
> fuel2001$logMiles <- log(fuel2001$Miles, 2)
> f <- fuel2001[, c(7, 9, 3, 11, 10)] # new data frame
> summary(f)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tax</td>
<td>Dlic</td>
<td>Income</td>
<td>logMiles</td>
<td>Fuel</td>
</tr>
<tr>
<td>Min.</td>
<td>7.5</td>
<td>700</td>
<td>21.0</td>
<td>10.6</td>
<td>317</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>18.0</td>
<td>864</td>
<td>25.3</td>
<td>15.2</td>
<td>575</td>
</tr>
<tr>
<td>Median</td>
<td>20.0</td>
<td>909</td>
<td>27.9</td>
<td>16.3</td>
<td>626</td>
</tr>
<tr>
<td>Mean</td>
<td>20.2</td>
<td>904</td>
<td>28.4</td>
<td>15.7</td>
<td>613</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>23.3</td>
<td>943</td>
<td>31.2</td>
<td>16.8</td>
<td>667</td>
</tr>
<tr>
<td>Max.</td>
<td>29.0</td>
<td>1075</td>
<td>40.6</td>
<td>18.2</td>
<td>843</td>
</tr>
</tbody>
</table>

Rather than giving the standard deviation for each variable, we get the first and third quartiles. You can get the standard deviations easily enough, using

> apply(f, 2, sd)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tax</td>
<td>Dlic</td>
<td>Income</td>
<td>logMiles</td>
<td>Fuel</td>
</tr>
<tr>
<td></td>
<td>4.5447</td>
<td>72.8578</td>
<td>4.4516</td>
<td>1.4867</td>
<td>88.9600</td>
</tr>
</tbody>
</table>

The argument “2” in apply tells the program to apply the third argument, the sd function, to the second dimension, or columns, of the matrix given by the first argument. In S-Plus replace sd by stdev. Sample correlations, \( \text{ALR}[T3.2] \), are computed using the cor command,

> round(cor(f), 4)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tax</td>
<td>Dlic</td>
<td>Income</td>
<td>logMiles</td>
<td>Fuel</td>
</tr>
<tr>
<td>Tax</td>
<td>1.0000</td>
<td>-0.0858</td>
<td>-0.0107</td>
<td>-0.0437</td>
<td>-0.2594</td>
</tr>
<tr>
<td>Dlic</td>
<td>-0.0858</td>
<td>1.0000</td>
<td>-0.1760</td>
<td>0.0306</td>
<td>0.4685</td>
</tr>
<tr>
<td>Income</td>
<td>-0.0107</td>
<td>-0.1760</td>
<td>1.0000</td>
<td>-0.2959</td>
<td>-0.4644</td>
</tr>
<tr>
<td>logMiles</td>
<td>-0.0437</td>
<td>0.0306</td>
<td>-0.2959</td>
<td>1.0000</td>
<td>0.4220</td>
</tr>
<tr>
<td>Fuel</td>
<td>-0.2594</td>
<td>0.4685</td>
<td>-0.4644</td>
<td>0.4220</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

### 3.4 ORDINARY LEAST SQUARES

**R and S-Plus** The sample covariance matrix is computed using either var or cov, so

> cov(f)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tax</td>
<td>Dlic</td>
<td>Income</td>
<td>logMiles</td>
<td>Fuel</td>
</tr>
<tr>
<td>Tax</td>
<td>20.65463</td>
<td>-28.4247</td>
<td>-0.21617</td>
<td>-0.29552</td>
<td>-104.894</td>
</tr>
<tr>
<td>Dlic</td>
<td>-28.4247</td>
<td>5308.2591</td>
<td>-57.07045</td>
<td>3.31354</td>
<td>3036.591</td>
</tr>
<tr>
<td>Income</td>
<td>-0.21617</td>
<td>-57.07045</td>
<td>19.81707</td>
<td>-1.95804</td>
<td>-183.913</td>
</tr>
<tr>
<td>logMiles</td>
<td>-0.29552</td>
<td>3.3135</td>
<td>-1.95804</td>
<td>2.21032</td>
<td>55.817</td>
</tr>
<tr>
<td>Fuel</td>
<td>-104.89439</td>
<td>3036.5905</td>
<td>-183.91257</td>
<td>55.8179</td>
<td>7913.881</td>
</tr>
</tbody>
</table>

We will compute the matrix \((X'X)^{-1}\). To start we need the matrix \(X\), which has 51 rows, one column for each predictor, and one column for the intercept. Here are the computations:

> f$Intercept <- rep(1, 51) # a column of ones added to f
> X <- as.matrix(f[, c(6, 1, 2, 3, 4)]) # reorder and drop fuel
> xtx <- t(X) %*% X
> xtxinv <- solve(xtx)
> xty <- t(X) %*% f$Fuel
> print(xtxinv,digits=4)

<table>
<thead>
<tr>
<th></th>
<th>Intercept</th>
<th>Tax</th>
<th>Dlic</th>
<th>Income</th>
<th>logMiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>9.02151</td>
<td>-2.852e-02</td>
<td>-4.080e-03</td>
<td>-5.981e-02</td>
<td>-1.93 2e-01</td>
</tr>
<tr>
<td>Tax</td>
<td>-0.02852</td>
<td>9.788e-04</td>
<td>5.599e-06</td>
<td>4.263e-05</td>
<td>1.602e-04</td>
</tr>
<tr>
<td>Dlic</td>
<td>-0.00408</td>
<td>5.599e-06</td>
<td>3.922e-06</td>
<td>1.189e-05</td>
<td>5.402e-06</td>
</tr>
<tr>
<td>Income</td>
<td>-0.05981</td>
<td>4.263e-05</td>
<td>1.189e-05</td>
<td>1.143e-03</td>
<td>1.000e-03</td>
</tr>
<tr>
<td>logMiles</td>
<td>-0.19315</td>
<td>1.602e-04</td>
<td>5.402e-06</td>
<td>1.000e-03</td>
<td>9.948e-03</td>
</tr>
</tbody>
</table>

The first line added a column to the f data frame that consists of 51 copies of the number 1. The function as.matrix converted the reordered data frame into a matrix X. The next line computed X’X, using the function t to get the transpose of a matrix, and %*% for matrix multiply. The solve function returns the inverse of is argument; it is also used to solve linear equations of the function has two arguments.

The estimates and other regression summaries can be be computed, based on these sufficient statistics:

> xty <- t(X) %*% f$Fuel
> betahat <- xtxinv %*% xty ; betahat

<table>
<thead>
<tr>
<th></th>
<th>[,1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>154.19284</td>
</tr>
<tr>
<td>Tax</td>
<td>-4.22798</td>
</tr>
<tr>
<td>Dlic</td>
<td>0.47187</td>
</tr>
<tr>
<td>Income</td>
<td>-6.13533</td>
</tr>
<tr>
<td>logMiles</td>
<td>18.54527</td>
</tr>
</tbody>
</table>

As with simple regression the function lm is used to automate the fitting of a multiple linear regression mean function. The only difference between the simple and multiple regression is the formula:

> m1 <- lm(formula = Fuel ~ Tax + Dlic + Income + logMiles, data = f)
> summary(m1)

Call:
  lm(formula = Fuel ~ Tax + Dlic + Income + logMiles, data = f)

Residuals:
  Min     1Q Median     3Q    Max
-163.1  -33.0    5.9  32.0  183.5

Coefficients:
             Estimate Std. Error   t value Pr(>|t|)
(Intercept)  154.193     194.906     0.79     0.43294
Tax       -4.2280      2.0300    -2.08     0.04287
Dlic         0.472       0.129     3.67     0.00063
Income     -6.135       2.194     -2.80     0.00751
logMiles    18.545       6.472      2.87     0.00626
Residual standard error: 64.9 on 46 degrees of freedom
Multiple R-Squared: 0.51, Adjusted R-squared: 0.468
F-statistic: 12 on 4 and 46 DF, p-value: 9.33e-07

3.5 THE ANALYSIS OF VARIANCE

R and S-Plus  The $F$-statistic printed at the bottom of the output for `summary(m1)` shown above corresponds to ALR[3.4], testing all coefficients except the intercept equal to zero versus the alternative that they are not all zero.

Following the logic in ALR[3.5.2], we can get an $F$-test for the hypothesis that $\beta_1 = 0$ versus a general alternative by fitting two models, the larger one we have already fit for the mean function under the alternative hypothesis, and a smaller mean function under the null hypothesis. We can fit this second mean function using the `update` command:

```r
> m2 <- update(m1, ~.-Tax)
> anova(m2,m1)
```

Analysis of Variance Table

<table>
<thead>
<tr>
<th>Model 1: Fuel ~ Dlic + Income + logMiles</th>
<th>Res.Df</th>
<th>RSS</th>
<th>Df</th>
<th>Sum of Sq</th>
<th>F</th>
<th>Pr(&gt;F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 2: Fuel ~ Tax + Dlic + Income + logMiles</td>
<td>46</td>
<td>193700</td>
<td>1</td>
<td>18264</td>
<td>4.34</td>
<td>0.043</td>
</tr>
</tbody>
</table>

`update` takes an existing object and updates it in some way, usually by changing the mean function or by changing the data. In this instance, we have updated the mean function on the right-hand side by taking the existing terms, indicated by the “.” and then removing `Tax` by putting it in the mean function with a negative sign. We can then use the `anova` helper command to compare the two mean functions. The information is equivalent to what is shown in ALR[3.5.2] after equation ALR[E3.22], but in a somewhat different layout; I find the output from `anova` to be confusing.

If you use the `anova` helper command with just one argument, you will get a sequential Anova table, like ALR[T3.5]. The terms are fit in the order you specify them in the mean function, so `anova` applied to the following mean functions

```r
> m1 <- lm(formula = Fuel ~ Tax + Dlic + Income + logMiles, data = f)
> m2 <- update(m1, ~ Dlic + Tax + Income + logMiles)
> m3 <- update(m1, ~ Tax + Dlic + logMiles + Income)
```

all give different `anova` tables.
3.6 PREDICTIONS AND FITTED VALUES

R and S-Plus  Predictions and fitted values for multiple regression use the `predict` command, just as for simple linear regression. If you want predictions for new data, you must specify values for all the terms in the mean function, apart from the intercept, so for example,

```r
> predict(m1,newdata=data.frame(
 Tax=c(20,35),Dlic=c(909,943),Income=c(16.3,16.8),
 logMiles=c(626,667)))
```

will produce two predictions of future values.

Problems

R and S-Plus  Several of these problems concern added-variable plots. These are easy enough to compute using the following method for the added-variable plot for a particular term $X_2$ in a mean function given in $m0$ that you have already fit.

1. Fit the model $m1$ that is the regression of the response on all terms except for $X_2$.
2. Fit the model $m2$ that is the regression of $X_2$ on all the other predictors.
3. Draw the added-variable plot, `plot(residuals(m2),residuals(m1))`.

You can actually combine all these into a single very complex statement:

```r
> plot(residuals(update(m0,~.-X2)),residuals(update(m0,X2~.-X2)))
```

The plot above won’t have labels or other identifying information. To automate printing added variable plots you can write your own function that will do the regressions and draw the plot, or by using the function `avp` in the `car` library. For the fuel data,

```r
> avp(m0,one.page=TRUE,ask=FALSE,identify.points=FALSE)
```

will produce all added-variable plots in one window, including an added-variable plot for the intercept. This function has several useful options, such as identifying points, drawing some of the plots rather than all of them, and so on. See Fox (2002), and type `help(avp)` after the `car` library has been loaded. At least at first, I recommend setting both `ask` and `identify.points` to be FALSE, but you may at some point decide to use these options. We will discuss identifying points later in this primer.
The first three sections of this chapter do not introduce any new computational methods; everything you need is based on what has been covered in previous chapters. The last two sections, on missing data and on computationally intensive methods introduce new computing issues.

4.1 UNDERSTANDING PARAMETER ESTIMATES

In ALR[T4.1], Model 3 is overparameterized. R and S-Plus will print the missing value symbol NA for terms that are linear combinations of the terms already fit in the mean function, so they are easy to identify from the printed output.

If you are using the output of a regression as the input to some other computation, you may want to check to see if the model was overparameterized or not. If you have fit a model called, for example, m2, then the value of m2$rank will be the number of terms actually fit in the mean function, including the intercept, if any. It is also possible to determine which of the terms specified in the mean function were actually fit, but the command for this is obscure:

> m2$qr$pivot[1:m2$qr$rank]

will return the indices of the terms, starting with the intercept, that were estimated in fitting the model.
4.1.1 Rate of change

4.1.2 Sign of estimates

4.1.3 Interpretation depends on other terms in the mean function

4.1.4 Rank deficient and over-parameterized models

**S-Plus** Over-parameterized models should cause few problems in modern computer programs, usually substituting either NA or “aliased” for terms that cannot be estimated.

*S-Plus by default* gives an error message if you attempt to fit an over-parameterized model. For example, with the Berkeley Guidance Study example discussed in ALR[4.1.3],

\[ m2 <- lm(Soma ~ WT2 + DW9 + DW18 + WT9 + WT18) \]

Error in `lm.fit.qr(x, y)`: computed fit is singular, rank 4

\[ m2 <- lm(Soma ~ WT2 + DW9 + DW18 + WT9 + WT18, singular.ok = TRUE) \]

\[ m2 \]

Call:
\[ lm(formula = Soma ~ WT2 + DW9 + DW18 + WT9 + WT18, \]
\[ \quad singular.ok = TRUE) \]

Coefficients:
\[ (2 not defined because of singularities) \]
\[ (Intercept) \]
\[ WT2 \]
\[ DW9 \]
\[ DW18 \]
\[ 1.592101 \]
\[ -0.01105652 \]
\[ 0.1045862 \]
\[ 0.0483385 \]

We see that the argument `singular.ok=TRUE` will permit fitting the model. Even here, however, the behavior is unexpected, since the variables that are not used in the fit are simply dropped from the coefficient estimates, rather than being given the value of NA, although a message warning that two coefficient were not estimated is printed in the output. This means that the vector of coefficients may be shorter than you expect.

This behavior is specific to **S-Plus** and does *not* occur in **R**.

4.2 EXPERIMENTATION VERSUS OBSERVATION

4.3 SAMPLING FROM A NORMAL POPULATION

4.4 MORE ON $R^2$

4.5 MISSING DATA

The data files that are included with ALR use “NA” as a place holder for missing values. Some packages may not recognize this as a missing value
indicator, and so you may need to change this character using an editor to the appropriate character for your program.

**R and S-Plus** Both R and S-Plus indicate missing values as NA. If you have a data file with some other missing data indicator, you can still read it into one of the programs. Suppose, for example, you have a text file `mydata.txt` that use a period “.” as the missing value indicator, with variable names in the first row. You could read this file as follows

```r
> data <- read.table("mydata.txt",header=TRUE,na.strings=".")
```

This will read the file, and covert the “.” to the missing value indicator.

There are several functions for working with missing values indicators. `is.na` serves two purposes, to set elements of a vector or array to missing, and to test each element of the vector or array to be missing, and return either TRUE or FALSE.

```r
> a <- 1:5 # set a to be the vector (1,2,3,4,5)
> is.na(a) <- c(1,5) # set elements 1 and 5 of a to NA
> a # print a
[1] NA 2 3 4 NA
> is.na(a) # for each element of a is a[j] = NA?
[1] TRUE FALSE FALSE FALSE TRUE
```

R has a function called `complete.cases` that returns a vector with the value TRUE for all cases in a data frame with no missing values, and FALSE otherwise. For example,

```r
> complete.cases(sleep1)
[1] FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[21] TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE
[31] TRUE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[41] TRUE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[51] TRUE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
[61] TRUE FALSE
```

This function does not exist in S-Plus; you can use the (rather cryptic) command

```r
> !apply(is.na(sleep1),1,any)
```

to get the same list of TRUE and FALSE.

Many commands in R/S-Plus have an argument `na.action` that tells the command what to do if missing data indicators are present. The usual default is `na.action=na.omit`, which means *delete all cases with missing data*. Another option that is always available is `na.action=na.fail`, which would prevent the command from executing at all with missing data. In principle there could be other actions, but none are commonly used. Other methods will have an argument `na.omit` with default value FALSE. For example, the function `mean(X)` will return NA if any of the elements of `X` are missing, while `mean(X, na.action=na.fail)`
na.omit=TRUE) will return the mean of the values actually observed. As a warning, 
R and S-Plus are not always consistent on their use of arguments for 
missing data, or on the defaults for those arguments. You can always consult 
the help pages for the commands of interest to get the arguments right.

The na.action argument is available for lm. The default is na.action=na.fail 
in S-Plus, and na.action=na.omit in R. For either program, explicitly including 
the na.omit argument makes clear what you are doing:

```R
> m1 <- lm(log(SWS) ~ log(BodyWt)+log(Life)+log(GP),data=sleep1,
 na.action=na.omit)
```

which will delete 20 cases with missing values. If you then fit

```R
> m2 <- lm(log(SWS) ~ log(BodyWt)+log(GP),data=sleep1,
 na.action=na.omit)
```

omitting log(Life), you can’t actually compare the two fits via an analysis of 
variance because only 18 cases are missing the remaining variables.

You can guarantee that all fits are based on the same cases using the subset 
argument to lm. For example in R,

```R
> m3 <- lm(log(SWS) ~ log(BodyWt)+log(Life)+log(GP),data=sleep1,
 subset = complete.cases(sleep1))
```

will fit this model, and any other, to the 42 fully observed cases in the data 
set.

Methods for examining the pattern of missing values, estimating using the 
partially observed data by maximum likelihood, or multiple imputation are 
available in S-Plus using the methods in the S-Plus library missing. Extensive 
documentation for missing is part of the S-Plus installation of the library. On 
Unix/Linux, you will find the documentation at

% ‘Splus SHOME’/library/missing/Missing.pdf

### 4.6 COMPUTATIONALLY INTENSIVE METHODS

R and S-Plus are well suited for the bootstrap and other computationally intensive statistics. The books by Davison and Hinkley (1997) 
and by Efron and Tibshirani (1993) both provide comprehensive introductions to the bootstrap, and both have packages for R and S-Plus for general 
bootstrap calculations.

For S-Plus version 6.0 or later, there is a (free) library called resample. In 
mid-2004, this library was at www.insightful.com/downloads/libraries/, but 
future version of S-Plus may include this library by default. Instructions for 
installing the library are also available on the webpage. For use with R, we 
have provided a function called boot.case in the alr3 package.

