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Abstract

Many experiments and studies are designed to discover how a group of predictors

affect a single response. For example, an agricultural scientist may perform an ex-

periment to determine how rainfall, sunlight, and fertilizer affect plant growth. In

situations like this, graphical methods to show how the various predictors affect the

response and the relative importance of each predictor can be invaluable, not only in

helping the researcher understand the results, but also in communicating the findings

to non-specialists.

For settings where a simple statistical model can be used to fit the data, several

graphical methods for showing the effect of individual predictors already exist. How-

ever, few methods are available for more complex settings that require more complex

models. A framework for understanding the existing methods is developed using

Cook’s net-effect plots, and a criterion for evaluating and creating methods is pro-

posed. This criterion states that for a plot to be most useful in showing how a given

predictor affects the response, the conditional distribution of the vertical axis given

the horizontal axis should be independent of the other predictors. That is, the plot

should not hide any additional information gained by knowing the other predictors.

This proposed framework and criterion is used to develop graphical methods ap-

propriate for use in more complex modeling algorithms. In particular, these plots

have been explored in the context of model combining methods, and various versions

compared and analyzed. Additionally, the weights from these model combining meth-

ods are used to modify existing methods of determining predictor importance values,

resulting in improved values for spurious predictors.
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Chapter 1

Overview of useful methods

Given a univariate response Y and a set of p predictors X = (x1, . . . , xp), a regression

analysis studies the conditional distribution of Y |X as X varies. There are at least

two main reasons for this analysis: to predict values of Y from given values of X, and

to understand how the predictors X affect the response Y . The goal of this thesis

is to explore graphical methods that show the importance and effect of a subset of

q predictors X2 = (xp−q+1, . . . , xp) to aid in the understanding of the relationship

between the predictors and the response.

This chapter will develop criteria to determine when a plot might be useful and

review various types of useful plots in the context of multivariate normal (X, Y ).

After a framework for understanding these plots is developed, several specific model

types and fitting methods will be explored.

A plot of x on the horizontal axis and y on the vertical axis will be designated

with the notation {x, y}.

1.1 Scatterplot

Consider the case where p = q = 1, so there is one predictor X, and a response Y .

The most common method of displaying their relationship is a scatterplot. With X

1



2 Chapter 1. Overview of useful methods

on the horizontal axis and Y on the vertical axis, each (X, Y ) point is plotted, which

shows the joint distribution of X and Y . The conditional distribution of Y |X can be

examined by visualizing narrow vertical slices of the data along the x-axis. The points

in each slice correspond to possible values for Y |(X ∈ slice). Thus various features

of the conditional distribution can be inspected, including the mean, the variance,

and possibly the skewness and outliers, as well as how these features change as X is

varied. Because there are no other predictors, this plot contains a full description of

how the distribution of Y |X behaves for all X. Thus in general a two-dimensional

scatterplot provides visualization of the conditional distribution of Y |X as X is varied.

A scatterplot in this situation is called a response plot of Y versus X.

Figure 1.1 demonstrates how scatterplots look for several different conditional

mean and variance functions. Figure 1.1a shows independent X and Y , so E(Y |X)

and Var(Y |X) are both constant, and the distribution of points for each visualized

slice along the x-axis is the same. Figure 1.1b shows a relationship where E(Y |X)

is a linear function of X and Var(Y |X) is constant, so the distribution of points

for each visualized slice along the x-axis changes only in location, and that change

is linear. Figure 1.1c shows a similar relationship; Var(Y |X) is still constant, so the

distribution of points for each visualized slice along the x-axis changes only in location,

but that change is non-linear, showing that E(Y |X) is nonlinear. Figure 1.1d shows

a relationship where Var(Y |X) increases in X but E(Y |X) is constant; we see that

the spread of points in each visualized slice increases, although the average location

remains constant.

In the bivariate normal context, suppose Y

X

 ∼ N

 0

0

 ,

 1 s

s 1

 . (1.1)

If the means of X and Y are not zero, there is a location change in the plot, but not
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Figure 1.1: Scatterplots showing various conditional mean and variance functions.

a change in shape. Similarly, if the variances of X and Y are not one, there is only a

scale change. Then

Y |X ∼ N(sX, 1− s2), (1.2)

so the mean function E(Y |X) = sX is linear in X, and the variance has no X

dependence.

In addition to the points on the scatterplot, a line representing this mean function

may be added to increase visual perception of the mean. This is especially useful

because visual perception of the mean from the points can be misleading. For example,

in the bivariate normal context, contours of constant probability for the bivariate

normal are g, so the scatter of points observed in the {X, Y } plot will also be elliptical.

However, the mean function of the conditional distribution does not line up with

the principal axes of the ellipses (see Freedman et al., 1978, p. 147). Instead, the

conditional mean function is visually estimated by estimating the mean of vertical

slices. In Figure 1.2, ellipses of constant probability are shown for s = 0.5, along with

the mean function Y = sX. The mean function does not line up with the principal

axes of the ellipses, but it does bisect the vertical slice marked by the dotted line (for

x ∈ (2, 2.4)).
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Figure 1.2: Elliptical contours of constant probability for a bivariate normal distribu-
tion. Dotted lines show the principal axes, and the solid line shows the conditional
mean function.

A difficulty with adding the mean function to the plot is that the mean function is

not usually known, but instead must be estimated from the data. In this investigation,

examples will often be simulated and thus fully understood, so the plots can be drawn

using either the known true values, or estimates of these values from the data. Plots

based on known population values will be called idealized plots, and plots based on

estimates from the data will be called estimated plots. This distinction will become

more important in more complex plots where the plotted points themselves must be

estimated along with the mean function.

Example 1.1 (Scatterplot of bivariate normal data with one predictor.)

A sample of size 100 has been taken from the bivariate normal described in (1.1),

with s = 0.5. Scatterplots of {X, Y } are shown in Figure 1.3, showing the joint

distribution of X and Y . Judging by the density of the points, the contours of equal

probability appear elliptical. Additionally, for any given value of X, the conditional
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(b) With estimated conditional mean.

Figure 1.3: Scatterplots of the bivariate normal data from Example 1.1, with idealized
and estimated conditional mean functions added.

distribution of Y |X can be inspected by visualizing a narrow slice of the data around

that value. Take, for instance, a narrow slice around X = 2 (shown in both figures).

The Y values of the points in this slice are centered roughly around Y = 1; this is

a rough estimate of the conditional mean for X = 2. Similarly, a rough estimate

of the conditional mean at X = 0 is Y = 0. Using these points, a rough estimate

for the slope is (1 − 0)/(2 − 0) = 0.5, which turns out to be exactly s. Figure 1.3a

shows the idealized conditional mean line, with slope s = 0.5 and intercept 0, and

Figure 1.3b shows the least squares estimate of the conditional mean line, with slope

0.4 and intercept 0.03. Finally, the variance seems constant for all values of X. �

1.2 Marginal response plot

Now consider the case where there are two predictors with one of interest, so p = 2

and q = 1, and the goal remains to study the dependence of Y on X2. A first
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method is to simply ignore the information in X1, and plot the scatterplot {X2, Y }.

As in the case where p = 1, the conditional distribution of Y |X2 can be inspected

by visualizing vertical slices. As this scatterplot ignores X1 and so only contains the

marginal information of X2 and Y , it is called a marginal response plot (Cook and

Weisberg, 1999b).

In the multivariate normal context, let
Y

X1

X2

 ∼ N




0

0

0

 ,


1 r s

r 1 ρ

s ρ 1


 . (1.3)

Ignoring X1, or equivalently, integrating it out, the conditional distribution of Y |X2

is

Y |X2 ∼ N(sX2, 1− s2), (1.4)

exactly as in the case where p = 1. This can also be found by the rule of iterated

expectations,

f(y|x2) = E (f(y|x1, x2)|x2) , (1.5)

where f(a) denotes the density of A. This relationship will be used again in Section 1.8

for the marginal model checking plot.

Example 1.2 (Marginal response plot for data with two predictors.)