1The R package norm includes some of these.
In either program, performing the case-resampling bootstrap is very easy. Using the transactions data discussed in ALR[4.6.1], here is the approach using R:

```r
> data(transact) # R only
> m1 <- lm(Time~ T1 + T2, data=transact)
> betahat.boot <- boot.case(m1,B=999)
```

The call to `boot.case` has three arguments. In the example above, we have used two of them, the name of the regression model, and the number of bootstraps, B=999. The third argument is called f, the name of a function to be evaluated on each bootstrap. The default is the generic function `coef` that will return the coefficient estimates, and since we did not specify a value for f, the default is used. On each bootstrap the coefficient estimates are saved.

At this point, `betahat.boot` is a matrix with B = 999 rows, one for each bootstrap replication. The number of columns depends on the argument f and for the default of the coefficient vector it has as many columns of regression coefficients in the model. Usual R tools can be used to summarize these bootstrap estimates:

```r
> # bootstrap standard errors
> apply(betahat.boot,2,sd)
 (Intercept) T1 T2
195.37481 0.68461 0.15242
> # bootstrap 95% confidence intervals
> cl <- function(x) quantile(x,c(.025,.975))
> apply(betahat.boot,2,cl)
 (Intercept) T1 T2
 2.5% -238.99 4.1314 1.7494
 97.5% 532.43 6.7594 2.3321
> coef(m1)
 (Intercept) T1 T2
 144.3694 5.4621 2.0345
```

We applied the `sd` command to each column to give the bootstrap standard errors. Given next is a short function we called `cl` that computes the 2.5- and 97.5-percentiles of a sample. We apply this to the columns of `betahat.boot` to get percentile based confidence intervals for each of the coefficients. Finally, we printed the coefficient estimates from the original data. We could have looked at histograms, scatterplots or other summaries.

In S-Plus, we can do the equivalent computations using the `bootstrap` command:

```r
> library(resample,first=TRUE)
> m1 <- lm(Time~ T1 + T2, data=transact)
> betahat.boot <- bootstrap(m1,coef,B=999)
```

The `resample` library must include the `first=TRUE` argument. The `bootstrap` command has several arguments, but we display only the three equivalent to the arguments for `boot.case`. Unlike R, the function to be computed must be
specified as there is no default. Specified above is `coef`, which means that if a bootstrap sample gives a fitted regression model `m`, then the function `coef(m)` will be called to return the coefficients. You may have any function here whose single argument is a regression model.

At the completion of this computation, the quantity `betahat.boot$replicates` is the same matrix returned by `boot.case`, except, of course, with different bootstrap replications. This matrix can be summarized or used in exactly the same way that it was used with R. S-Plus also includes summarization tools to do the work for you:

```r
> summary(betahat.boot)
Call:
bootstrap(data = lm(formula = Time ~ T1 + T2, data = transact, method = "model.list"), statistic = coef.default(lm(data)), B = 999)
Number of Replications: 999

Summary Statistics:
 Observed Mean Bias SE
(Intercept) 144.369 147.804 3.43487 192.9803
 T1 5.462 5.443 -0.01937 0.6807
 T2 2.035 2.036 0.00138 0.1528

Percentiles:
 2.5% 5% 95% 97.5%
(Intercept) -209.643 -165.262 451.621 502.311
 T1 4.031 4.217 6.496 6.643
 T2 1.749 1.791 2.286 2.322

BCa Confidence Intervals: ...not discussed in the text
 2.5% 5% 95% 97.5%
(Intercept) -225.562 -168.590 447.313 493.513
 T1 3.960 4.109 6.427 6.571
 T2 1.773 1.807 2.305 2.382

Correlation of Replicates:
 (Intercept) T1 T2
 (Intercept) 1.0000 0.6454 -0.9078
 T1 0.6454 1.0000 -0.8747
 T2 -0.9078 -0.8747 1.0000
```

This prints the observed estimates, the mean of the bootstrap samples, the difference between these two, called the Bias, and the standard error. The Bias is very small compared to the standard error, suggesting little bias in the estimation of coefficients. Next, the percentile bootstrap confidence intervals are given, as are slightly improved intervals not discussed in ALR; see Davison

---

2 More complex functions with many arguments can be used as well; see `help(bootstrap)`. 
and Hinkley (1997) or Efron and Tibshirani (1993). There is also a plot helper for this function; the results of `plot(betahat.boot)` are shown in Figure 4.1.

The simulation outlined in ALR[4.6.3] is not based on resampling the observed data, but rather on modifying the observed data by adding normal random numbers with given variances. Once again, you need to write a function to do this simulation. Here is one approach that works in both R and S-Plus:

```r
> catch.sim <- function(B=999){
+ ans <- NULL
+ for (i in 1:B) {
+ X <- npdata$Density + npdata$SEdens*rnorm(16)
+ Y <- npdata$CPUE + npdata$SECPUE*rnorm(16)
+ }
+ ans <- rbind(ans, cbind(X, Y))
+ return(ans)
+ }
```

Fig. 4.1 S-Plus histogram of 999 bootstrap samples for the transactions data. The plot has normal densities superimposed, and indicates the observed mean of the bootstrap and the actual sample mean. The bootstrap means and the observed values agree closely. The histograms appear close to normal as well.
For this simulation, we have written a one-off function for this particular problem. It has one argument, the number of simulations. In the for loop, we have explicitly referred to the data frame, even though we had previously attached the data. Variable names work a little differently inside a function, and so without the reference to the data frame, this function would not work. The command \texttt{rnorm} computes vectors of 16 standard normal random numbers; these are multiplied by the vectors of standard errors to get random numbers with the right standard deviations. The model \texttt{m0} is for regression through the origin, and only the estimated slope is kept on each replication. We have shown only a numeric summary of the mean and 95\% confidence interval reusing the \texttt{cl} function we wrote previously, but graphical summaries could be used as well, probably using a histogram.
5

Weights, Lack of Fit, and More

5.1 WEIGHTED LEAST SQUARES

R and S-Plus  Weighted least squares estimates are most easily obtained using the weights argument for the \texttt{lm} command. In the physics data in \textit{ALR}[5.1], the weights are the inverse squares of the variable \textit{SD} in the data frame. WLS is computed by

\begin{verbatim}
> data(physics)
> attach(physics)
> m1 <- lm(y~x,weights=1/SD^2)
> summary(m1)  ... output edited
Coefficients:
  Estimate Std. Error t value Pr(>|t|)
(Intercept) 148.47 8.08 18.4 7.9e-08
x 530.84 47.55 11.2 3.7e-06

Residual standard error: 1.66 on 8 degrees of freedom
Multiple R-Squared: 0.94,  Adjusted R-squared: 0.932
F-statistic: 125 on 1 and 8 DF,  p-value: 3.71e-06
\end{verbatim}

\begin{verbatim}
> anova(m1)
Analysis of Variance Table

Response: y
  Df Sum Sq Mean Sq  F value Pr(>F)
  x 1 342 342   125 3.7e-06
Residuals 8 22   3
\end{verbatim}
You can nearly “set and forget” weights and use `lm` for `wls` just as you would for `ols`. There are, however, a few exceptions:

1. The `residuals` helper function returns a vector of $y - \hat{y}$, as with `ols`. As we will see later, with `wls` a more reasonable set of residuals is given by $\sqrt{w}(y - \hat{y})$. R and S-Plus will return these correct residuals if you specify `residuals(m1,type="pearson")`. In R, you can also use the function `weighted.residuals`. For `ols` all the weights equal one, so the Pearson and ordinary residuals are identical. Consequently, if you always use `type="pearson"`, you will always be using the right residuals.

2. The `predict` helper function also works correctly for getting predictions and standard errors of fitted values, but it apparently does not always give the right answer for prediction intervals. Both R and S-Plus compute the standard error of prediction as $(\hat{\sigma}^2 + \text{sefit}(y|X = x_\ast)^2)^{1/2}$, rather than $(\hat{\sigma}^2/w_\ast + \text{sefit}(y|X = x_\ast)^2)^{1/2}$. The R/S-Plus formula assumes that the variance of the future observation is $\sigma^2$ rather than $\sigma^2/w_\ast$, where $w_\ast$ is the weight for the future value.

5.1.1 Applications of weighted least squares

R and S-Plus This subsection has our first application of polynomial regression. R attaches special meaning to the symbol `^` in formulas, so the formula `y ~ x + x^2` won’t work the way you expect it to work. Instead, you need to use `y ~ x + I(x^2)`. The function `I` inhibits its argument, so the special meaning of `^` in formulas is not used, but the more general use as the exponentiation indicator is used. In S-Plus, the use of `I` is optional.

R and S-Plus have alternative ways of specifying polynomial models, particularly using orthogonal polynomials. The formula `y ~ poly(x,2)` also fits a quadratic polynomial, but rather than using $x$ and $x^2$ as predictors, it uses $x$ and the residuals from the regression of $x^2$ on $x$ as predictors. This is numerically more stable, and highly recommended in large problems. Interpretation of coefficients is harder with orthogonal polynomials. The overall $F$ test will be the same with either parameterization, and the $t$ test for the quadratic term will be the same as well; the $t$-test for $x$ will be different.

5.1.2 Additional comments

5.2 TESTING FOR LACK OF FIT, VARIANCE KNOWN

R and S-Plus `ALR[F5.1]` contains data and two fitted curves, from, the linear and quadratic fits to the physics data. Here are the commands that generate this graph:

```r
data(physics)
attach(physics)
```
The models \( m_1 \) and \( m_2 \) are, respectively, the simple linear and quadratic WLS fits. The advantage to using \texttt{update} to define \( m_2 \) is that we do not need to specify the weights again. The \texttt{abline} command draws the fitted line for the simple linear fit. To get the fit for the quadratic is a little harder. The vector \( a \) includes 50 equally spaced values between .05 and .35, more or less the minimum and maximum value of \( x \). We then use the \texttt{lines} function to plot the predicted values at \( a \) versus \( a \). In the \texttt{predict} helper function, we only had to specify values for \( x \) in the \texttt{newdata} argument. The program will use the value of \( x \) in both the linear and quadratic terms. Setting \( lty=2 \) gives dashed lines.

Getting the lack of fit test for known variance requires getting significance levels from the Chi-squared distribution. You can use the \texttt{pchisq} command for this purpose; see Section 0.4.4.

5.3 TESTING FOR LACK OF FIT, VARIANCE UNKNOWN

**R and S-Plus** The test of lack of fit based on replication is not a standard part of R or S-Plus. For problems with just one term \( x \) in the mean function beyond the intercept, it is easy to get the lack of fit test by adding \texttt{factor(x)} to the mean function:

```r
> x <- c(1,1,1,2,3,3,4,4,4,4)
> y <- c(2.55,2.75,2.57,2.40,4.19,4.70,3.81,4.87,2.93,4.52)
> m1 <- lm(y~x)
> anova(lm(y~x+as.factor(x),singular.ok=TRUE))
```

Analysis of Variance Table

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(&gt;F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>1</td>
<td>4.57</td>
<td>4.57</td>
<td>11.62</td>
<td>0.014</td>
</tr>
<tr>
<td>as.factor(x)</td>
<td>2</td>
<td>1.86</td>
<td>0.93</td>
<td>2.36</td>
<td>0.175</td>
</tr>
<tr>
<td>Residuals</td>
<td>6</td>
<td>2.36</td>
<td>0.39</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The \( F \)-test on the line \texttt{as.factor(x)} is the \( F \) for lack-of-fit, and the line marked \texttt{Residuals} is the pure error. The \texttt{singular.ok=TRUE} is optional with R, but it is required with S-Plus.

With more than one term beyond the intercept finding the groups of repeated values to give pure error is harder. The \texttt{alr3} library includes a function \texttt{pure.error.anova} that will do the trick for any number of terms:

```r
> pure.error.anova(m1)
```
Analysis of Variance Table

Response: y

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(&gt;F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>1</td>
<td>4.57</td>
<td>4.57</td>
<td>11.62</td>
<td>0.014</td>
</tr>
<tr>
<td>Lack.of.Fit</td>
<td>2</td>
<td>1.86</td>
<td>0.93</td>
<td>2.36</td>
<td>0.175</td>
</tr>
<tr>
<td>Residuals</td>
<td>6</td>
<td>2.36</td>
<td>0.39</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Except for the correct labelling of the lack-of-fit line, this gives the same answer as before.

5.4 GENERAL F TESTING

R and S-Plus The anova helper function is designed to compute the general F-test described in ALR[5.4]. For example, consider the fuel consumption data, and fit a sequence of models:

```r
> data(fuel2001) # \R\ only
> f <- fuel2001 # required for S-Plus, but renaming not required for R
> f$Dlic <- 1000*f$Drivers/f$Pop
> f$Fuel <- 1000*f$FuelC/f$Pop
> f$Income <- f$Income/1000
> f$logMiles <- logb(f$Miles,2)
> m1 <- lm(Fuel~Dlic+Income+logMiles+Tax, data=f)
> m2 <- update(m1, ~.-Dlic-Income)
> anova(m2,m1)
```

```
Analysis of Variance Table

Model 1: Fuel ~ logMiles + Tax
Model 2: Fuel ~ Dlic + Income + logMiles + Tax

<table>
<thead>
<tr>
<th></th>
<th>Res.Df</th>
<th>RSS</th>
<th>Df</th>
<th>Sum of Sq</th>
<th>F</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>m1</td>
<td>48</td>
<td>302192</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m2</td>
<td>46</td>
<td>193700</td>
<td>2</td>
<td>108492</td>
<td>12.9</td>
<td>3.6e-05</td>
</tr>
</tbody>
</table>
```

In the anova helper, list the models to be compared from smallest model, the null hypothesis, to the largest model, the alternative hypothesis. The output gives the RSS and df under both hypotheses in the columns Res.Df and RSS. The columns Df and Sum of Sq are the quantities for the numerator of ALR[E5.16]. The F and is p-value are then provided.

You can use anova for a longer sequence of nested models as well.

```r
> m3 <- update(m2, ~.-Tax)
> anova(m3,m2,m1)
```

```
Analysis of Variance Table

Model 1: Fuel ~ logMiles
Model 2: Fuel ~ logMiles + Tax
Model 3: Fuel ~ Dlic + Income + logMiles + Tax
```
The $F$ on line number 2 is for the hypothesis $m_3$ versus $m_2$, which may not be a hypothesis of interest. The $F$ on line 3 tests $m_2$ versus $m_3$, giving the same answer as before.

5.5 JOINT CONFIDENCE REGIONS

R and S-Plus  ALR[5.3] is one of the few figures in ALR that was not drawn in R. It is possible to draw this figure using the `confidence.ellipse` helper function in the `car` library.

```r
> data(UN2) # R only
> attach(UN2)
> m1 <- lm(logFertility ~ logPPgdp + Purban)
> library(car)
> confidence.ellipse(m1, scheffe=TRUE)
```

Problems

5.3.

The bootstrap used in this problem is different from the bootstrap discussed in ALR[4.6] because rather than resampling cases we are resampling residuals. Here is the general outline of the method:

1. Fit the model of interest to the data. In this case, the model is just the simple linear regression of the response $y$ on the predictor $x$. Compute the test statistic of interest, given by ALR[E5.23]. Save the fitted values $\hat{y}$ and the residuals $\hat{e}$.

2. A bootstrap sample will consist of the original $x$ and a new $y^*$, where $y^* = \hat{y} + e^*$. The $i$th element of $e^*$ is obtained by sampling from $\hat{e}$ with replacement. In R or S-Plus, you can compute $e^*$ by

```r
> estar <- ehat[sample(1:n,replace=TRUE)]
```

3. Given the bootstrap data $(x, y^*)$, compute and save ALR[E5.23].

4. Repeat steps 2 and 3 $B$ times, and summarize results.
Polynomials and Factors

6.1 POLYNOMIAL REGRESSION

R and S-Plus

ALR [F6.2] is a plot of the design points in the cakes data, with the values slightly jittered. R and S-Plus include a command jitter to make this easy. Here are the commands that will draw this figure:

```r
> data(cakes)
> attach(cakes)
> plot(jitter(X1), jitter(X2))
```

jitter has arguments to control the magnitude of the jittering; type `help(jitter)` for information.

Polynomial models generally require creating many terms that are functions of a few base predictors. One way to do this is discussed in Section 5.1.1. For example, to fit the cubic polynomial with response y and predictor x, the formula y ~ 1 + x + I(x^2) + I(x^3) is appropriate. In S-Plus the inhibitor I is not required, and you can enter y ~ 1 + x + x^2 + x^3.

The command `poly` can also be used to define polynomials in one variable. The variables created by these commands have orthogonal columns. For example, suppose we have n = 5 cases, and x = (1, 2, 3, 4, 5)^t.

```r
> x <- 1:5
> print(xmat <- cbind(rep(1,5),x,x^2,x^3))
 [1,] 1 1 1 1
 [2,] 1 2 4 8
 [3,] 1 3 9 27
 [4,] 1 4 16 64
```
Following ALR, we would use the second to fourth columns of this matrix for the linear, quadratic, and cubic terms in $x$. The command `poly` would replace these by the second to fourth columns of the QR factorization of the above matrix,

```r
> qr.Q(qr(xmat))
```


<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.44721</td>
<td>-6.3246e-01</td>
<td>0.53452</td>
</tr>
<tr>
<td>2</td>
<td>-0.44721</td>
<td>-3.1623e-01</td>
<td>-0.26726</td>
</tr>
<tr>
<td>3</td>
<td>-0.44721</td>
<td>1.1791e-17</td>
<td>-0.53452</td>
</tr>
<tr>
<td>4</td>
<td>-0.44721</td>
<td>3.1623e-01</td>
<td>-0.26726</td>
</tr>
<tr>
<td>5</td>
<td>-0.44721</td>
<td>6.3246e-01</td>
<td>0.53452</td>
</tr>
</tbody>
</table>

```r
> poly(x,3)
```


<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-6.3246e-01</td>
<td>0.53452</td>
<td>-3.1623e-01</td>
</tr>
<tr>
<td>2</td>
<td>-3.1623e-01</td>
<td>-0.26726</td>
<td>6.3246e-01</td>
</tr>
<tr>
<td>3</td>
<td>-3.2880e-17</td>
<td>-0.53452</td>
<td>1.5952e-16</td>
</tr>
<tr>
<td>4</td>
<td>3.1623e-01</td>
<td>-0.26726</td>
<td>-6.3246e-01</td>
</tr>
<tr>
<td>5</td>
<td>6.3246e-01</td>
<td>0.53452</td>
<td>3.1623e-01</td>
</tr>
</tbody>
</table>

These vectors are uncorrelated, making regression calculations potentially more accurate, but make interpretation of coefficients more difficult. See the help page for `poly`.

### 6.1.1 Polynomials with several predictors

**R and S-Plus** With two predictors, and generalizing to more than two predictors, the full second-order mean function $ALR[E6.4]$ can be fit (to the cakes data) by

```r
> m1 <- lm(Y ~ X1 + X2 + I(X1^2) + I(X2^2) + X1:X2, data=cakes)
```

The new feature here is the interaction term $X1:X2$, which is obtained by multiplying $X1$ by $X2$ elementwise. Other programs often write an interaction as $X1\cdot X2$, but in R and S-Plus, $X1\cdot X2 = X1 + X2 + X1:X2$.