A sample of size 100 has been taken from the multivariate normal of (1.3), with

r = 0.9, s = 0.8 and ρ = 0.95. Figure 1.4 shows the marginal response plot for X2,

{X2, Y }. The idealized conditional mean line, with slope 0.8, is drawn with a solid

line, and the least squares estimate of the conditional mean line, with slope of 0.81
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Figure 1.4: Marginal response plot for X2 from Example 1.2, with idealized (solid
line) and conditional (dashed line) mean functions added.

and intercept −0.05, is drawn with a dotted line. By visualizing vertical slices for

various values of X2, these conditional mean lines can be verified, and the variance

confirmed to be constant over X2. �

1.3 Local net-effect plots

While a marginal response plot like Figure 1.4 is useful in that it does show the

relationship between Y and X2, as the effects of X1 have been ignored, it does not

show that this relationship may depend on X1. Local net-effect plots, introduced by

Cook (1995), provide a general method for showing this dependence.

The idea is to consider the distribution of (Y,X2)|X1 = x1 for the possible values

of x1. Since X1 is held fixed, this shows how X2 is related to Y after accounting for

the effect of X1, or, the “net-effect” of X2 when X1 = x1. Again, this distribution

is visualized with a scatterplot of {X2, Y }, but this time only points where X1 = x1

are used. As in the case where p = 1, the conditional distribution can be inspected,
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though this time it is the distributions of Y |X1 = x1 given X2|X1 = x1 that are of

interest. Then to understand the relationship between X2 and Y given X1, one can

inspect both the form of this conditional distribution for various values of X1, and

how this distribution changes as X1 changes.

In the multivariate context of (1.3), the conditional distributions are easily derived

to be

Y | (X1 = x1, X2) ∼ N

(
β1x1 + β2X2, 1−

r2 − 2ρrs+ s2

1− ρ2

)
, (1.6)

where

β1 =
r − ρs
1− ρ2

, and β2 =
s− ρr
1− ρ2

.

Like in the marginal response plot, the mean function

E(Y |X1 = x1, X2) = c(x1) + β2X2 (1.7)

is a linear function of X2 and the variance function has no X2 dependence for all

values of x1.

Thus the effect of X2 on Y can look very different depending if X1 is considered

fixed or ignored. For every unit increase in X2, Y increases s units when X1 is ignored,

but the increase is β2 units when X1 = x1 is fixed. When ρr > s > 0 or ρr < s < 0,

the effect when X1 is fixed will even be in the opposite direction of the effect when

X1 is ignored.

This hidden variable bias is a well-known issue, especially when X1 and X2 are

factors, where it is known as Simpson’s paradox (Simpson, 1951). In fact, the local

net-effect plot is a generalization of the interaction plot used with factors.

This approach has precedent and seems useful, but there are practical issues that

arise when X1 is continuous, for in practice a random sample from (Y,X2)|X1 = x1
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will not be accessible. Instead, apart from rounding, each x1 value will be unique

with probability one. One solution is to assume that the distribution of (Y,X2)|X1 is

similar for nearby values of X1, and so to group together points where X1 ∈ (ai, ai+1],

where the values of ai, i = 1, ..., k, create k slices on the recorded values of X1. How

many slices to choose, and how to choose the boundary points {ai} will depend on

the particular data set and the usual bias/precision tradeoffs.

This process of slicing X1 will still result in k distinct plots, of the k distributions

of (Y,X2)|X1 ∈ (ai, ai+1] for i = 1, . . . , k. To better show how the distribution changes

with X1, these plots can be overlapped, using different symbols for each slice. Fitting

a line to the points in each slice can help to visualize how the mean function changes

with X1. When the plots are not overlapped but instead placed side by side, this is

also called a conditioning plot, or co-plot (Cleveland, 1993).

Example 1.3 (Local net-effect plots)

Using the multivariate normal data from Example 1.2, s = 0.8 and β2 = −0.56, so the

conditional mean lines should differ depending if X1 is considered fixed or ignored.

Since ρr = 0.95× 0.9 = 0.86 > 0.8 = s, their slopes have opposite signs.

To demonstrate this, two net-effect plots for X2 have been drawn in Figure 1.5.

The points were sliced over X1 into 5 slices, using {−2, −1.2, −0.4, 0.4, 1.2, 2} as the

boundaries, and marginal response plots drawn, with the points in each slice using a

different symbol. Figure 1.5a shows the idealized conditional means, calculated for

each slice by setting X1 equal to the midpoint, and using the knowledge about the

multivariate normal, so each has slope β2 = s−ρr
1−ρ2 = −0.56. Figure 1.5b shows the

estimated conditional means for each slice, by fitting the data points in each slice

with least squares. While the slope of these estimated lines vary from the idealized

lines, both plots do demonstrate that the conditional means differ depending if X1

is ignored or not. When the slices on X1 are ignored, as in Figure 1.4, the slope is
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(b) With estimated conditional means.