As an alternative, you could precompute the polynomial terms (and even the interactions) and add them to the data frame:

```r
> cakes$X1sq <- cakes$X1^2
> cakes$X2sq <- cakes$X2^2
> cakes$X1X2 <- cakes$X1 * cakes$X2
> m2 <- lm(Y ~ X1 + X2 + X1sq + X2sq + X1X2, data=cakes)
```

The models $m1$ and $m2$ are identical, but $m1$ will be a little easier to use if you want to get predictions since for $m1$ you need only supply new values for $X1$ and $X2$, while for the latter you need to supply all five variables. The final alternative is to use the command `mpoly` that fits polynomials in several variables; see `help(mpoly)` for more information.
The plots shown in alr[6.3] are tedious to draw in R and S-Plus. Here are the commands that will draw alr[6.3a]:

```r
> oldpar <- par(mfrow=c(1,2)) # two plots in one row
> # part (a)
> plot(X1,Y,type="n",xlab=paste("(a) ",X[1]))
> X1new <- seq(32,38,len=50)
> lines(X1new,predict(m1,newdata=data.frame(X1=X1new,X2=rep(340,50))))
> lines(X1new,predict(m1,newdata=data.frame(X1=X1new,X2=rep(350,50))))
> lines(X1new,predict(m1,newdata=data.frame(X1=X1new,X2=rep(360,50))))
> text(34,4.7,"X2=340",adj=0,cex=0.7)
> text(32.0,5.7,"X2=350",adj=0,cex=0.7)
> text(32.0,7.6,"X2=360",adj=0,cex=0.7)
> # part (b)
> . . . part b is similar to part a
> par(oldpar) # reset to previous parameters
```

The `par` command sets global graphical parameters, in this case resetting the graphics window to have one row of plots and two columns of plots. The first plot sets the values plotted on each axis and the labels for the axes. The argument `type="n"` means *draw the plot but not the points*. The other options are `type="p"` to draw points, the default; `type="l"` to draw lines, and `type="b"` for both points and lines. To the plot we then add three lines of fitted values versus $X_1$ for $X_2$ fixed at either 340, 350 or 360. Finally, the `text` helper is used to add text to the plot. The first two argument give the upper left corner of the text, then the text to be put on the plot. The `adj` argument can be used to adjust the placement of the text, and `cex=0.7` multiplies the standard height of the text by 0.7. This choice of `cex` works well when plotting using R on Windows, but it might be a poor choice using S-Plus or R on Linux or Macintosh. Part b is drawn in much the same way. The graphs you get are likely to be tall and thin, but you can rescale them to be more useful using the mouse by dragging the lower right corner of the window. Finally, `par` is used again to reset to one graph in a plot window.

### 6.1.2 Using the delta method to estimate a minimum or a maximum

**R and S-Plus** The command `D` can be used for symbolic differentiation of an expression, and so the delta method can be implemented while allowing the program to do the differentiation; Venables and Ripley (2000, p. 167) discuss this at length. We will use the example from alr[6.1.2]. The mean function we use is $E(y|x) = \beta_0 + \beta_1 x + \beta_2 x^2$, and the nonlinear function of interest is $x_m = -2\beta_1/(2\beta_2)$. For data, we will use the cakes data, but ignore the variable $X_1$.

```r
> m4 <- lm(Y ~ X2 + I(X2^2), data=cakes)
```

\footnote{As with many things in R and S-Plus, there are many ways to do this plot, and I would not be surprised to learn that there is a much easier way.}
> Var <- vcov(m4)
> b0 <- coef(m4)[1]
> b1 <- coef(m4)[2]
> b2 <- coef(m4)[3]

We have assigned $b_0$, $b_1$ and $b_2$ to be, respectively, the estimates of the intercept, linear and quadratic terms, and $\text{Var}$ is the estimated variance of the coefficients. The \texttt{vcov} helper function recovers the matrix $\hat{\sigma}^2(X'X)^{-1}$ from the fitted linear model. \texttt{vcov} is part of the base R, and is added to S-Plus by the \texttt{alr3} library.

To differentiate $x_m$ requires several steps. First, define $x_m$ as a string, and then convert it to an expression:

> xm <- "-b1/(2*b2)"
> xm.expr <- parse(text=xm)
> xm.expr
expression(-b1/(2 * b2))

Since the $b$'s have been assigned values, we can evaluate \texttt{xm.expr} to get a point estimate.

> eval(xm.expr)
354.2

The point estimate of $x_m$ is 354.2 degrees.

Next, compute the derivatives with respect to each of the three parameters in the mean function, and collect them into a vector.

> expr <- expression(-b2/(2*b3))
> derivs <- c(D(xm.expr,"b0"),D(xm.expr,"b1"),D(xm.expr,"b2"))
> derivs
[[1]]
0
[[2]]
-(1/(2 * b2))
[[3]]
(1/(2 * b2))^2

which are the expressions given before \texttt{alr}[E6.13]. The derivative with respect to $b_0$ is zero because $b_0$ does not appear in the expression. Since the $b$’s have been defined, we can evaluate the vector of derivatives:

> eval.derivs<-c(eval(D(xm.expr,"b0")),eval(D(xm.expr,"b1")),
+ eval(D(xm.expr,"b2")))
> eval.derivs
  I(X2^2)  X2
0.000  43.602 30888.063

The labels printed from the evaluated derivatives are wrong, but we won’t use them anyway. Finally, we can compute the estimated standard error of $\hat{x}_m$: 
and the standard error is 2.0893.

If this seems excessively difficult, well, I agree. This discussion amounts to an algorithm for computing the delta method, and a command \texttt{delta.method} has been added to the \texttt{alr3} package that essentially follows this outline.

\begin{verbatim}
> delta.method(m4,"-b1/(2*b2)"
Functions of parameters: expression(-b1/(2 * b2))
Estimate = 354.2 with se = 2.0893
\end{verbatim}

The key arguments to \texttt{delta.method} are the name of the regression model and a quoted string corresponding to the function of parameters of interest. The names of the parameters are $b_0, b_1, \ldots, b_p$, according to the order in which they appear in the mean function. This method will work with linear, generalized linear and nonlinear regression models. Another command \texttt{delta.method.compute} allows using the delta method in any problem with an estimated covariance matrix and vector of estimates; see the help page for more information.

### 6.1.3 Fractional polynomials

### 6.2 FACTORS

Factors are a slippery topic because different computer programs will handle them in different ways. In particular, while \texttt{SAS} and \texttt{SPSS} use the same default for defining factors, \texttt{JMP}, \texttt{R} and \texttt{S-Plus} all used different defaults. A factor represents a qualitative variable with say $a$ levels by $a - 1$ (or, if no intercept is in the model, possibly $a$) dummy variables. \texttt{ALR}[E6.16] describes one method for defining the dummy variables, using the following rules:

1. If a factor $A$ has $a$ levels, create $a$ dummy variables $U_1, \ldots, U_a$, such that $U_j$ has the value one when the level of $A$ is $j$, and value zero everywhere else.

2. Obtain a set of $a - 1$ dummy variables to represent factor $A$ by dropping one of the dummy variables. For example, using the default coding in \texttt{R}, the first dummy variable $U_1$ is dropped, while in \texttt{SAS} and \texttt{SPSS} the last dummy variable is dropped.

3. \texttt{JMP} and \texttt{S-Plus} use a completely different method.

\textsuperscript{2}For nonlinear models, the parameters have other names that are assigned when the model is fit. Use those names, not the $b_j$’s, for nonlinear models.
Most of the discussion in ALR assumes the R default for defining dummy variables.

**R and S-Plus** The `factor` command is used to convert a numeric variable into a factor; see VR[2.1]. R and S-Plus use the `factor` command a little differently. In R the command will all its arguments is

```r
factor(x, levels = sort(unique.default(x), na.last = TRUE),
 labels = levels, exclude = NA, ordered = is.ordered(x))
```

The argument `x` is the name of the variable to be turned into a factor, and is the only required argument. The argument `levels` is a vector of the names of the levels of `x`; if you don’t specify the levels, then the program will use all the unique values of `x`, sorted in alphabetical order. Thus you will want to use the `levels` argument if the levels of a factor are, for example, “Low”, “Medium” and “High” because by default `factor` will reorder them as “High,” “Low” and “Medium.” You can avoid this by setting `levels=c("Low","Medium","High")`. The next optional argument `labels` allows you to change the labels for the levels, so, for example, if the levels of the factor are 1, 2 and 3, you can change them with the argument `labels=c("Low","Medium","High")`.

The next argument is `ordered`. If this is set to TRUE, then an ordered factor is created. Ordered factors compute the dummy variables as if the levels of the factor were qualitative, not quantitative. Ordered factors are never required for the methodology in ALR, and we recommend that you always specify `ordered=FALSE` when creating a factor. Additional arguments concern the handling of missing values; see the help page for more information.

For the sleep data discussed in ALR[6.2], the variable `D` is a qualitative variable with five levels, given by the integers 1, 2, 3 4 and 5. It can be declared a factor using

```r
> sleep1$D <- factor(sleep1$D, ordered=FALSE)
```

The terms for the factor created by R corresponds to our preferred method, dropping the dummy variable for the first level, and then using the remaining $U_j$.

The `factor` command in S-Plus is almost the same as in R, except it does not have the `ordered` argument; ordered factors are created using the `ordered` command. Also, S-Plus does not define factors by default in the same way that R does; rather it uses Helmert contrasts; see VR[6.2]. To get the same contrasts that R uses is easy however, and requires only one extra statement.

```r
> options(contrasts = c("contr.treatment","contr.poly"))
> sleep1$D <- factor(sleep1$D)
```

This will now give the same contrasts as R. You can put this `options` command in a startup file like a `.First file`, VR[C.2]. In this primer, we will assume that you are always using `contr.treatment` to define the contrasts for a factor.
If you don’t do this, computations you do may differ from those shown here and in \textit{alr}.

If you use different definitions for the dummy variables for a factor:

1. Coefficient estimates are different because the terms in the mean function have different meaning. Consequently, \textit{t}-statistics for individual terms are also different.

2. \textit{F}-tests for the factor or for other terms in the mean function are the same regardless of the way the factor is defined.

### 6.2.1 No other predictors

\textbf{R and S-Plus} \textit{alr}[T6.1] is obtained by

```r
> data(sleep1)
> sleep1$D <- factor(sleep1$D, ordered=FALSE)
> a1 <- lm(TS~D,sleep1,na.action=na.omit)
> a0 <- update(a1,~.-1)
> summary(a0)
> summary(a1)
```

|                | Estimate | Std. Error | t value | Pr(>|t|) |
|----------------|----------|------------|---------|----------|
| (Intercept)    | 13.083   | 0.888      | 14.73   | < 2e-16  |
| D2             | -1.333   | 1.343      | -0.99   | 0.3252   |
| D3             | -2.773   | 1.486      | -1.87   | 0.0675   |
| D4             | -4.272   | 1.538      | -2.78   | 0.0076   |
| D5             | -9.012   | 1.678      | -5.37   | 1.8e-06  |

Residual standard error: 3.77 on 53 degrees of freedom  
Multiple R-Squared: 0.378, Adjusted R-squared: 0.331  
\textit{F}-statistic: 8.05 on 4 and 53 DF, \textit{p}-value: 3.78e-05

Since the data frame \texttt{sleep1} has missing values, we used \texttt{na.action=na.omit} to delete species with missing data. The dummy variables are labelled according to the name of the factor and the level for that dummy variable. For example, \texttt{D2} corresponds to the variable \textit{U}$_2$ in \textit{alr}[T6.1b]. If the factor is defined using different variables then the labels for the terms are also different.

To produce the “pretty” \textit{alr}[T6.1] we used the \texttt{R} package \texttt{xtable} that takes standard \texttt{R} output and gives a table that can be inserted into a \LaTeX{} document for printing. If this is of interest to you, see the script for this chapter for the exact commands used.

### 6.2.2 Adding a predictor: Comparing regression lines

\textbf{R and S-Plus} The discussion in \textit{alr}[6.2.2] uses the appropriate \texttt{R} and \texttt{S-Plus} formulas for the models discussed.
6.3 MANY FACTORS

6.4 PARTIAL ONE-DIMENSIONAL MEAN FUNCTIONS

ALR[6.8] is much more compelling in color, and is shown here as Figure 6.1.

R and S-Plus  The alr3 package includes a command for fitting the partial one-dimensional or POD models described in ALR[6.4]. We illustrate the use of this command with the Australian Athletes data:

```r
> m <- pod(LBM~Ht+Wt+RCC, data=ais, group=Sex, mean.function="pod")
> anova(m)
```

POD Analysis of Variance Table for LBM, grouped by Sex

1: LBM ~ Ht + Wt + RCC
2: LBM ~ Ht + Wt + RCC + factor(Sex)
3: LBM ~ eta0 + eta1 * Ht + eta2 * Wt + eta3 * RCC + Sex1 * (th02 +
   3: th12 * (eta1 * Ht + eta2 * Wt + eta3 * RCC))
PARTIAL ONE-DIMENSIONAL MEAN FUNCTIONS

4: LBM ~ (Ht + Wt + RCC) * factor(Sex)

<table>
<thead>
<tr>
<th>Res.Df</th>
<th>RSS</th>
<th>Df</th>
<th>Sum of Sq</th>
<th>F</th>
<th>Pr(&gt;F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: common</td>
<td>198</td>
<td>2936.71</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2: parallel</td>
<td>197</td>
<td>1457.43</td>
<td>1</td>
<td>1479.28</td>
<td>245.6466</td>
</tr>
<tr>
<td>3: pod</td>
<td>196</td>
<td>1185.91</td>
<td>1</td>
<td>271.52</td>
<td>45.0876</td>
</tr>
<tr>
<td>4: pod + 2fi</td>
<td>194</td>
<td>1168.27</td>
<td>2</td>
<td>17.65</td>
<td>1.4651</td>
</tr>
</tbody>
</table>

> plot(m,pch=c("m","f"),colors=c("red","black"))

The `pod` command requires that you specify a formula, giving the response on the left and the variables on the right that make up the linear combination of terms. A new feature of this command is the required `group` argument that specifies the grouping variable. In this case, the linear predictor will be of the form $\beta_1 Ht + \beta_2 Wt + \beta_3 RCC$, and it will be fit for each level of Sex. The argument `mean.function` is used to select which form of the POD mean function is to be used. The default is `mean.function="pod"`, which fits the partial one-dimensional model to the groups, given for the example by

$$E(LBM|pod) = \beta_0 + \beta_1 Ht + \beta_2 Wt + \beta_3 RCC + \beta_4 Sex1 + \beta_5 Sex1 \times (\beta_1 Ht + \beta_2 Wt + \beta_3 RCC)$$

where $Sex1$ is a dummy variable equal to one when the grouping variable $Sex$ is equal to one and zero otherwise.

Three other choices of mean function are available. `mean.function="common"` that ignores the grouping variable, essentially equivalent to Model 4 in ALR[6.2.2]. For the example, it is given by

$$E(LBM|common) = \beta_0 + \beta_1 Ht + \beta_2 Wt + \beta_3 RCC$$

`mean.function="parallel"` that fits a mean function that is parallel within group, like Model 2 in ALR[6.2.2]. For the example, it is

$$E(LBM|parallel) = \beta_0 + \beta_1 Ht + \beta_2 Wt + \beta_3 RCC + \beta_4 Sex1$$

Finally, `mean.function="general"` fits a separate coefficient for each predictor in each group. This represents a larger, and more complex, mean function than the POD mean function.

$$E(LBM|general) = \beta_0 + \beta_1 Ht + \beta_2 Wt + \beta_3 RCC + \beta_4 Sex1 + \beta_5 Sex1 \times Ht + \beta_6 Sex1 \times Wt + \beta_7 Sex1 \times RCC$$

Additional arguments to `pod` are the same as for `lm`, and include `data` to specify a data frame, `subset` to specify a subset of cases to use, and so on.

The `anova` helper command for POD models is a little different from the default method. Three $F$-tests are shown in the table: the first compares the first two mean functions; the second compares the parallel line mean function to the POD mean function and the third compares the POD mean function.
to the larger mean function with separate coefficients for each group. All \( F \)-
tests use the error term from the largest mean function as the denominator.
In this example, the POD mean function is a clear improvement over the
parallel regression mean function, but the more general mean function is not
an improvement over the POD mean function.

The `plot` method for POD models will produce the equivalent of Figure 6.1.
The full complement of arguments and their defaults are for R are given by:

\[
\text{plot}(x, \text{colors} = \text{rainbow(nlevels(x$group))},\\
pch = 1:nlevels(x$group), \text{key} = \text{FALSE},\\
\text{xlab} = "\text{Linear Predictor}" ,\\
\text{ylab} = \text{as.character(formula(x)[[2]]}, ...)
\]

Any additional arguments are graphical parameters. In this command, the
argument \( x \) is the result of a call to the `pod` command. If \( \text{key=TRUE} \), then you
can add a key (or legend) to the plot by clicking the mouse in the location
you want the key to appear. The `colors` argument is not available in S-Plus.

Finally, `pod` models have all the usual helper commands, like `residuals`,
`fitted`, `predict` and `update` that work in the usual way.

## 6.5 RANDOM COEFFICIENT MODELS

**R and S-Plus** The random coefficient model can be fit in R or S-Plus using
the `nlme` package. This package is part of the base distribution of R; in S-
Plus, it may be called `nlme4` or have some other ending digit. Here are the
R commands that give the computations discussed in ALR[6.5]; see Pinheiro
and Bates (2000) for complete documentation. This example also uses lattice
graphics, called trellis graphics in S-Plus; see VR[4.5].

```r
> library(nlme) # possibly library(nlme4) in S-Plus
> data(chloride) # R only
> xyplot(Cl~Month|Type, group=Marsh, data=chloride, ylab="Cl (mg/liter)",
 + panel.groups=function(x,y,...){
 + panel.linejoin(x,y,horizontal=FALSE,...)
 + }
 +) ... ALR[6.9]
> m1 <- lme(Cl~Month+Type, data=chloride, random=~1+Type|Marsh)
> m2 <- update(m1, random="1|Marsh")
```

The model \( m1 \) fits a separate intercept for each \( Type \), since it is a factor, and a
single slope for \( Month \). In the `random` argument, we specify a variance term
1 for a separate random intercept for each marsh, and \( Type \), which allows
the variation between marshes to be different for the two types. Model \( m2 \) is
identical except the variation between marshes in a type is assumed to be the
same. These two models can be compared by an analysis of variance:

```r
> anova(m1,m2)

Model df AIC BIC logLik Test L.Ratio p-value
m1 1 7 228.14 237.71 -107.07
m2 1 7 227.92 237.48 -107.12
```
m2 2 5 229.69 236.53 -109.85 1 vs 2 5.5545 0.0622
> intervals(m2)
Approximate 95% confidence intervals

Fixed effects:

<table>
<thead>
<tr>
<th></th>
<th>lower est. upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-21.50837 -5.5038 10.5007</td>
</tr>
<tr>
<td>Month</td>
<td>0.75487 1.8538 2.9527</td>
</tr>
<tr>
<td>TypeRoadside</td>
<td>28.69165 50.5719 72.4521</td>
</tr>
</tbody>
</table>

attr("label")
[1] "Fixed effects:"

Random Effects:

Level: Marsh

<table>
<thead>
<tr>
<th></th>
<th>lower est. upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>sd((Intercept))</td>
<td>7.5761 13.335 23.473</td>
</tr>
</tbody>
</table>

Within-group standard error:

<table>
<thead>
<tr>
<th></th>
<th>lower est. upper</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.7501 6.3872 8.5885</td>
</tr>
</tbody>
</table>

According to the anova table, the $p$-value is about 0.06 for the hypothesis that the variance between marshes is the same for the two types of march, versus the alternative that it is different. Continuing with the simpler model m2, we get estimates and confidence intervals for the population slope and intercept, for the variation in intercepts between marshes, and for the within-march variance.
This chapter uses graphs and smoothers in ways that are uncommon in most statistical packages, including R and S-Plus. Using these methods in R and S-Plus generally requires a sequence of commands that would be too tedious for most people to use on a regular basis.

Our solution to this problem is to automate this process with several commands that are included in the alr3 package. These commands become available when you use the command `library(alr3)` to load the data files. In the main part of this chapter we show how to use these commands, along with an outline of what they do. Table 7.1 is a listing of coming attractions.

### 7.1 TRANSFORMATIONS AND SCATTERPLOTS

#### 7.1.1 Power transformations

#### 7.1.2 Transforming only the predictor variable

To draw a graph like ALR[F7.3] with both points and several lines, you must first draw the graph with the `plot` command, and then add the lines with the `lines` helper command.

```r
data(ufcwc)
attach(ufcwc)
plot(Dbh,Height)
lam <- c(1,0,-1)
new.dbh <- seq(min(Dbh),max(Dbh),length=100)
```
Table 7.1 R/S-Plus commands relating to transformations in the alr3 package. Only the required arguments are shown for each command. More complete information is given later in this chapter, or in the help files for each of the commands. In this table, \(X_1, X_2, Y\) are all variables, and \(Z\) is a data frame. Additionally, suppose that \(m \leftarrow \text{lm}(Y \sim X_1 + X_2)\) is a fitted linear model.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Basic transformations</strong></td>
<td></td>
</tr>
<tr>
<td><code>powtran(X1,lambda=0)</code></td>
<td>Power transformation of the variable (X_1). Options include the family of transformations.</td>
</tr>
<tr>
<td><code>powtran(Z,lambda=0)</code></td>
<td>Power transformation of each of the columns of the matrix or data frame (Z), with two columns in this example.</td>
</tr>
<tr>
<td><code>powtran(object)</code></td>
<td>(object) is the result of the <code>bctrans</code> command, described below. This will return a matrix like the argument to <code>bctrans</code> with columns transformed according the the values of (\lambda) found by <code>bctrans</code>.</td>
</tr>
<tr>
<td><strong>Transforming predictors</strong></td>
<td></td>
</tr>
<tr>
<td><code>inv.tran.estimate(X1,Y)</code></td>
<td>Plot (Y) versus (X_1) and then compute and return the value of (\lambda) that minimizes the residual sum of squares.</td>
</tr>
<tr>
<td><code>inv.tran.plot(X1,Y)</code></td>
<td>Plot (Y) versus (X_1) and add three inverse fitted values curves for (\lambda \in (-1,0,1)), or use the argument (\text{lambda}) to select the curves to draw.</td>
</tr>
<tr>
<td><code>bctrans(Y \sim X_1 + X_2, data=Z)</code></td>
<td>Multivariate version of the Box-Cox procedures to transform the predictors, not the response. A number of helper functions are included, such as a <code>summary</code> to summarize results, <code>plot</code> to plot results, <code>coef</code> to print the estimated transformation parameters (\lambda), and <code>vcov</code> to print the estimated variance of (\lambda).</td>
</tr>
<tr>
<td><code>lrt.bctrans(object)</code></td>
<td>(object) is the result of the <code>bctrans</code> command. This will compute a likelihood ratio test of (\lambda) equal to a vector specified versus a general alternative. The argument <code>lrt=list(c(.5,.5))</code> would use this vector as the null hypothesis.</td>
</tr>
<tr>
<td><strong>Transforming the response</strong></td>
<td></td>
</tr>
<tr>
<td><code>inverse.response.plot(m)</code></td>
<td>Draw an inverse response plot for the model (m), estimate the optimal value of (\lambda) and add the fitted curve to the plot.</td>
</tr>
<tr>
<td><code>boxcox(m)</code></td>
<td>Use the Box-Cox procedure to estimate a transformation of the response. <code>boxcox</code> is not included in the alr3 package, but it is part of the MASS package described later in this chapter.</td>
</tr>
</tbody>
</table>
After getting and attaching the data, we draw the plot. We will add three lines for $\lambda \in (-1, 0, 1)$. The variable \texttt{new.dbh} gives 100 equally spaced values between the minimum and maximum of \texttt{Dbh}, for plotting positions. The \texttt{for} loop draws the lines. First, we use \texttt{lm} to fit the model implied by the transformation. The command \texttt{powtran}, which is included in the \texttt{alr3} package, transforms the predictor. The \texttt{lines} helper function adds the line to the plot. Since \texttt{m1} fits the regression of the response on $\psi_S(Dbh, \lambda)$, in \texttt{predict} we need only specify values for \texttt{Dbh}. The \texttt{predict} helper will then figure out how to compute $\psi_S(Dbh, \lambda)$ from the values of \texttt{Dbh} provided. A \texttt{legend} (or key) was added to the plot. The helper command \texttt{locator} expects input from the user by clicking the mouse on the graph. This point will be the upper-left corner of the legend.
The `alr3` package includes a function called `inv.tran.plot` that automates this procedure.

```r
> inv.tran.plot(DBh, Height, lam = c(-1, 0, 1), lty = 1:length(lam),
+ optimal=TRUE, key="topleft")
```

<table>
<thead>
<tr>
<th>lam</th>
<th>rss</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>197352</td>
</tr>
<tr>
<td>0</td>
<td>152232</td>
</tr>
<tr>
<td>1</td>
<td>193740</td>
</tr>
</tbody>
</table>

The first two arguments are the predictor and the response, respectively. The remaining arguments are all given their default values and could have been omitted. The argument `c(-1,0,1)`, selects values of the transformation parameter for plotting. `lty` sets different line types. default. If `key="topright"`, then the key is written in the top-left of the plot. Other choices include, for example `key="bottomright"`, or `key=FALSE` to suppress the key. The result is shown in Figure 7.1. After the graph is drawn, the residual sum of squares for each value of \( \lambda \) used in the plot is printed, so in this case the \( RSS \) for \( \lambda = 0 \) is much smaller than the other choices.

Finally, the argument `optimal=TRUE` adds an additional regression line with \( \lambda \) computed by minimizing the nonlinear regression problem implied by ALR[8.4]. The function `inv.tran.estimate` can be called directly to get the optimal value without drawing the graph.

```r
> unlist(inv.tran.estimate(DBh, Height))
```

<table>
<thead>
<tr>
<th>lambda</th>
<th>se</th>
<th>RSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7884e-02</td>
<td>1.5218e-01</td>
<td>1.5212e+05</td>
</tr>
</tbody>
</table>

We get \( \hat{\lambda} = 0.048 \), close to the logarithmic transformation selected visually, with standard error 0.15. The minimum value of \( RSS = 152,120 \). The `unlist` command made the output prettier.

The command `powtran` is used by `inv.tran.estimate` and `inv.tran.plot` to compute the transformation. The form of this command is

```r
> powtran(U, lambda, family="box.cox", modified=FALSE)
```

where \( U \) is a vector, matrix or data frame, `lambda` is the transformation parameter. If \( U \) is a vector, then `lambda` is just a number, usually in the range from \(-2\) to \(2\); if \( U \) is a matrix or a data, frame, then `lambda` is a vector of numbers. The `family` specifies the family of transformations, usually either "box.cox" for the Box-Cox transformations, \( \psi_S(U, \lambda) \) if `modified=FALSE` and \( \psi_M(U, \lambda) \) if `modified=TRUE`. Also available are "yeo.johnson" for the Yeo-Johnson transformations \( \psi_{YJ}(U, \lambda) \), ALR[7.4], or "power" for the power transformations \( \psi(U, \lambda) \). For example, to plot a response \( Y \) versus \( \psi_M(U, 0) \), type

```r
> plot(powtran(U,0,family="box.cox",modified=FALSE),Y)
```

7.1.3 Transforming the response only

**R and S-Plus** The method described ALR[7.1.3] requires the steps: (1) fit the model with the response untransformed, and predictors transformed; (2)
draw the inverse plot with fitted values on the horizontal axis, and the untransformed response on the vertical axis; (3) estimate the transformation by fitting a smoother to this graph. The only “smoother” we will discuss is fitting

\[ E(\hat{Y}|Y) = \alpha_0 + \alpha_1 \phi_S(Y, \lambda) \]

which parallels the discussion for a predictor transformation.

For an example, we will use the highway accident data. We will assume the transformations of predictors found in ALR[7.2.2]

```r
> attach(highway) # R only
> d <- data.frame(Rate=Rate,logLen=log(Len,2),
+ logADT=logb(ADT,2),logTrks=logb(Trks,2),
+ Slim=Slim,Shld=Shld,logSigs1=logb((Len*Sigs+1)/Len,2))
> attach(d)
> m2 <- lm(Rate~logLen+logADT+logTrks+Slim+Shld+logSigs1,data=d)
> inv.tran.plot(Rate,predict(m2),key=FALSE)

<table>
<thead>
<tr>
<th>lam</th>
<th>RSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>34.716</td>
</tr>
<tr>
<td>2</td>
<td>30.726</td>
</tr>
<tr>
<td>3</td>
<td>32.458</td>
</tr>
</tbody>
</table>
```

After attaching the data, we created a new `data.frame` that included only the untransformed response and the transformed predictors found in ALR[7.2.2]. The new data frame was then attached, and the model with the “wrong” response was fit. We then used the `inv.tran.plot` command that we used in the last section when transforming the predictor to get ALR[F7.7]. The `inv.tran.estimate` was then used to find an estimate of \( \lambda \) numerically rather than visually. The numerical estimate agrees with the visual assessment of ALR[F7.7]: the best values of \( \lambda \) are close to zero, but there is lots of variation here, reflected in the large standard error. Finally, we can draw the plot including \( \hat{\lambda} \), as shown in Figure 7.2.

```r
> inv.tran.plot(Rate,predict(m2),lam=c(0,.185),key=c(6,2))

<table>
<thead>
<tr>
<th>lam</th>
<th>RSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30.726</td>
</tr>
<tr>
<td>2</td>
<td>30.621</td>
</tr>
</tbody>
</table>
```

The two curves on the plot for \( \lambda = 0 \) and \( \lambda = \hat{\lambda} \) are virtually identical, so the log transformation seems reasonable here.

This process is automated with the `inv.res.plot` command in the `alr3` package,

```r
> inv.res.plot(m2,key=c(6,2))
```

will produce the estimate from `inv.tran.estimate`, and the plot from `inv.tran.plot`. See the help page for all the options.
7.1.4 The Box and Cox method

R and S-Plus A very easy to use implementation of the Box and Cox method for automatically selecting $\lambda$ is described by vr[6.8]. To use their method, you need to obtain and load their package called MASS. This package is part of the base distribution for R; for S-Plus see

www.stats.ox.ac.uk/pub/MASS3/Software.html.

Continuing with the highway data from the last section,

```r
> library(MASS)
> boxcox(m2, xlab=expression(lambda[y]))
```

will produce ALR[F7.8].

7.2 TRANSFORMATIONS AND SCATTERPLOT MATRICES

The scatterplot matrix is the central graphical object in learning about regression models. You should draw them all the time; all problems with many continuous predictors should start with one.

R and S-Plus The primary command in R and S-Plus for drawing scatterplot matrices is the `pairs` command. The basic use of `pairs` requires that we
Fig. 7.3 Scatterplot matrix for the highway data with colors and symbols.

specify the matrix or data frame to be plotted. For example, apart from a few statements added to improve formatting for the book, `ALT[F7.5]` is obtained from

```r
> data(highway)
> pairs(~Rate+Len+ADT+Trks+Slim+Shld+Sigs,data=highway)
```

The only required argument to `pairs` is a formula, here a *one-sided formula* in which all the variables to be plotted appear to the right of the `∼`; you can use a two-sided formula as well. In addition, you can specify a data frame.

There are many enhancements possible for a scatterplot matrix, such as using colors or symbols for different groups of points, adding smoothers, for example, `ols` as a dashed line and `loess` as a connected line, and putting

---

1In place of the formula, you can provide a data frame or a matrix.
histograms on the diagonal. In the car package for R, there is a function called \texttt{scatterplot.matrix} that adds a dizzying array of arguments for fine control over a scatterplot matrix, including these smoothers and histograms by default. The defaults for \texttt{scatterplot.matrix} are generally sensible, and will produce the plot shown in Figure 7.3.

\begin{verbatim}
> library(car)
> scatterplot.matrix(~Rate+Len+ADT+Trks+Shld+Sigs, data=highway)
\end{verbatim}

One very useful argument to \texttt{scatterplot.matrix} is \texttt{groups}. Setting \texttt{groups=Hwy} results in a different color and symbol used for each unique value of the grouping variable. A legend is also added to the plot, but it can be hard to read and can be suppressed using the \texttt{legend.plot=FALSE} argument. An alias of \texttt{scatterplot.matrix} is \texttt{spm}.

### 7.2.1 The 1D estimation result and linearly related predictors

### 7.2.2 Automatic choice of transformation of the predictors

**R and S-Plus** One important usage of scatterplot matrices is to help select transformations toward normality, with the goal of getting approximately linearly related predictors, alr[7.2.1]. The \texttt{alr3} package includes one basic command \texttt{bctrans} for this purpose, along with several helper commands that work with it. Continuing with the highway data, suppose we want to consider transforming the five variables \texttt{Len, ADT, Trks, Shld, Sigs1} discussed in alr[7.2.2]. The first step is to draw the scatterplot matrix discussed above, and shown in Figure 7.3 and alr[F7.5]. Since curvature is apparent in plots of predictors versus predictors, transformations can help. We can next use Velilla’s multivariate extension of the Box-Cox method to find starting guesses for transformations. This is what \texttt{bctrans} does:

\begin{verbatim}
> highway$Sigs1 <- (round(highway$Sigs*highway$Len)+1)/highway$Len
> ans <- bctrans(Rate~Len+ADT+Trks+Shld+Sigs1, data=highway)
> summary(ans)
\end{verbatim}

<table>
<thead>
<tr>
<th></th>
<th>Est.Power</th>
<th>Std.Err.</th>
<th>Wald(Power=0)</th>
<th>Wald(Power=1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Len</td>
<td>0.1429</td>
<td>0.2126</td>
<td>0.6722</td>
<td>-4.0313</td>
</tr>
<tr>
<td>ADT</td>
<td>0.0501</td>
<td>0.1204</td>
<td>0.4160</td>
<td>-7.8863</td>
</tr>
<tr>
<td>Trks</td>
<td>-0.7019</td>
<td>0.6178</td>
<td>-1.1361</td>
<td>-2.7547</td>
</tr>
<tr>
<td>Shld</td>
<td>1.3455</td>
<td>0.3631</td>
<td>3.7062</td>
<td>0.9517</td>
</tr>
<tr>
<td>Sigs1</td>
<td>-0.2440</td>
<td>0.1498</td>
<td>-1.6287</td>
<td>-8.3034</td>
</tr>
</tbody>
</table>

LR test, all lambda equal 0 23.373 5 0.00002864
LR test, all lambda equal 1 133.179 5 0.00000000
In the first line, we created the variable `Sigs1` because it did not appear in the data frame. We used the `round` command to make sure that `Sigs × Len`, which is the number of signals, is exactly an integer. Like `lm`, the variables to be used in `bctrans` are specified using a formula. In the example we have shown a two-sided formula, with the response `Rate` on the left-hand side. Only the predictors on the right-hand side are transformed. If present, the response is used only in the `plot` helper function for `bctrans`. The `data`, `subset` and `na.action` items are used as in `lm`. We used the `summary` helper to print the answer; this is the same as `alr[T7.2]`. In S-Plus, the standard errors and the Wald tests are not computed.

Examining the output, it appears that all the estimated powers are close to zero (for logarithms) except for `Shld`, so reasonable rounded values for the transformations are \( \lambda = (0, 0, 0, 1, 0) \).

```r
> lrt.bctrans(ans,lrt=list(c(0,0,0,1,0)))
LRT df p.value
LR test, all lambda equal 0 23.3730 5 0.0002864
LR test, all lambda equal 1 133.1788 5 0.0000000
LR test, lambda = 0 0 0 1 0 6.1433 5 0.2925204
```

The likelihood ratio test for this choice for \( \lambda \) has a significance level close to .3, so this is a reasonable choice for the transformation. In the `lrt.bctrans` command, the first argument is the name of the output from `bctrans`. The second argument `lrt` must be a list of vectors (in the example, it is a list of one vector), each vector giving the hypothesized values for each of the \( \lambda \)s. The vectors of all zeroes and all ones are always included.

The next step is to get a scatterplot matrix of the transformed predictors. This is done using the `plot` helper. Here are four variants on this command that might be useful:

```r
> plot(ans)
> plot(ans,lambda=c(0,0,0,1,0))
> plot(ans,lambda=c(0,0,0,1,0),family="power")
> plot(ans,lambda=c(0,0,0,1,0),family="power",
 plot=scatterplot.matrix)
```

This first of these produces a scatterplot matrix of the transformed predictors plus the response if you specified it using the formula on the call to `bctrans`. The variables are labelled to indicate that they have been transformed. For example, the label `ADT.0.05` means that `ADT` has been transformed with \( \lambda = 0.05 \). `Trucks.minus0.7` means `Trucks` has been transformed with \( \lambda = -0.7 \).