Figure 1.5: Local net-effect plots from Example 1.3, with idealized and conditional
mean functions aded.

positive, but when they are taken into account, as they are here, the slope is negative.

Additionally, the slope of the conditional mean function is independent of X1, as it is

the same for all slices. �

1.4 Combining local net-effect plots

While local net-effect plots in this form have the advantage of generally showing

the distribution of (Y,X2)|X1, the result is a complex plot with several symbols and

multiple levels of information, so it may be difficult to interpret. In many contexts,

including the multivariate normal, the information in each slice is redundant, so the

various local net-effect plots can be combined into one simpler plot.

In general, the goal when combining local net-effect plots is to create a new plot

where the conditional distribution of the y-axis quantity, denoted by Y ∗, given the
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x-axis quantity, denoted by X∗, has no dependence on X1, that is,

Y ∗|(X∗, X1) ∼ Y ∗|X∗. (1.8)

A plot satisfying this condition, if available, will show something about the relation-

ship between Y and X2 because when (1.8) is true, the conditional relationship shown

on the plot will be the same for all fixed values of the other variables. There is no

information hidden in the plot that could be brought out by conditioning on X1. The

axes of the plot, X∗ and Y ∗, are allowed to depend on X1, but this dependence is

necessarily known in order to draw the plot, so the analysis can take this dependence

into account. To look for plots of this type, define

Y ∗ = Y − g(X1, X2), and X∗ = h(X1, X2) (1.9)

and look for functions g and h that satisfy (1.8).

In the multivariate normal context, g and h can be limited to linear functions of

the form

g(X1, X2) = aX1 + bX2

h(X1, X2) = cX1 + dX2

for appropriate constants a, b, c, and d because the relationships between X1, X2,

and Y are all linear. Under this constraint, the distribution of Y ∗|X∗will always be

normal with constant variance, so to investigate the distribution of Y ∗|(X∗, X1), only
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the mean function need be investigated. Then because

E(Y |X1, X2) = β1X1 + β2X2

E (Y − (aX1 + bX2)|X1, X2) = (β1 − a)X1 + (β2 − b)X2

E(Y ∗|cX1 + dX2, X1) = β2−b
d

(cX1 + dX2) +
(
β1 − a− c

(
β2−b
d

))
X1

E(Y ∗|X∗, X1) = β2−b
d
X∗ +

(
β1 − a− c

d
(β2 − b)

)
X1,

any combination where

β1 − a− c
d
(β2 − b) = 0 (1.10)

will not have any conditional dependence on X1.

There are infinitely many solutions to (1.10) and so infinitely many plots satisfy

(1.8). Interpretability will be a guide to which plots to consider. Two helpful consid-

erations will be the familiarity of the quantity on the x-axis and the choice of slope

in the plot.

1.5 Component-plus-residual plot

One interpretable option for the x-axis is simply X2, which is obtained when c = 0

and d = 1. Then by (1.10),

β1 − a = 0× (β2 − b) (1.11)

so a = β1 and b can be arbitrary. If the slope of the plot is restricted to be β2, which

is the slope of the mean function of the local net-effect plots for X2 in the multivariate
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normal context, then b = 0. The result is the plot of

{X2, Y − β1X1}. (1.12)

This type of plot is known as a component-plus-residual plot or a partial residual plot,

and has been explored in the literature extensively. First described by Ezekiel (1924),

it was later rediscovered by Larsen and McCleary (1972), who called it a partial

residual plot, and Wood (1973), who called it a component-plus-residual plot.

It is called a component-plus-residual plot because under the model Y = β1X1 +

β2X2 + ε,

Y − β1X1 = β2X2 + ε, (1.13)

so the plot of (1.12) can be written equivalently as

{X2, β2X2 + ε}, (1.14)

which has the X2 component of the response due to X2 plus the residuals on the

y-axis. This will prove especially useful in additive models, where

Y = f1(X1) + f2(X2) + ε, (1.15)

because if f1 can be estimated accurately, the form of f2 can be plotted even if f2

cannot be directly estimated.