The second plot will use the value of `lambda` specified to determine the transformations, not the estimate from `bctrans`. The next plot will use the

---

2 In S-Plus, you need to make a local copy of a data frame from a library before you can modify it.

3 If you have previously fit a linear model called `m`, you can type `bctrans(formula(m), data=highway)` to run `bctrans`. 
“ordinary” power transformations $\psi(U, \lambda)$ rather than $\psi_S(U, \lambda)$ or $\psi_{YJ}(U, \lambda)$. The last plot will use `scatterplot.matrix` to draw the plot rather than the default `pairs`.

If you are satisfied with the predictor transformations you have obtained, you need to add them to the data frame for fitting models, or perhaps transforming the response. This can be done in a number of ways, including:

> highway <- cbind(highway,
>      powtran(ans, lambda=c(0,0,0,1,0), family="power"))

If you leave off the argument `lambda`, the estimates from `bctrans` will be used. If you leave off the argument `family`, the Box-Cox (or Yeo-Johnson) family will be used in place of simple power transformations.

### 7.3 Transforming the Response

**R and S-Plus** See Sections above for the examples in this section.

### 7.4 Transformations of Non-Positive Variables

**R and S-Plus** Any command in the `alr3` package that has a keyword `family` can be set to use the Yeo-Johnson transformations, `family="yeo.johnson"`, either using $\psi_{YJ}(U, \lambda)$ if `modified=FALSE`, or a modified version suitable for use in the Box-Cox method when `modified=TRUE`.

The `boxcox` command from the `MASS` package does not have the `family` argument. An interesting problem is to write the equivalent to the `boxcox` command, but allowing for use of Yeo-Johnson transformations. Writing this for *arbitrary* transformations of the response is a little harder because you need to modify the transformation family to a constant Jacobian for the transformation; see Cook and Weisberg (1982, Section 2.4.1).
8  Regression Diagnostics: Residuals

8.1 THE RESIDUALS

R and S-Plus  Suppose you have fit a linear model using \texttt{lm}, and named it, for example, \texttt{m1}. The commands listed in Table 8.1 give helper functions to get the quantities described in this chapter or in the next chapter.

You can use these quantities in graphs or for any other purpose. For example,

\begin{verbatim}
> plot(predict(m1), residuals(m1,type="pearson"))
> plot(predict(m1), predict(m2))
> press <- residuals(m1)/(1-hatvalues(m1))
\end{verbatim}

The first is the usual plot of residuals versus fitted values, and the second is the plot of fitted values from \texttt{m2} versus the fitted values from \texttt{m1}, and the third computes and saves the PRESS residuals, ALR[9.4].

8.1.1 Difference between \( \hat{e} \) and \( e \)

8.1.2 The hat matrix

R and S-Plus  The hat-matrix \( H \) is rarely computed in full because it is an \( n \times n \) matrix that can be very large. Its diagonal entries, the leverages, are computed simply by \texttt{hatvalues(m1)} for a model \texttt{m1}. Should you wish to compute \( H \) in full, you can use the following commands. First, suppose that \( X \) is an \( n \times p \) matrix. Then

\begin{verbatim}
> decomp <- qr(cbind(rep(1,n),X))
\end{verbatim}
Table 8.1 R/S-Plus commands relating to residuals. For example, `residuals(m1)` will return the residuals from the model `m1`. Many of these commands differ in R and S-Plus.

<table>
<thead>
<tr>
<th>Quantities described in <code>alr[8]</code></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>predict</td>
<td>Fitted values, <code>alr[E8.3]</code> for OLS and WLS.</td>
</tr>
<tr>
<td>residuals</td>
<td>Residuals, <code>alr[8.4]</code> for OLS only.</td>
</tr>
<tr>
<td><code>residuals(m1,type=&quot;pearson&quot;)</code></td>
<td>Residuals, <code>alr[E8.13]</code>, for WLS. For OLS, the Pearson residuals and the ordinary residuals are the same, so this option can be used for all least squares models.</td>
</tr>
<tr>
<td>hatvalues</td>
<td>Leverages, <code>alr[E8.11]</code>, for OLS and WLS. In S-Plus, use <code>lm.influence(m1)$hat</code>.</td>
</tr>
</tbody>
</table>

Quantities described in `alr[9]`. All of these functions are available in the base version of R. If you are using S-Plus, we recommend you use the `car` library. These commands are then available for S-Plus as well.

<table>
<thead>
<tr>
<th>Quantities described in <code>alr[9]</code></th>
<th>Description</th>
</tr>
</thead>
</table>

```r
> Hat <- qr.Q(decomp) %*% t(qr.Q(decomp))
```

This is probably nonintuitive, so here is an explanation. First, append a column of ones to `X` for the intercept. Then, compute the QR decomposition, `alr[A.9]`, of the augmented matrix. The helper function `qr.Q` returns `Q`, and the second command is just `alr[EA.27]`.

8.1.3 Residuals and the hat matrix with weights

As pointed out in `alr[8.1.3]`, the residuals for WLS are \( \sqrt{w_i} \times (y_i - \hat{y}_i) \). Whatever computer program you are using, you need to check to see how residuals are defined.

**R and S-Plus** In R and S-Plus, the correct residuals for WLS are given by `residuals(m1,type="pearson")`. These are also correct for OLS, and so these should always be used in graphical procedures.

8.1.4 The residuals when the model is correct

8.1.5 The residuals when the model is not correct

8.1.6 Fuel consumption data

**R and S-Plus** In `alr[F8.5]` several of the points corresponding to states are identified with labels. R and S-Plus have a mechanism for identifying points that is fairly general, but clumsy and not very pleasant to use. The basic outline is:
1. Draw a graph. The method works best with a scatterplot, so that is the only case we consider. Let’s suppose the plot was created by

> plot(x,y)

2. While the graph is on the screen, use the `identify` helper to identify points. The basic command is

> identify(x,y, labels)

where `labels` is a vector of labels or numbers of the same length as `x` and `y` giving the labels that will be used to identify the points. Nothing seems to happen when you type this command. The program is waiting for you to click the mouse button on the graph. If you click close enough to a point, the label corresponding to the nearest point will be printed on the graph. This will continue until you press “escape,” select `Stop → Stop locator` from the plot’s menu, or select `Stop` after clicking the right mouse button.

The mechanism for labelling points noninteractively uses the `text` command; see the script for this chapter for an example.

### 8.2 TESTING FOR CURVATURE

**R and S-Plus** The command `residual.plots` in the `alr3` package implements the curvature tests described in `ALR[8.2]`. For example, all the plots in `ALR[F8.5]` except for part (f), along with a fitted quadratic curve, and the curvature tests, are obtained using

> residual.plots(m1)

| Tax     | Test stat | Pr(>|t|) |
|---------|-----------|---------|
| -1.076663 | 0.28737   |
| Dlic    | -1.921935 | 0.06096 |
| Income  | -0.083979 | 0.93345 |
| logMiles | -1.347291 | 0.18463 |
| Tukey test | -1.445992 | 0.14818 |

All the residual plots will be combined in one graph; you can change this behavior with arguments described in the help page for this command. If you have any factors in your formula, boxplots of residuals will be drawn for the factors, but there is no curvature test for the a factor. Interactions are skipped entirely. The command `resplot` draws one residual plot, and `resid.curv.test` computes the curvature test for one plot.

R and S-Plus have their own standard suite of residual plots produced by the `plot` helper. Some of these “default” plots are not discussed in `ALR`, and so we will not discuss them further here, either.
8.3 NONCONSTANT VARIANCE

8.3.1 Variance Stabilizing Transformations

8.3.2 A diagnostic for nonconstant variance

R and S-Plus Here is the complete outline of the computations for the test for heteroscedasticity for the snow geese data discussed in ALR[8.3.2]:

```r
> data(snowgeese)
> m1 <- lm(photos~obs1,snowgeese)
> sig2 <- sum(residuals(m1,type="pearson")^2)/length(snowgeese$obs1)
> U <- residuals(m1)^2/sig2
> m2 <- update(m1,U ~ .)
> anova(m2)
```

Analysis of Variance Table

Response: U

<table>
<thead>
<tr>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(&gt;F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>snowgeese$obs1</td>
<td>1</td>
<td>162.826</td>
<td>162.826</td>
<td>50.779</td>
</tr>
<tr>
<td>Residuals</td>
<td>43</td>
<td>137.881</td>
<td>3.207</td>
<td></td>
</tr>
</tbody>
</table>

After getting the data, the model with term `obs1` is fit. The quantity `sig2` is the estimate of $\sigma^2$, using $n$ as a denominator rather than $n - p'$. `pearson` residuals make this computation correct even for WLS. The score variable $U$ is computed by the next command, and then `m2` is the regression of $U$ on the terms in the original model, using the `update` helper. The score test is $1/2$ the sum of squares for regression, for $(1/2)162.83 = 81.41$.

As with the other methods described in the chapter, there is an R/S-Plus command that automates computing the score test for nonconstant variance. The command called `ncv.test` is part of the `car` package. For the snow geese data,

```r
> library(car)
> ncv.test(m1)
```

Non-constant Variance Score Test

Variance formula: ~ fitted.values

Chisquare = 81.41318   Df = 1   p = 0

In the sniffer data, we would like to consider more variance functions. Some of the results in ALR[8.4] can be obtained as follows:

```r
> data(sniffer)
> m1 <- lm(Y~TankTemp+GasTemp+TankPres+GasPres,sniffer)
> library(car)
> ncv.test(m1,~TankTemp,data=sniffer)
```

Non-constant Variance Score Test

Variance formula: ~ TankTemp

Chisquare = 9.7055   Df = 1   p = 0.0018371
> ncv.test(m1,~TankTemp+GasPres,data=sniffer)
Non-constant Variance Score Test
Variance formula: ~ TankTemp + GasPres
Chisquare = 11.778  Df = 2  p = 0.0027695

> ncv.test(m1,~TankTemp+GasTemp+TankPres+GasPres,data=sniffer)
Non-constant Variance Score Test
Variance formula: ~ TankTemp + GasTemp + TankPres + GasPres
Chisquare = 13.76  Df = 4  p = 0.008102

> ncv.test(m1)
Non-constant Variance Score Test
Variance formula: ~ fitted.values
Chisquare = 4.8027  Df = 1  p = 0.028416

To use `ncv.test`, specify the regression model, then a one-sided formula that specifies the model for the variance, and then if necessary the data frame.

### 8.3.3 Additional comments

### 8.4 GRAPHS FOR MODEL ASSESSMENT

#### 8.4.1 Checking mean functions

**R and S-Plus** The `alr3` package has two commands for drawing marginal model plots; `mmp` draws one marginal model plot, while `mmps` draws many such plots.

`alr` is created by

```r
> data(ufcwc)
> c1 <- lm(Height~Dbh,ufcwc)
> mmp(c1,ufcwc$Dbh,label="Diameter, Dbh",color=c("blue","red"))
```

The first argument to `mmp` is the only required argument, and is the name of a regression model. The second argument is the quantity to put on the horizontal axis of the plot, with `predict(c1)` as the default. We have shown two additional arguments, for the horizontal axis label and the colors of the two smooths; neither argument is required.

The command `mmp` uses the `loess` smoother, with defaults `degree=1, span=2/3`; both of these values can be changed when using the command. An interesting exercise would be to implement marginal model plots with other smoothers, and with non-deterministic methods for selecting a bandwidth parameter.

To draw marginal model plots versus each predictor and versus fitted values, use `mmps`. The following will draw three of the four plots in `alr`:

```r
> m1 <- lm(logFertility~logPPgdp+Purban,UN2)
> mmps(m1)
```
The fourth plot in ALR[F8.13] plots in a direction that is a random linear combination of the terms. You can get plots like this one using the random.lin.comb command in the alr3 package,

```r
> mmp(m1,u=random.lin.comb(m1))
```

Every time you draw this last plot, it will be different because the random numbers used will change. If you want to reproduce a plot, use the seed argument:

```r
> mmp(m1,u=random.lin.comb(m1,seed=254346576))
```

### 8.4.2 Checking variance functions

**R and S-Plus** The commands `mmp` and `mmps` include an argument `sd` that if set to TRUE will add the standard deviation smooths to the plot, as described in ALR[8.4.2].
9
Outliers and Influence

9.1 OUTLIERS

9.1.1 An outlier test

**R and S-Plus** In R or using the car library in S-Plus, the command rstandard computes the standardized residuals \( \text{ALR}[E9.3] \). You can also use \( \text{ALR}[E9.3] \) to compute these directly. Given a model \( m1 \),

\[
\text{ri} \leftarrow \frac{\text{residuals}(m1, \text{type} = \text{"pearson"})}{\sigma(\text{m}1)} \frac{1}{\text{sqrt}(1 - \text{hatvalues}(m1))}
\]

\[
\text{ri} \leftarrow \frac{\text{residuals}(m1, \text{type} = \text{"pearson"})}{\sigma(\text{m}1)} \frac{1}{\text{sqrt}(1 - \text{lm.influence}(m1)[[\text{hat}])}
\]

Pearson residuals guarantee that the same formula will work with weighted or unweighted least squares.

The outlier test is computed in R or with the car library in S-Plus using rstudent. These, too, can be computed directly. For a model \( m1 \), we use \( \text{ALR}[E9.4] \),

\[
\text{ti} \leftarrow \text{ri} \times \sqrt{\frac{\text{m}1[\text{df} - 1]}{(\text{m}1[\text{df} - \text{ri}^2])}}
\]

The quantity \( \text{m}1[\text{df}] \) is the df for residuals, equal to \( n - p' \).
9.1.2 Weighted least squares

9.1.3 Significance levels for the outlier test

\textbf{R and S-Plus} \quad \text{Significance levels for the outlier test use the } \texttt{pt} \text{ command. For example, if the largest in absolute value of } n = 65 \text{ Studentized residuals is } 2.85, \text{ with } p' = 5, \text{ the df for error is } n - p' - 1 = 65 - 5 - 1 = 59. \text{ The significance level, using the Bonferroni bound, is}

\begin{verbatim}
> 65*2*(1-pt(2.85,59))
[1] 0.39084
\end{verbatim}

By subtracting the result of the \texttt{pt} command from one, we get the upper tail, rather than the lower tail. We multiply by two to get a two-tailed test. We multiply by } n = 65 \text{ for the Bonferroni inequality.}

\begin{verbatim}
> n*2*(1-pt(max(abs(rstudent(m))),m$df-1))
\end{verbatim}

You can find the case number of the maximum Studentized residual with

\begin{verbatim}
> match(max(abs(rstudent(m))),abs(rstudent(m)))
\end{verbatim}

9.1.4 Additional comments

9.2 INFLUENCE OF CASES

\textbf{R and S-Plus} \quad \text{Table 8.1 lists the fundamental commands for influence and outlier statistics. Each of the commands returns a vector. In addition, R and S-Plus will compute and return the building blocks that are used in computing these statistics. In particular, the command } \texttt{influence} \text{ in R, called } \texttt{lm.influence} \text{ in S-Plus, returns a structure of these building blocks. For example, if you have a model } m1, \text{ then type}

\begin{verbatim}
> ans <- influence(m1)
\end{verbatim}

\texttt{ans$coefficients} \text{ returns a matrix with } n \text{ rows and } p' \text{ columns whose } i\text{th row is } \hat{\beta}_i, \text{ ALR}[E9.5]. \text{ This latter quantity was used to draw ALR[F9.1]. } \texttt{ans$sigma} \text{ returns a vector of the } \hat{\sigma}_i, \text{ the square roots of the estimate of } \sigma, \text{ each computed with one case deleted. Finally, } \texttt{ans$hat} \text{ returns the leverage. In linear models, all the leave-one-out statistics can be computed from the leverages and residuals, so neither of the first two quantities are computed in an influence analysis.}

\textbf{R and S-Plus} \quad \text{make refitting a regression with one (or a few) cases deleted easy. Suppose your model } m1 \text{ was fit with } n = 96 \text{ cases, and you want to refit, leaving out cases } 2, \text{ 7, 16. You need only type}

\begin{verbatim}
> ans <- influence(m1)
\end{verbatim}

\texttt{ans$coefficients} \text{ returns a matrix with } n \text{ rows and } p' \text{ columns whose } i\text{th row is } \hat{\beta}_i, \text{ ALR}[E9.5]. \text{ This latter quantity was used to draw ALR[F9.1]. } \texttt{ans$sigma} \text{ returns a vector of the } \hat{\sigma}_i, \text{ the square roots of the estimate of } \sigma, \text{ each computed with one case deleted. Finally, } \texttt{ans$hat} \text{ returns the leverage. In linear models, all the leave-one-out statistics can be computed from the leverages and residuals, so neither of the first two quantities are computed in an influence analysis.}

\textbf{R and S-Plus} \quad \text{make refitting a regression with one (or a few) cases deleted easy. Suppose your model } m1 \text{ was fit with } n = 96 \text{ cases, and you want to refit, leaving out cases } 2, \text{ 7, 16. You need only type}

\begin{verbatim}
> ans <- influence(m1)
\end{verbatim}

1\text{Reminder: } \texttt{rstudent} \text{ is available in the base R, but for S-Plus you need to load the library car.}
which uses the `subset` argument to `update` to refit with the specified cases deleted. The value of the `subset` argument can be either a vector of case numbers, as is the case here, or a vector of logical values with `TRUE` for values to be included, and `FALSE` for values to be excluded.

### 9.2.1 Cook’s distance

**R and S-Plus** The command `cooks.distance` in R and in the `car` library for S-Plus computes Cook’s distance. It can also be computed directly from `alr[E9.8]` for a model `m1`,

```r
> # For R only
> Di <- (ri^2/m1$rank)* (hatvalues(m1))/(1-hatvalues(m1))

> # For S-Plus only
> Di <- (ri^2/m1$rank)*(lm.influence(m1)$hat)/(1-lm.influence(m1)$hat)
```

`m1$rank` counts up the number of coefficients estimated in the mean function, so it is equal to $p$.

### 9.2.2 Magnitude of $D_i$

**R and S-Plus** The command `inf.index` in the `alr3` package is used to draw index plots of diagnostic statistics, like `alr[F9.3]`. Here are the commands to draw this figure:

```r
> data(rat)
> m1 <- lm(y~BodyWt+LiverWt+Dose,rat)
> inf.index(m1)
```

This function also gives an index plot of the $p$-values for the (two-tailed) outlier test based on the Bonferroni inequality.

### 9.2.3 Computing $D_i$

### 9.2.4 Other measures of influence

**R and S-Plus** Just a reminder: added-variable plots are available in the `car` package; see Section 3.1.

### 9.3 NORMALITY ASSUMPTION

**R and S-Plus** The `qqnorm` command is used to draw normal probability plots. Here are the commands to draw `alr[F9.5]`, which shows two normal probability plots.

```r
> data(heights)
```
> m1 <- lm(Dheight ~ Mheight, heights)
> data(transact)
> t1 <- lm(Time~T1+T2,transact)
> par(mfrow=c(1,2),mar=c(4,3,0,.5)+.1,mgp=c(2,1,0),cex=.5)
> qqnorm(residuals(m1),xlab="(a) Heights data",main=""
> qqnorm(residuals(t1),xlab="(a) Transaction data",main="")
10
Variable Selection

10.1 THE ACTIVE TERMS

The first example in this chapter uses randomly generated data. This can be helpful in trying to understand issues against a background where we know the right answers. Generating random data is possible in most statistical packages, though doing so may not be easy or intuitive.

**R and S-Plus** Here is code in R for generating the random data with standard normal random variables, and then fitting the regression for the first case in ALR[10.1]

```r
> case1 <- data.frame(x1=rnorm(100), x2=rnorm(100),
 x3=rnorm(100), x4=rnorm(100))
> e <- rnorm(100)
> case1$y <- 1 + case1$x1 + case1$x2 + e
> m1 <- lm(y~x1+x2+x3+x4, data=case1)
```

The `data.frame` command created a data frame, with each variable consisting of 100 standard normal pseudo-random numbers. The variable `case1$y` was added to the data frame to be the response, and then the model was fit.

Case 2 is more complicated because the random predictors are correlated. In R, the simplest approach is to use the function `rmvnorm` in the `mvtnorm

```r
Var2 <- matrix(c(1, 0, 0.95, 0,
 0, 1, 0, -0.95,
 0.95, 0, 1, 0,
 0, -0.95, 0, 1), ncol=4)
```
library(mvtnorm)
X <- rmvnorm(100,sigma=Var2)
dimnames(X)[[2]] <- paste("x",1:4,sep="")
case2 <- data.frame(X)
case2$y <- 1 + case2$x1 + case2$x2 + e
m2 <- lm(y~x1+x2+x3+x4,data=case2)

10.1.1 Collinearity

R and S-Plus The variance inflation factors, defined following ALR[E10.5],
are computed by the command vif in the car package. Here are the variance
inflation factors for the first two examples in ALR[10.1]

> vif(m1)
 x1  x2  x3  x4
 1.0072 1.0379 1.0330 1.0082
> vif(m2)
 x1  x2  x3  x4

As expected, in the first case the variance inflation factors are all close to one,
but in the second example they are all large.

10.1.2 Collinearity and variances

10.2 VARIABLE SELECTION

10.2.1 Information criteria

The information criteria ALR[E10.7]–ALR[E10.9] depend only on the RSS,
p', and possibly an estimate of σ², and so if these are needed for a particular
model, they can be computed from the usual summaries available in a fitted
regression model.

R In R only, there is a command extractAIC that can be used to compute
AIC, BIC and Cp. For a fitted subset model m0 and a fitted larger model m1,
the following commands extract these quantities:

> extractAIC(m0,k=2) # give AIC
> extractAIC(m0,k=log(length(m0$residuals))) # gives BIC
> extractAIC(m0, scale=sigma.hat(m1)^2) # gives Cp

10.2.2 Computationally intensive criteria

Computation of PRESS, ALR[E10.10], is not common in regression programs,
but it is easy to obtain given the residuals and leverages from a fitted model.
Table 10.1  R/S-Plus commands relating to subset selection.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>leaps</strong></td>
<td>Uses the Furnival and Wilson algorithm to examine all possible regressions. In R, you must obtain and load the package <code>leaps</code>. The syntax of this command is different from the rest of R and S-Plus. You must specify the predictors in a matrix, and the response in a separate vector; factors are not permitted. The output from the command is confusing, and selection can only be based on $C_p$, not on the other information criteria. Serious use of this function will require writing a command to process the output in an intelligent manner.</td>
</tr>
<tr>
<td><strong>regsubsets</strong></td>
<td>Part of the <code>leaps</code> package for R, and not available in S-Plus, this command purports to improve on <code>leaps</code>, but the documentation is unclear, and the output is still confusing.</td>
</tr>
<tr>
<td><strong>stepwise</strong></td>
<td>Available only in S-Plus, this command uses a brute force algorithm to examine all possible subset mean functions, and return the few with the smallest value of $C_p$. The method does not permit other criteria, or correctly handle factors. In addition, data must be supplied as in <code>leaps</code> in the form of a matrix and a vector rather than as a formula and a data frame.</td>
</tr>
<tr>
<td><strong>functions based on stepwise selection</strong></td>
<td></td>
</tr>
<tr>
<td><strong>step</strong></td>
<td>Use this function for both forward selection, backward elimination, or a combination of them, based on any of the information criteria except for PRESS.</td>
</tr>
<tr>
<td><strong>drop1</strong></td>
<td>This command will fit all models obtained by a current fitted model by dropping one term, and gives very easy to interpret output. With this command, you can do backward elimination “by hand,” one step at a time. This is particularly helpful in problems with factors and interactions, since dropping a main effect from a mean function that includes interactions with that variable is not recommended.</td>
</tr>
<tr>
<td><strong>add1</strong></td>
<td>Adds one term from a potential pool of terms to the fitted model. This can be used for forward selection “by hand.”</td>
</tr>
</tbody>
</table>

**R and S-Plus**  In R and S-Plus, given a model `m1`, PRESS can be computed as

```r
> PRESS <- sum((residuals(m1,type="pearson")(1-1s.diag(m1)$hat))^2)
```

This simple computation works for linear models, but not for more complex models such as nonlinear or generalized linear models.

10.2.3 Using subject-matter knowledge

10.3 COMPUTATIONAL METHODS

**R and S-Plus**  Four basic commands are included for use when examining many possible regression models, as listed in Table 10.1.

The primary command we recommend using is `step`. Using the highway data in `alr[T10.5]`, we start by fitting the largest and smallest models that we want to consider:
> m1 <- lm(logRate ~ logLen+logADT+logTrks+logSigs1+Slim+Shld+ + Lane+Acpt+Itg+Lwid+Hwy, data=highway)
> m0 <- lm(logRate ~logLen, data=highway)

As discussed in ALR[10.2.1], log(\textit{Len}) will be in all subsets. One of the terms, 
\textit{Hwy}, is a factor with 3 df. Here is the command for fitting via forward selection:

> ansf1 <- step(m0, scope=list(lower=~logLen,
+ upper=~logLen+logADT+logTrks+logSigs1+Slim+Shld+
+ Lane+Acpt+Itg+Lwid+Hwy),
+ direction="forward", data=highway)

The first argument to \texttt{step} is the name of a model, and for forward selection, it
is the smallest model considered. The argument \texttt{scope} gives explicity the the
\texttt{lower} and \texttt{upper} models, via one-sided formulas. The \texttt{direction} is specified
in quotation marks, and then the data frame must be named. The output of
this command is very long:

\begin{verbatim}
Start: AIC= -43.92
logRate ~ logLen

Df Sum of Sq RSS AIC
+ Slim 1 5.3 6.1 -66.3
+ Acpt 1 4.4 7.0 -60.8
+ Shld 1 3.6 7.9 -56.5
+ logSigs1 1 2.0 9.4 -49.4
+ Hwy 3 2.8 8.6 -48.8
+ logTrks 1 1.5 9.9 -47.5 Step 1
+ logADT 1 0.9 10.5 -45.1
+ Lane 1 0.5 10.9 -43.8
+ Itg 1 0.5 11.0 -43.5
+ Lwid 1 0.4 11.0 -43.3

Step: AIC= -66.28
logRate ~ logLen + Slim

Df Sum of Sq RSS AIC
+ Acpt 1 0.6 5.5 -68.3
+ logTrks 1 0.5 5.6 -67.9
+ logSigs1 1 0.3 5.8 -66.3 Step 2
+ Hwy 3 0.7 5.4 -65.0
+ Shld 1 0.1 6.0 -64.7
+ logADT 1 0.1 6.1 -64.6
+ Lwid 1 0.0346 6.1 -64.5
+ Lane 1 0.0071 6.1 -64.3
+ Itg 1 0.0055 6.1 -64.3
\end{verbatim}
Step: AIC = -68.31

\[ \text{logRate} \sim \log\text{Len} + \text{Slim} + \text{Acpt} \]

<table>
<thead>
<tr>
<th>Df</th>
<th>Sum of Sq</th>
<th>RSS</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;none&gt;</td>
<td>5.5</td>
<td>-68.3</td>
<td></td>
</tr>
<tr>
<td>+ \logTrks</td>
<td>1</td>
<td>0.4</td>
<td>5.2</td>
</tr>
<tr>
<td>+ \logSigs1</td>
<td>1</td>
<td>0.2</td>
<td>5.3</td>
</tr>
<tr>
<td>+ Shld</td>
<td>1</td>
<td>0.1</td>
<td>5.4</td>
</tr>
<tr>
<td>+ \logADT</td>
<td>1</td>
<td>0.032</td>
<td>5.5</td>
</tr>
<tr>
<td>+ Lane</td>
<td>1</td>
<td>0.031</td>
<td>5.5</td>
</tr>
<tr>
<td>+ Itg</td>
<td>1</td>
<td>0.028</td>
<td>5.5</td>
</tr>
<tr>
<td>+ Lwid</td>
<td>1</td>
<td>0.026</td>
<td>5.5</td>
</tr>
<tr>
<td>+ Hwy</td>
<td>3</td>
<td>0.5</td>
<td>5.1</td>
</tr>
</tbody>
</table>

**Step 3**

Step: AIC = -68.94

\[ \text{logRate} \sim \log\text{Len} + \text{Slim} + \text{Acpt} + \log\text{Trks} \]

<table>
<thead>
<tr>
<th>Df</th>
<th>Sum of Sq</th>
<th>RSS</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;none&gt;</td>
<td>5.2</td>
<td>-68.9</td>
<td></td>
</tr>
<tr>
<td>+ \logSigs1</td>
<td>1</td>
<td>0.1</td>
<td>5.0</td>
</tr>
<tr>
<td>+ \logADT</td>
<td>1</td>
<td>0.1</td>
<td>5.0</td>
</tr>
<tr>
<td>+ Hwy</td>
<td>3</td>
<td>0.5</td>
<td>4.6</td>
</tr>
<tr>
<td>+ Lwid</td>
<td>1</td>
<td>0.0396</td>
<td>5.1</td>
</tr>
<tr>
<td>+ Itg</td>
<td>1</td>
<td>0.0228</td>
<td>5.1</td>
</tr>
<tr>
<td>+ Lane</td>
<td>1</td>
<td>0.0069</td>
<td>5.1</td>
</tr>
</tbody>
</table>

The default criterion for fitting is \( AIC \). The output marked **Step 1** gives the summary for each mean function obtained by adding one term to the base model given by \( m_0 \). The models are ordered, so the one that minimizes \( AIC \) appears first.

At **Step 2**, \( \text{Slim} \) is added to the current model, and all the mean functions add one term to \( \log(\text{Len}) \) and \( \text{Slim} \). Steps continue until the model at the previous step, marked **<none>** has smaller \( AIC \) than adding the next term; in this example this occurs at **Step 4**, so the base model for this step is taken as the minimizer of \( AIC \). The object \( \text{ansf1} \) is the fitted model that minimizes \( AIC \).

In S-Plus, \texttt{step} works similarly, but the default information criterion is \( C_p \) rather than \( AIC \).

Backward elimination is similar, except the specified model is the largest one.

```r
> ansf2 <- step(m1, scope=list(lower=~logLen,
+ upper=~logLen+logADT+logTrks+logSigs1+Slim+Shld+
+ Lane+Acpt+Itg+Lwid+Hwy),
+ direction="backward", data=highway,
+ scale=sigma.hat(m1)^2)
```

The other arguments are similar to the arguments for forward selection. In this example, we have set \( \text{scale}=\sigma.hat(m1)^2 \), in which case the selection
criterion is $C_p$, not $AIC$. If you set $k=\log(\text{length(residuals$m1$)})$, then $BIC$
will be used. You can’t use PRESS with this command. Here is the output:

Start:  AIC= 14
logRate $\sim$ logLen + logADT + logTrks + logSigs1 + Slim + Shld +
  Lane + Acpt + Itg + Lwid + Hwy

<table>
<thead>
<tr>
<th>Df</th>
<th>Sum of Squares</th>
<th>RSS</th>
<th>Cp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0011</td>
<td>3.54</td>
<td>12.0</td>
</tr>
<tr>
<td>1</td>
<td>0.0031</td>
<td>3.54</td>
<td>12.0</td>
</tr>
<tr>
<td>1</td>
<td>0.01</td>
<td>3.54</td>
<td>12.0</td>
</tr>
<tr>
<td>1</td>
<td>0.01</td>
<td>3.55</td>
<td>12.1</td>
</tr>
<tr>
<td>3</td>
<td>0.63</td>
<td>4.16</td>
<td>12.6</td>
</tr>
<tr>
<td>1</td>
<td>0.08</td>
<td>3.62</td>
<td>12.6</td>
</tr>
<tr>
<td>1</td>
<td>0.10</td>
<td>3.63</td>
<td>12.7</td>
</tr>
<tr>
<td>1</td>
<td>0.27</td>
<td>3.81</td>
<td>13.9</td>
</tr>
<tr>
<td>&lt;none&gt;</td>
<td></td>
<td>3.54</td>
<td>14.0</td>
</tr>
<tr>
<td>1</td>
<td>0.37</td>
<td>3.91</td>
<td>14.6</td>
</tr>
<tr>
<td>1</td>
<td>0.92</td>
<td>4.46</td>
<td>18.5</td>
</tr>
</tbody>
</table>

Step:  AIC= 12.01
logRate $\sim$ logLen + logADT + logTrks + logSigs1 + Slim + Lane +
  Acpt + Itg + Lwid + Hwy

<table>
<thead>
<tr>
<th>Df</th>
<th>Sum of Squares</th>
<th>RSS</th>
<th>Cp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0028</td>
<td>3.54</td>
<td>10.0</td>
</tr>
<tr>
<td>1</td>
<td>0.01</td>
<td>3.54</td>
<td>10.1</td>
</tr>
<tr>
<td>1</td>
<td>0.01</td>
<td>3.55</td>
<td>10.1</td>
</tr>
<tr>
<td>1</td>
<td>0.10</td>
<td>3.64</td>
<td>10.7</td>
</tr>
<tr>
<td>1</td>
<td>0.12</td>
<td>3.65</td>
<td>10.8</td>
</tr>
<tr>
<td>3</td>
<td>0.68</td>
<td>4.22</td>
<td>10.8</td>
</tr>
<tr>
<td>&lt;none&gt;</td>
<td></td>
<td>3.54</td>
<td>12.0</td>
</tr>
<tr>
<td>1</td>
<td>0.28</td>
<td>3.82</td>
<td>12.0</td>
</tr>
<tr>
<td>1</td>
<td>0.71</td>
<td>4.25</td>
<td>15.0</td>
</tr>
<tr>
<td>1</td>
<td>1.00</td>
<td>4.54</td>
<td>17.1</td>
</tr>
</tbody>
</table>

Step:  AIC= 10.03
logRate $\sim$ logLen + logADT + logTrks + logSigs1 + Slim + Lane +
  Acpt + Lwid + Hwy

<table>
<thead>
<tr>
<th>Df</th>
<th>Sum of Squares</th>
<th>RSS</th>
<th>Cp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.01</td>
<td>3.55</td>
<td>8.06</td>
</tr>
<tr>
<td>1</td>
<td>0.01</td>
<td>3.55</td>
<td>8.13</td>
</tr>
<tr>
<td>1</td>
<td>0.09</td>
<td>3.64</td>
<td>8.70</td>
</tr>
<tr>
<td>1</td>
<td>0.12</td>
<td>3.66</td>
<td>8.86</td>
</tr>
<tr>
<td>&lt;none&gt;</td>
<td></td>
<td>3.54</td>
<td>10.03</td>
</tr>
<tr>
<td>1</td>
<td>0.32</td>
<td>3.86</td>
<td>10.31</td>
</tr>
<tr>
<td>3</td>
<td>1.16</td>
<td>4.71</td>
<td>12.26</td>
</tr>
<tr>
<td>1</td>
<td>0.79</td>
<td>4.33</td>
<td>13.61</td>
</tr>
</tbody>
</table>
- logSigs1 1 1.00 4.54 15.11

Step:  AIC= 8.06
logRate ~ logLen + logADT + logTrks + logSigs1 + Slim + Acpt +
    Lwid + Hwy

<table>
<thead>
<tr>
<th>Df</th>
<th>Sum of Sq</th>
<th>RSS</th>
<th>Cp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lwid</td>
<td>1</td>
<td>0.02</td>
<td>3.56</td>
</tr>
<tr>
<td>Acpt</td>
<td>1</td>
<td>0.10</td>
<td>3.64</td>
</tr>
<tr>
<td>logTrks</td>
<td>1</td>
<td>0.11</td>
<td>3.66</td>
</tr>
<tr>
<td>&lt;none&gt;</td>
<td></td>
<td>3.55</td>
<td>8.06</td>
</tr>
<tr>
<td>logADT</td>
<td>1</td>
<td>0.38</td>
<td>3.93</td>
</tr>
<tr>
<td>Hwy</td>
<td>3</td>
<td>1.28</td>
<td>4.82</td>
</tr>
<tr>
<td>Slim</td>
<td>1</td>
<td>0.80</td>
<td>4.35</td>
</tr>
<tr>
<td>logSigs1</td>
<td>1</td>
<td>1.02</td>
<td>4.56</td>
</tr>
</tbody>
</table>

Step:  AIC= 6.18
logRate ~ logLen + logADT + logTrks + logSigs1 + Slim + Acpt +
    Hwy

<table>
<thead>
<tr>
<th>Df</th>
<th>Sum of Sq</th>
<th>RSS</th>
<th>Cp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acpt</td>
<td>1</td>
<td>0.10</td>
<td>3.67</td>
</tr>
<tr>
<td>logTrks</td>
<td>1</td>
<td>0.13</td>
<td>3.69</td>
</tr>
<tr>
<td>&lt;none&gt;</td>
<td></td>
<td>3.56</td>
<td>6.18</td>
</tr>
<tr>
<td>logADT</td>
<td>1</td>
<td>0.37</td>
<td>3.93</td>
</tr>
<tr>
<td>Hwy</td>
<td>3</td>
<td>1.27</td>
<td>4.84</td>
</tr>
<tr>
<td>Slim</td>
<td>1</td>
<td>0.80</td>
<td>4.36</td>
</tr>
<tr>
<td>logSigs1</td>
<td>1</td>
<td>1.03</td>
<td>4.59</td>
</tr>
</tbody>
</table>

Step:  AIC= 4.92
logRate ~ logLen + logADT + logTrks + logSigs1 + Slim + Hwy

<table>
<thead>
<tr>
<th>Df</th>
<th>Sum of Sq</th>
<th>RSS</th>
<th>Cp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>logTrks</td>
<td>1</td>
<td>0.14</td>
<td>3.81</td>
</tr>
<tr>
<td>&lt;none&gt;</td>
<td></td>
<td>3.67</td>
<td>4.92</td>
</tr>
<tr>
<td>logADT</td>
<td>1</td>
<td>0.31</td>
<td>3.98</td>
</tr>
<tr>
<td>Hwy</td>
<td>3</td>
<td>1.51</td>
<td>5.18</td>
</tr>
<tr>
<td>logSigs1</td>
<td>1</td>
<td>1.16</td>
<td>4.83</td>
</tr>
<tr>
<td>Slim</td>
<td>1</td>
<td>1.21</td>
<td>4.97</td>
</tr>
</tbody>
</table>

Step:  AIC= 3.93
logRate ~ logLen + logADT + logSigs1 + Slim + Hwy

<table>
<thead>
<tr>
<th>Df</th>
<th>Sum of Sq</th>
<th>RSS</th>
<th>Cp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;none&gt;</td>
<td></td>
<td>3.81</td>
<td>3.93</td>
</tr>
<tr>
<td>logADT</td>
<td>1</td>
<td>0.29</td>
<td>4.10</td>
</tr>
<tr>
<td>Hwy</td>
<td>3</td>
<td>1.69</td>
<td>5.50</td>
</tr>
<tr>
<td>Slim</td>
<td>1</td>
<td>1.16</td>
<td>4.97</td>
</tr>
<tr>
<td>logSigs1</td>
<td>1</td>
<td>1.56</td>
<td>5.37</td>
</tr>
</tbody>
</table>
The commands `drop1` and `add1` do one step of these methods, so you can do the stepwise fitted “by hand.”