These plots have been called partial residual plots because Y −f1(X1) is called the

partial residual for X2. However, this name most often refers to plots where f1 has

been fitted linearly. Since a linear fit will not always result in a consistent estimate

of f2(X2) + ε, the term partial residual plot will be reserved for this specific case and
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(a) Idealized local net-effect plots, with
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(b) Idealized component-plus-residual plot; the
contributions from X1 have been removed.

Figure 1.6: Graphical explanation of the component-plus-residual plot.

the term component-plus-residual plot will be used in general.

Graphically, the component-plus-residual plot combines the local net-effect plots

by subtracting the part X1 contributes to Y to form Y ∗, while leaving the x-axis

alone. Figure 1.6a shows the idealized local net-effect plot from Figure 1.5a, with

arrows marking the effect due to X1. In Figure 1.6b, these contributions have been

removed. As a result, the conditional mean functions for each slice now line up

perfectly, demonstrating that they no longer have X1 dependence.

In practice β1 is unknown and must be estimated. In the multivariate normal

context, the ordinary least squares fit of Y on X1 and X2 yields consistent estimates

β̂1 and β̂2 for β1 and β2. Cook (1993) explored this plot in more complex situations,

and showed that ordinary least squares consistently estimates β1 only when the de-

pendence of the response Y on the predictor X2 given the other predictors is linear or

when the relationship between the predictors is linear. That is, when either E(Y |X2)
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is a linear function of X2 or E(a′X|X) is linear in X for all a. Situations without this

type of dependence will be explored more fully in Section 2.1.

1.5.1 Residual plot

Plots similar to the component-plus-residual plot can be drawn if the slope of the new

plot is not restricted to be β2, and b is allowed to take on other values. All of these

plots will differ from the component-plus-residual plot only in the slope, as the only

difference is that a multiple of the x-axis (X2) is being subtracted from the y-axis.

The slope for these plots will be β2 − b.

One case of interest is b = β2, which plots

{X2, Y − (β1X1 + β2X2)}; (1.16)

the residuals from the full model against X2. As shown by Mansfield and Conerly

(1987), this plot is a detrended component-plus-residual plot, so except for the slope,

it contains the same information. However, Mansfield and Conerly (1987) show that

despite not showing the slope, it can make certain non-linearities more apparent by

increasing resolution in the plot by detrending.

1.5.2 Marginal-plus-residual plot

A second case that is apparently new and may be of interest is b = −ρβ1, which plots

{X2, Y − (β1(X1 − ρX2))}, (1.17)

where ρX2 = E(X1|X2), and shows the marginal relationship between Y and X2, but

with the residuals from the full model, so may be called a marginal-plus-residual plot.
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The slope given (1.3) is

β2 + β1ρ =
s− ρr
1− ρ2

+ ρ
r − ρs
1− ρ2

=
s− ρr + ρr − ρ2s

1− ρ2

= s,

just as in the marginal response plot. The difference is that contributions to the

response that are orthogonal to X2 have been removed, as X1−ρX2 is the part of X1

that is orthogonal to X2. Removing these contributions can make the marginal mean

relationship easier to see.

An alternate way of estimating this plot is to use the change in fitted values

between a model including only X2 and a model including both X1 and X2, as

E(Y |X1, X2)− E(Y |X2) = E(Y |X1, X2)− EX1|X2(E(Y |X1, X2))

= (β1X1 + β2X2)− EX1|X2(β1X1 + β2X2)

= (β1X1 + β2X2)− (β1E(X1|X2) + β2X2)

= β1(X1 − ρX2).

Example 1.4 (Component-plus-residual plots and related plots.)

Using the data from Example 1.2, idealized and estimated versions of the component-

plus-residual plot, the residual plot, and the marginal-plus-residual plot, are each

plotted in Figure 1.7. Using ordinary least squares, β̂1 = 1.59, β̂2 = −0.68, and the

sample correlation is ρ̂ = 0.94.