10.3.1 Subset selection overstates significance

10.4 WINDMILLS

10.4.1 Six mean functions

10.4.2 A computationally intensive approach

The data for the windmill example in ALR[10.4.2] is not included with the `alr3` library, and must be downloaded separately from `www.stat.umn.edu/alr`. The R or S-Plus commands used to compute ALR[F10.1] are given in the script for this chapter. The process requires many statements, but the method is straightforward. The command to compute the simulation in the script for this chapter has a comment marker in front of it, as the simulation can take several hours to complete. The results from the simulation discussed in ALR[10.4.2] are available from the data page at `www.stat.umn.edu/alr` in the file `sim1.out`. 
11 Nonlinear Regression

11.1 ESTIMATION FOR NONLINEAR MEAN FUNCTIONS

11.2 INFERENCE ASSUMING LARGE SAMPLES

R and S-Plus  The command \texttt{nls} is used to obtain OLS and WLS estimates for nonlinear regression models. \texttt{nls} differs from \texttt{lm} in a few key respects:

1. The formula for defining a model is different. In \texttt{lm}, a typical formula is $Y \sim X_1 + X_2 + X_3 + X_4$. This formula specifies the names of the response and the terms, but not the names of the parameters because to each term there is an associated parameter, or parameters for a factor. For a \texttt{nls} model, the formula specifies both terms and parameters. A typical example might be $Y \sim \text{th1} + \text{th2} \times (1 - \exp(-\text{th3} \times x))$. In this case there are three parameters, \text{th1}, \text{th2} and \text{th3}, but only one term, $x$. The right-hand side formula should be an expression of parameters, terms, and numbers that can be evaluated by the computer language C.

2. Factors are generally not used with \texttt{nls}.

3. A named list \texttt{start} of \textit{starting values} must be specified. This serves the dual purpose of telling the algorithm where to start, and also to name the parameters. For the example, \texttt{start=list(th1=620, th2=200, th3=10)} indicates that \text{th1}, \text{th2} and \text{th3} are parameters, and so by implication the remaining quantity, $x$, must be a predictor variable.
4. Most iterative algorithms for nonlinear least squares require computation of derivatives, and many programs require the user to provide formulas for the derivatives. This is not the case in \texttt{nls}; all derivatives are computed using numerical differentiation.

Here is the input leading to ALR\cite{11.2}

\begin{verbatim}
> data(turk0) # R only
> n1 <- nls(Gain ~ th1 + th2*(1-exp(-th3*A)), data=turk0,
           start=list(th1=620,th2=200,th3=10))
> summary(n1)

Formula: Gain ~ th1 + th2 * (1 - exp(-th3 * A))

Parameters:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|----------|
| th1      | 622.96     | 5.90    | 105.57   | < 2e-16 |
| th2      | 178.25     | 11.64   | 15.32    | 2.7e-16 |
| th3      | 7.12       | 1.21    | 5.91     | 1.4e-06 |

Residual standard error: 19.7 on 32 degrees of freedom

Correlation of Parameter Estimates:

<table>
<thead>
<tr>
<th></th>
<th>th1</th>
<th>th2</th>
<th>th3</th>
</tr>
</thead>
<tbody>
<tr>
<td>th1</td>
<td>1</td>
<td>-0.312</td>
<td>-0.406</td>
</tr>
<tr>
<td>th2</td>
<td>-0.312</td>
<td>1</td>
<td>-0.62</td>
</tr>
<tr>
<td>th3</td>
<td>-0.406</td>
<td>-0.62</td>
<td>1</td>
</tr>
</tbody>
</table>

After loading the data, we called \texttt{nls} with the required arguments of a formula and starting values. In addition, we specified a data frame. In R, there are many other arguments to \texttt{nls}, including several that are identical with arguments of the same name in \texttt{lm}, including \texttt{subset} for selecting cases, and \texttt{na.action} for setting the missing value action; neither of these is available in S-Plus. A few arguments are used to change the details of the computing algorithm; see the help page for \texttt{nls}. Neither R nor S-Plus have a \texttt{weights} argument for fitting WLS\footnote{The argument exists in R but as of October 2004 it has not been implemented.} but see the next example for computing WLS estimates.

The printed output from the \texttt{summary} method is also similar to the output from \texttt{lm}, as described in ALR\cite{11.2}. The “correlation of parameter estimates” is the matrix ALR[E11.14] rescaled as a correlation matrix.

Similar to an object created by the \texttt{lm} command, objects created by \texttt{nls} have \texttt{summary}, \texttt{plot} and \texttt{predict} methods, and these are used in a way that is similar to linear regression models. For example, ALR[F11.2] is obtained by

\begin{verbatim}
> attach(turk0)
> plot(A,Gain, xlab="Amount (percent of diet)", ylab="Weight gain, g")
> x <- (0:44)/100
> lines(x,predict(n1,data.frame(A=x)))
\end{verbatim}
Lack-of-fit testing is possible if there are repeated observations. The idea is to compare the nonlinear fit to the one-way analysis of variance, using the levels of the predictor as a grouping variable:

\[
\begin{align*}
> & m1 \leftarrow \text{lm}(\text{Gain}\sim\text{as.factor}(A),\text{turk0}) \\
> & \text{anova}(n1,m1)
\end{align*}
\]

Analysis of Variance Table

| Model 1: Gain ~ th1 + th2 * (1 - exp(-th3 * A)) |
| Model 2: Gain ~ as.factor(A) |
Res.Df	Res.Sum Sq	Df	Sum Sq	F value	Pr(>F)	
1	32	12367				
2	29	9824	3	2544	2.5	0.079

The model \(m1\) is a linear model, while \(n1\) is a nonlinear model. Even so, the \text{anova} will correctly compare them, giving the \(F\) test for lack of fit.

Unlike \text{lm}, \text{nls} does not allow factors in a formula. To use factors, you need to create dummy variables for the various levels of the factor and use these.

For example, consider fitting the models ALR[11.17]–ALR[11.19]. The data frame \text{turkey} includes a variable \(S\) that is a factor with three levels for the source of the dietary additive. Weighted least squares is required. We can apply \text{ALR}[E5.8] to get \text{nls} to get WLS estimates. We have \(y = g(\theta,x) + e/\sqrt{w}\) where the \(e\)'s have constant variance, so the \(y\)'s have variance \(\sigma^2/w\). Multiply both sides of the mean function by \(\sqrt{w}\) to get \(\sqrt{w}y = \sqrt{w}g(\theta,x) + e\) so we can get WLS estimates in the original problem by getting OLS estimates with \(\sqrt{w}g(\theta,x)\) as the kernel mean function, and \(\sqrt{w}y\) as the response.

The code for fitting the four models using WLS is given next. The vector \(m\) is the number of pens at each treatment combination, and is the vector of weights for this problem, \(S\) is the factor, and \text{Gain} is the response variable.

\[
\begin{align*}
data(turkey) \ # R only \\
tdata <- turkey \ # copy data to local name, requires only for Splus \\
# create the indicators for the categories of S \\
tdata$S1 <- tdata$S2 <- tdata$S3 <- rep(0, dim(tdata)[1]) \\
tdata$S1[tdata$S==1] <- 1 \\
tdata$S2[tdata$S==2] <- 1 \\
tdata$S3[tdata$S==3] <- 1 \\
# compute the weighted response \\
tdata$wGain <- sqrt(tdata$m)*tdata$Gain \\
# fit the models \\
# common regressions \\
m4 <- \text{nls}( wGain ~ sqrt(m)*(th1 + th2*(1-exp(-th3*A))), \\
\quad \text{data=tdata,start=list(th1=620,th2=200,th3=10)) \\
# most general \\
m1 <- \text{nls}( wGain ~ sqrt(m)*(S1*(th11 + th21*(1-exp(-th31*A)))+ \\
\quad S2*(th12 + th22*(1-exp(-th32*A)))+ \\
\quad S3*(th13 + th23*(1-exp(-th33*A)))), \\
\quad \text{data=tdata,start=list(th11=620,th12=620,th13=620, \\
\quad th21=200,th22=200,th23=200, \\
\quad th31=10,th32=10,th33=10)) \\
\end{align*}
\]
# common intercept
m2 <- nls(wGain ~ sqrt(m)*(th1 + S1*(th21*(1-exp(-th31*A)))+ S2*(th22*(1-exp(-th32*A)))+ S3*(th23*(1-exp(-th33*A)))),
data=tdata,start= list(th1=620, th21=200,th22=200,th23=200, th31=10,th32=10,th33=10))

# common intercept and asymptote
m3 <- nls( wGain ~ sqrt(m)*(th1 + th2 *( S1*(1-exp(-th31*A))+ S2*(1-exp(-th32*A))+ S3*(1-exp(-th33*A)))),
data=tdata,start= list(th1=620, th2=200, th31=10,th32=10,th33=10))

We have now created the dummy variables, weighted response, and the models with different mean functions. If there were no weights, we could leave off the sqrt(w) in the above statements, and use Gain, not wGain, as the response. In each of the models we had to specify starting values for all the parameters. The starting values we use essentially assume no group differences. Here are the anova tables to compare the models:

```r
> anova(m4,m2,m1)
Analysis of Variance Table

Model 1: wGain ~ sqrt(m) * (th1 + th2 * (1 - exp(-th3 * A)))
Model 2: wGain ~ sqrt(m) * (th1 + S1 * (th21 * (1 - exp(-th31 * A))) + S2 * (th22 * (1 - exp(-th32 * A))) + S3 * (th23 * (1 - exp(-th33 * A))))
Model 3: wGain ~ sqrt(m) * (S1 * (th11 + th21 * (1 - exp(-th31 * A))) + S2 * (th12 + th22 * (1 - exp(-th32 * A))) + S3 * (th13 + th23 * (1 - exp(-th33 * A))))

Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)
1 10 4326
2 6 2040 4 2286 1.68 0.27
3 4 1151 2 889 1.54 0.32
```

```r
> anova(m4,m3,m1)
Analysis of Variance Table

Model 1: wGain ~ sqrt(m) * (th1 + th2 * (1 - exp(-th3 * A)))
Model 2: wGain ~ sqrt(m) * (th1 + th2 * (S1 * (1 - exp(-th31 * A)) + S3 * (1 - exp(-th33 * A))))
Model 3: wGain ~ sqrt(m) * (S1 * (th11 + th21 * (1 - exp(-th31 * A))) + S2 * (th12 + th22 * (1 - exp(-th32 * A))) + S3 * (th13 + th23 * (1 - exp(-th33 * A))))

Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)
1 10 4326
2 8 2568 2 1758 2.74 0.12
```
These tests are interpreted as in ALR[6.2.2].

11.3 BOOTSTRAP INFERENCE

**R** The bootstrap be done using the same `boot.case` command used for linear models. For example, to get the bootstrap leading to ALR[11.5], using R

```r
> data(segreg) # R only
> attach(segreg)
> smod <- C ~ th0 + th1*(pmax(0,Temp-gamma))
> s1 <- nls(smod, data=segreg,start=list(th0=70,th1=.5,gamma=40))
> set.seed(10131985)
> s1.boot <- boot.case(s1,B=999)
```

If you are using S-Plus, load the package `resample` and replace the call to `boot.case` by `bootstrap(s1,coef,B=999)`. By using the `set.seed` command in R, you will get exactly the same bootstrap replications discussed in ALR; leave this command off, or change the seed, and you will get different replications.

`s1.boot` will consist only of a matrix with 999 rows and 3 columns, one row for each replication, and one column for each parameter, and summarizing the bootstrap is your responsibility. The summary used in ALR uses the `scatterplot.matrix` command in the `car` package:

```r
> library(car)
> scatterplot.matrix(s1.boot,diagonal="histogram",
+ col=palette(),#[-1],
+ lwd=0.7,pch=".",
+ labels=c(expression(theta[1]),expression(theta[2]),
+ expression(gamma)),
+ ellipse=FALSE,smooth=TRUE,level=c(.90))
```

Numerical summaries can also be appropriate, for example,

```r
> s1.boot.summary <- data.frame(rbind(
+ apply(s1.boot,2,mean),
+ apply(s1.boot,2,sd),
+ apply(s1.boot,2,function(x){quantile(x,c(.025,.975))})))
> row.names(s1.boot.summary)<-c("Mean","SD","2.5%","97.5%")
> s1.boot.summary

<table>
<thead>
<tr>
<th></th>
<th>th0</th>
<th>th1</th>
<th>gamma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>74.8407</td>
<td>0.60701</td>
<td>43.1235</td>
</tr>
<tr>
<td>SD</td>
<td>1.4453</td>
<td>0.11833</td>
<td>4.6156</td>
</tr>
<tr>
<td>2.5%</td>
<td>72.0214</td>
<td>0.46359</td>
<td>36.8698</td>
</tr>
<tr>
<td>97.5%</td>
<td>77.5987</td>
<td>0.97129</td>
<td>55.0744</td>
</tr>
</tbody>
</table>
```

\[2\] `scatterplot.matrix` is not available in S-Plus. Use `pairs` instead.
Here we combined the summaries into a data frame so they would be pretty when printed. The apply command is used repeatedly to apply functions to the columns of \texttt{s1.boot}, and we summarize with the mean, SD, and 95\% percentile-based confidence interval for each parameter.

**S-Plus**  Bootstrapping nonlinear models is not straightforward in S-Plus, and neither the \texttt{boot.case} command in the \texttt{alr3} package, nor the \texttt{bootstrap} command in the \texttt{resample} library work for nonlinear model objects. The heart of the problem is that \texttt{nls} in S-Plus does not accept the \texttt{subset} argument, so permuting cases as is required in bootstrapping is relatively difficult. If you write S-Plus code for bootstrapping a nonlinear model, let us know and we will add it to the \texttt{alr3} library.

11.4 REFERENCES
12 Logistic Regression

Both logistic regression and the normal linear models that we have discussed in earlier chapters are examples of generalized linear models. Many programs, including SAS, R, and S-Plus, have procedures that can be applied to any generalized linear model. Both JMP and SPSS seem to have separate procedures for logistic regression. There is a possible source of confusion in the name. Both SPSS and SAS use the name general linear model to indicate a relatively complex linear model, possibly with continuous terms, covariates, interactions, and possibly even random effects, but with normal errors. Thus the general linear model is a special case of the generalized linear models.

12.1 BINOMIAL REGRESSION

12.1.1 Mean Functions for Binomial Regression

12.2 FITTING LOGISTIC REGRESSION

R and S-Plus The key command in fitting a generalized linear model is glm. We will only consider the logistic regression case, but only minor changes are required for other cases.

Here is a general form for the glm command, illustrating the basic arguments available for binomial regression:

```
glm(formula, family = binomial(link="logit"), data, weights,
 subset, na.action, start = NULL)
```
94  LOGISTIC REGRESSION

The arguments `data`, `weights`, `subset` and `na.action` are used in the same way they are used in `lm`. The `family` argument is new, and the `formula` argument is a little different than its use in `lm` or `nls`. There are a few other arguments, mostly modifying the computational algorithm, that will probably be rarely needed.

As in ALR[12.1.1], let $\theta(x)$ be the probability of success given the value of the terms $X$ in the mean function equal $x$. According to the logistic regression model, we have from ALR[E12.7]

$$
\log \left( \frac{\theta(x)}{1 - \theta(x)} \right) = \beta' x
$$

(12.1)

The quantity on the right of this equation is called the **linear predictor**. The quantity on the left depends on the link function (or equivalently, the kernel mean function) used in fitting, which in this case is the **logit link**, the inverse of the logistic kernel mean function discussed in ALR[10.1.1].

The `formula` for a `glm` is a two-sided formula. The right-hand side of this formula is the linear predictor, equivalent to $\beta' x$ in (12.1). The left-hand side is either: (1) if the number of trials is always equal to one for each case, then the left-hand side is just the the response variable, a vector of zeroes and ones. (2) If the number of trials is not always equal to one, then the left-hand side is a matrix with two columns, the first column giving the number of successes and the second giving the number of failures.

The `family` argument is the name of an **error distribution**, which is **binomial** for binomial regression. Other choices like **Poisson** and **gaussian** are used for Poisson errors and normal errors, respectively. As an argument to the family, you set the **link** function. The only link discussed in ALR is the logit link for logistic regression. Since this is the default, it need not be specified. See VR[7] for a more general discussion.

**12.2.1 One-predictor example**

**R and S-Plus**  For ALR[T12.1], here are the computations:

```r
> data(blowBF)
> m1 <- glm(y ~ logb(D,2),family=binomial(),data=blowBF)
> summary(m1)
```

Call:
```r
glm(formula = y ~ logb(D, 2), family = binomial(), data = blowBF)
```

Deviance Residuals:
```r
 Min 1Q Median 3Q Max
-2.507 -0.757 -0.494 0.810 2.327
```

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
```

```r
```
Fitting Logistic Regression

(Intercept)  -7.892  0.633  -12.5  <2e-16
logb(D, 2)  2.263  0.191   11.8  <2e-16

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 856.21 on 658 degrees of freedom
Residual deviance: 655.24 on 657 degrees of freedom AIC: 659.2

The linear predictor used consists of the base-two logarithm of $D$. The family must be specified, because the default is family=gaussian, but the link can be skipped because the default is "logit".

Here are the commands to draw \texttt{alr[12.1a]}.

```r
> plot(jitter(logb(D,2),amount=.05),
+ jitter(y,amount=0.02),
+ xlab=expression(paste("(a) \(\log_{\text{2}}(\text{Diameter}) \)")),
+ ylab="Blowdown indicator")
> xx <- seq(min(D),max(D),length=100)
> abline(lm(y~logb(D,2)),lty=1)
> lo.fit <- loess(y~logb(D,2),data=blowBF,degree=1)
> lines(logb(xx,2),predict(lo.fit,data.frame(D=xx)),lty=3)
> lines(logb(xx,2),predict(m1,data.frame(D=xx),type="response"),lty=2)
```

The data are jittered in \texttt{plot} to avoid over-plotting. The vector \texttt{xx} will be used in plotting fitted values. First, the OLS line is added to the plot. Then the \texttt{loess} function was used to get a smoother, and it is added to the plot. Then, the fitted values from the model \texttt{m1} are added to the plot.

\texttt{alr[12.1b]} uses the \texttt{sm.density} command in the \texttt{sm} package.

```r
> library(sm)
> sm.density.compare(logD,y,lty=c(1,2),
+ xlab=expression(paste("(b) \(\log_{\text{2}}(\text{Diameter}) \)"))
+> legend(4.5,.9,legend=c("Y=0","Y=1"),lty=c(1,2))
```

12.2.2 Many Terms

\textbf{R} and \textit{S-Plus} Here are the statements to get the models shown in \texttt{alr[12.2]}:

```r
> m2 <- glm(y~logb(D,2)+S,family=binomial(),data=blowBF)
> m3 <- update(m2,~.+logb(D,2):S)
> summary(m2) output is edited
```

Coefficients:

|                  | Estimate | Std. Error | z value | Pr(>|z|) |
|------------------|----------|------------|---------|----------|
| (Intercept)      | -9.562   | 0.750      | -12.75  | <2e-16   |
| logb(D, 2)       | 2.216    | 0.208      | 10.66   | <2e-16   |
| S                | 4.509    | 0.516      | 8.74    | <2e-16   |

> summary(m3) output is edited
Logistic Regression

Coefficients:

|                | Estimate | Std. Error | z value | Pr(>|z|) |
|----------------|----------|------------|---------|----------|
| (Intercept)    | -3.678   | 1.425      | -2.58   | 0.0099   |
| logb(D, 2)     | 0.401    | 0.439      | 0.91    | 0.3614   |
| S              | -11.205  | 3.638      | -3.08   | 0.0021   |
| logb(D, 2):S   | 4.911    | 1.140      | 4.31    | 1.7e-05  |

ALR[12.2.2] also includes several non-standard graphics. ALR[12.2A] uses sm.density, as illustrated previously, and ALR[12.2B] is just an ordinary scatterplot, but uses jittering. ALR[12.3] shows contours on constant estimated probability superimposed on the scatterplot of the data. Here are the commands for ALR[12.3B].

```r
> xa <- seq(min(D), max(D), len=99)
> ya <- seq(.01, .99, len=99)
> za <- matrix(nrow=99, ncol=99)
> for (i in 1:99) {
+ za[,i] <- predict(m3, data.frame(D=rep(xa[i], 99), S=ya), type="response")
}>
> contour(logb(xa, 2), ya, za,
+ xlab=expression(paste("(b) \(\log_2(D)\)")), ylab="S")
> points(jitter(logb(D, 2), amount=.04), S, pch=y+1, cex=.5)
```

We first defined a grid `xa` for the horizontal axis for `D`, `ya` for the vertical axis for `S`. `za` is then defined as a (very large) matrix giving the predicted value for each combination (`xa`, `ya`). The `contour` command is then used to draw the probability contours based on this matrix. We needed to adjust the horizontal axis to be the base-two logarithm of `xa`. The jittered points were then added.

The plots in ALR[12.5] are considerably simpler. Here is the second one.

```r
> xx <- seq(min(logb(D, 2)), max(logb(D, 2)), length=100)
> plot(2^(xx), exp(coef(m3)[3]/10 + coef(m3)[4]*xx/10), type="l",
+ xlab="(b) D", ylab="Odds multiplier")
```

12.2.3 Deviance

**R and S-Plus** Comparing models uses the `anova` just as with `lm` models. For the three models fit to the Balsam Fir blowdown data,

```r
> anova(m1, m2, m3, test="Chisq")
Analysis of Deviance Table

Model 1: y ~ logb(D, 2)
Model 2: y ~ logb(D, 2) + S
Model 3: y ~ logb(D, 2) + S + logb(D, 2):S

<table>
<thead>
<tr>
<th>Resid. Df</th>
<th>Resid. Dev</th>
<th>Df</th>
<th>Deviance</th>
<th>P(>Chi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>657</td>
<td>655</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>656</td>
<td>644</td>
<td>1</td>
<td>91.2e-21</td>
</tr>
<tr>
<td>3</td>
<td>655</td>
<td>642</td>
<td>2</td>
<td>2.5e-06</td>
</tr>
</tbody>
</table>
```
We specified test="Chisq") to compare the change in deviance to the Chi-squared distribution to get significance levels. The default is no significance levels.

### 12.2.4 Goodness of Fit Tests

**R and S-Plus** The Titanic data uses binomial, rather than binary regression, since the number of trials exceeds one. Here is the syntax:

```r
> data(titanic)
> m1 <- glm(cbind(Surv,N-Surv)~Class+Age+Sex, data=titanic, family=binomial())
```

The response is specified as a matrix whose first column is the number of survivors, and whose second column is the number of deaths. In S-Plus, fitting the saturated model, with more parameters than cell counts, produces an error rather than the correct fitted model with all fitted values equal to the observed values; R does the computation correctly.

### 12.3 BINOMIAL RANDOM VARIABLES

#### 12.3.1 Maximum likelihood estimation

#### 12.3.2 The Log-likelihood for Logistic Regression

### 12.4 GENERALIZED LINEAR MODELS

#### Problems

**R and S-Plus** 12.5.1. The `pairs` will accept a matrix (or data frame) for its first argument, and the argument `col` can be used to set the colors of the points. You can also use `scatterplot.matrix` in the `car` package.
Appendix A

A.1 WEB SITE

A.2 MEANS AND VARIANCES OF RANDOM VARIABLES

A.2.1 E notation

A.2.2 Var notation

A.2.3 Cov notation

A.2.4 Conditional moments

A.3 LEAST SQUARES FOR SIMPLE REGRESSION

A.4 MEANS AND VARIANCES OF LEAST SQUARES ESTIMATES

A.5 ESTIMATING $E(Y|X)$ USING A SMOOTHER

R and S-Plus A bewildering array of options are available for smoothing, both in the base programs, and in packages available from others. In ALR, we have almost always used the loess smoother or an older version of it called
There is no particular reason to prefer this smoother over other
smoothers. For the purposes to which we put smoothers, mainly to help us
look at scatterplots, the choice of smoother is probably not very important.

The important problem of choosing a smoothing parameter is generally
ignored in ALR; one of the nice features of \texttt{loess} is that choosing the smoothing
parameter of about 2/3 usually gives good answers. R and S-Plus have several
methods for selecting a smoothing parameter; see \texttt{vr[8.7]}, and the references
given in ALR[A.5], for more information.

The \texttt{loess} is used to draw ALR[FA.1]

```r
> data(ufcwc)
> attach(ufcwc)
> plot(Dbh,Height)
> abline(lm(Height~Dbh),lty=3)
> lines(lowess(Dbh,Height,iter=1,f=.1),lty=4)
> lines(lowess(Dbh,Height,iter=1,f=2/3),lty=1)
> lines(lowess(Dbh,Height,iter=1,f=.95),lty=2)
> legend(700,200,legend=c("f=.1","f=2/3","f=.95","OLS"),lty=c(4,1,2,3))
```

We have used the \texttt{lines} helper to add the \texttt{loess} fits to the graph, with
different values of the smoothing argument, \texttt{f}. We set the argument \texttt{iter} to
one rather than the default value of three.

More or less the same figure can be obtained using \texttt{loess}.

```r
> plot(Dbh,Height)
> abline(lm(Height~Dbh),lty=3)
> new <- seq(100,1000,length=100)
> m1 <- loess(Height~Dbh,degree=1,span=.1)
> m2 <- loess(Height~Dbh,degree=1,span=2/3)
> m3 <- loess(Height~Dbh,degree=1,span=.95)
> lines(new,predict(m1,data.frame(Dbh=new)),lty=4,col="cyan")
> lines(new,predict(m2,data.frame(Dbh=new)),lty=1,col="red")
> lines(new,predict(m3,data.frame(Dbh=new)),lty=2,col="blue")
> legend(700,200,legend=c("f=.1","f=2/3","f=.95","OLS"),lty=c(4,1,2,3))
```

\texttt{loess} expects a formula. \texttt{degree=1} uses local linear, rather than quadratic,
smoothing, to match \texttt{loess}. The \texttt{span} argument is like the \texttt{f} argument for
\texttt{lowess}.

ALR[FA.2] with the standard deviation smooths was drawn using the fol-
lowing commands.

```r
> plot(Dbh,Height)
> loess.fit <- loess(Height~Dbh, degree=1, span=2/3) # gives same answers
> sqres <- residuals(loess.fit)^2
> loess.var.fit <- loess(sqres ~ Dbh, degree=1, span=2/3)
> new <- seq(min(Dbh),max(Dbh), length=100)
```

\texttt{loess} and \texttt{lowess} have different defaults, and so they will give the same answers only if
they are set to use the same tuning parameters.
> lines(new, predict(loess.fit,data.frame(Dbh=new)))
> lines(new, predict(loess.fit,data.frame(Dbh=new)) +
+ sqrt(predict(loess.var.fit,data.frame(Dbh=new))), lty=2)
> lines(new, predict(loess.fit,data.frame(Dbh=new)) -
+ sqrt(predict(loess.var.fit,data.frame(Dbh=new))), lty=2)

We used the `loess` command rather than `lowess` because `loess` has a method for the residuals helper function.

### A.6 A BRIEF INTRODUCTION TO MATRICES AND VECTORS

**R and S-Plus**  
R and S-Plus VR[3.9] gives a good summary of the most commonly used matrix commands. These are also discussed in the documentation that comes with the two programs, or in various help pages available in the program.

#### A.6.1 Addition and subtraction

#### A.6.2 Multiplication by a scalar

#### A.6.3 Matrix multiplication

#### A.6.4 Transpose of a matrix

#### A.6.5 Inverse of a matrix

#### A.6.6 Orthogonality

#### A.6.7 Linear dependence and rank of a matrix

### A.7 RANDOM VECTORS

### A.8 LEAST SQUARES USING MATRICES

#### A.8.1 Properties of estimates

#### A.8.2 The residual sum of squares

#### A.8.3 Estimate of variance

### A.9 THE QR FACTORIZATION

**R and S-Plus**  
These programs compute the QR factorization using Lapack routines, or the slightly older but equally good Linpack routines. We illustrate the use of these routines with a very small example.

> X <- matrix(c(1,1,1,1,2,1,3,8,1,5,4,6), ncol=3, byrow=FALSE)
> y <- c(2,3,-2,0)
> X
   [,1] [,2] [,3]
[1,] 1  2  1
[2,] 1  1  5
[3,] 1  3  4
[4,] 1  8  6
> y
[1]  2  3 -2  0
> QR <- qr(X)

Here \( X \) is a 4 \( \times \) 3 matrix, and \( y \) is a 4 \( \times \) 1 vector. To use the QR factorization, we start with the command \( \text{qr} \). This does not find \( Q \) or \( R \) explicitly but it does return a structure that contains all the information needed to compute these quantities, and there are helper functions to return \( Q \) and \( R \):

\[
\begin{align*}
&\text{qr.Q(QR)} \\
&\text{[,1] [,2] [,3]} \\
&[1,] -0.5 -0.278543 0.775475 \\
&[2,] -0.5 -0.464238 -0.621480 \\
&[3,] -0.5 -0.092848 -0.060498 \\
&[4,] -0.5 0.835629 -0.093497
\end{align*}
\]

\[
\begin{align*}
&\text{qr.R(QR)} \\
&\text{[,1] [,2] [,3]} \\
&[1,] -2 -7.0000 -8.0000 \\
&[2,] 0 5.3852 2.0426 \\
&[3,] 0 0.0000 -3.1349
\end{align*}
\]

\( Q \) is a 4 \( \times \) 3 matrix with orthogonal columns, and \( R \) is a 3 \( \times \) 3 upper triangular matrix. These matrices are rarely computed in full like this. Rather, other helper functions are used.

In the regression context, there are three helpers that return quantities related to linear regression, using \text{ALR}[\text{EA.25–EA.27}].

\[
\begin{align*}
&\text{qr.coef(QR,y)} \\
&[1] 1.732456 -0.350877 0.061404 \\
&\text{qr.fitted(QR,y)} \\
&[1] 1.092111 1.68860 0.925444 -0.70614 \\
&\text{qr.resid(QR,y)} \\
&[1] 0.90789 1.31140 -2.92544 0.70614
\end{align*}
\]

\text{qr.coef} computes \text{ALR}[\text{EA.26}], \text{qr.fitted} computes the fitted values \( QQ'y \), and \text{qr.resid} computes residuals \( y - QQ'y \).

The \text{backsolve} command is used to solve triangular systems of equations, as described in \text{ALR}[\text{A.9}].

The basic linear regression routine \text{lm} uses the QR factorization to obtain estimates, standard errors, residuals and fitted values.
A.10  MAXIMUM LIKELIHOOD ESTIMATES

A.11  THE BOX-COX METHOD FOR TRANSFORMATIONS

A.11.1  Univariate case

A.11.2  Multivariate case

A.12  CASE DELETION IN LINEAR REGRESSION
References


REFERENCES


Index

Added-variable plots, 31
Alr3 package
  bctrans, 66–68
  boot.case, 91
  confint, 24
  conf.interval, 24
  delta.method, 51
  delta.method.compute, 51
  inf.index, 77
  inv.res.plot, 63
  inv.trans.estimate, 62–63
  inv.trans.plot, 62–63
  lrt.bctrans, 67
  mmp, 73–74
  mmps, 73–74
  plot, 67
  powtran, 61–62
  pure.error.anova, 43
  random.lin.comb, 74
  resid.curv.test, 71
  residual.plots, 71
  resplot, 71
  sigma.hat, 23
  vcov, 23, 50
Arc, 4
Case sensitive, 9
Chi-squared tables, 11
CRAN, 2
Data files, 5–6
  Documentation, 5
  Missing values in, 5
  wm5.txt, 7
Data frame, 6
Excel, 4
Factor, 51
File
  Change dir, 9
  Save as
    filetype, 10
  Save to file, 10
  Formula, 82, 87, 94
  F tables, 11
  Graphical user interface (GUI), 3
Help
  Online Manuals, 2
Identifying points, 70
Interaction, 48
Loess, 16, 65
Macros, 3
Missing values, 5, 34
Normal tables, 11
One-sided formula, 65, 73
Ordinary least squares, 19
Orthogonal polynomials, 42
Polynomial regression, 42, 47
Prediction, 24
QR factorization, 48
Random coefficient model, 56
R commands
  %, 29
INDEX

car, 13, 27, 31, 45, 66, 70, 72, 75–77, 80, 91, 97
foreign, 9
leaps, 81
MASS, 13, 60, 64, 68
mvtnorm, 79
nlme, 13, 56
norm, 36
sm, 13, 95
xtable, 53

Scripts
to reproduce the book, 7

S-Plus commands
%
abline, 15, 43
abs, 76
add1, 86
anova, 22, 30, 44, 55, 89–90, 96
apply, 20, 28, 92
as.factor, 18
as.matrix, 29
attach, 13, 17, 21
avp, 27, 31
backsolve, 102
boot.case, 37, 92
bootstrap, 37, 92
boxcox, 60, 68
coeff, 23, 37
confidence.ellipse, 45
courot, 96
cooks.distance, 70, 77
cor, 22, 28
cov, 20, 28
D, 49
data.frame, 9, 63, 79
drop1, 81, 86
factor, 52
fitted, 56
for, 40, 61
formula, 21
function(x) sqrt(var(x)), 18
glm, 93–94
I, 42, 47
identify, 71
importData, 9
inv.tran.plot, 61
is.na, 35
jitter, 47
jpeg, 10
leaps, 81
legend, 15, 61
library, 13
lines, 15, 43, 59, 61, 100
lm, 14–16, 21–22, 27, 29, 36, 41, 55, 61, 67, 69, 87–89, 96, 102
lm.influence, 76
locator, 61
loess, 73, 95, 99–101
log, 7, 17
logb, 7, 17
lowess, 16, 100–101
ls, 88
match, 76
mean, 15
mpoly, 48
ncv.test, 72–73
nls, 87–89, 92
options, 52
ordered, 52
pairs, 16–17, 64–65, 68, 91, 97
par, 14, 49
pchisq, 43
pdf, 10
plot, 13, 16, 26, 49, 56, 59, 67, 71, 88, 95
pod, 55–56
points, 16
poly, 47–48
postscript, 10
predict, 24–26, 31, 42–43, 56, 61, 70, 88
print, 22
pt, 76
qF, 24
qnor, 24
qqnorm, 77
qr, 70, 102
qr.coef, 102
qr.fitted, 102
qr.Q, 70
qr.resid, 102
qt, 24
residuals, 26, 42, 56, 70, 101
rnorm, 40
round, 67
rstandard, 70, 75
rstudent, 70, 75–76
scatterplot.matrix, 66, 68, 91, 97
sd, 28, 37
set.seed, 91
sm.density, 95–96
solve, 29
splom, 16
spm, 66
stdev, 28
step, 81–83
stepwise, 81
summary, 22, 67, 88
t, 29
tapply, 15, 18
text, 49, 71
unlist, 62
unlist, 62
update, 30, 43, 56, 72, 77
var, 28
vcov, 50
vif, 80
S-Plus
factors in nls models, 89
formula, 21, 29, 47
S-Plus libraries
alr3, 6, 12–13, 27, 36, 43, 54, 92
car, 13, 27, 31, 45, 66, 70, 72, 75–77, 80, 91, 97
MASS, 13, 60, 64, 68
missing, 13, 36
nlme, 13, 56
nlme4, 56
resample, 13, 36–37, 91–92
sm, 13, 95
S-Plus
one-sided formula, 17
Stop
Stop locator, 71
Tables, 11
Transform
Recode, 5, 12
T tables, 11
Yeo-Johnson transformation, 68