To demonstrate that the conditional X1 dependence really has been removed,

each of the plots have been sliced over X1, with the points in each slice drawn using

a different symbol, and a fitted line drawn to each slice. In the idealized plots, these
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(c) Idealized residual plot.
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(d) Estimated residual plot.
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(e) Idealized marginal-plus-res. plot.
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(f) Estimated marginal-plus-res. plot.

Figure 1.7: The three plots with X2 on the x-axis, using data from Example 1.4.
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lines exactly overlap because the slope is known. Although they are slightly different

in the estimated plots because of random variation, they do share the same conditional

mean.

While the conditional (vertical) dependence on X1 has been removed, there is still

dependence horizontally; that is, the x-axis (X2) still depends on X1. In all plots,

the circles are associated with smaller X2 values, and the diamonds with larger X2

values. Since points that have the same symbols have similar X1 values, this shows

that X2 and X1 are associated. Additionally, the fitted lines in the estimated plots

also demonstrate this dependence because each line only spans a specific section of

the range of X2. While this type of dependence is not required to be removed by

condition (1.8), Section 1.6 will show that added-variable plots additionally remove

this dependence.

The component-plus-residual plots have negative slopes, showing that the rela-

tionship between Y and X2 is negative when X1 is accounted for. In contrast, the

marginal-plus-residual plots have positive slope, showing that marginally, this rela-

tionship is positive, again showing the hidden variable bias contained in this data.

Finally, as all three plots are the same except for the slope, the residual plots are

detrended versions of the other two types of plots, and so allow certain details to be

seen more clearly. For example, in the estimated plots, the difference in the slopes

of the lines fitted for each slice is much easier to see in the residual plot than in the

other two. �

1.6 Added-variable plot

Another easily interpretable variable to put on the x-axis is the part of X2 that is

orthogonal to X1, or the new information in X2. In the multivariate normal context,

this is X2 − ρX1, so c = −ρ and d = 1. Because the x-axis is independent of X1,
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in these plots not only is the conditional distribution of the y-axis given the x-axis

independent of X1 as in (1.8), but the joint distribution will also be independent of

X1, that is,

(X∗, Y ∗)|X1 ∼ (X∗, Y ∗). (1.18)

To remove X1 dependence from these plots, a and b are chosen such that

β1 − a = ρ(β2 − b), (1.19)

which again has multiple solutions.

First, the slope is restricted to β2, so b = 0 and a = β1 + ρβ2 = r. The resulting

plot is of

{X2 − ρX1, Y − rX1}. (1.20)

Since rX1 = E(Y |X1) and ρX1 = E(X2|X1), this plot can be interpreted as showing

the new information in X2 that contributes to understanding the part of Y unex-

plained by X1, or more simply, how adding the variable X2 to the model improves the

fit. Accordingly, Cook and Weisberg (1982) called it an added-variable plot. This type

of plot first appeared in Cox (1958), and has been described by Mosteller and Tukey

(1977), Belsley et al. (1980), Draper and Smith (1981), Atkinson (1985), Weisberg

(1985), and others.

Graphically, the added-variable plot combines the local net-effect plots by cen-

tering around their conditional means, on both the x and the y axes, as seen in

Figure 1.8, using the data from Example 1.2. This works because the structure of

the distribution of (X2, Y )|X1 is identical for all values of X1, and varies only in the

mean. So an added-variable plot can combine these distributions by overlaying them
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(a) Idealized local net-effect plots, with arrows
showing how to center each slice around its
mean.
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(b) Idealized added-variable plot; the net-effect
plots with each slice centered.

Figure 1.8: Graphical explanation of the added-variable plot.

on top of each other after centering without losing any information. This provides

better information about the conditional distribution because the existing data is now

pooled together.

1.6.1 Residual plot

As in the component-plus-residual plot, allowing different values for the slope results

in additional useful plots. First, the plot can be detrended, as Cook and Weisberg

(1991) suggest, to have zero slope by using a = β1 and b = β2, resulting in the plot of

{X2 − ρX1, Y − (β1X1 + β2X2)}, (1.21)

which puts the residuals of the full model on the y-axis.
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1.6.2 General added-variable plot

Another useful plot is a general added-variable plot. Rescaling the x-axis by multi-

plying by β2, the slope becomes 1, and c = −β2ρ and d = β2, so the plot is

{β2(X2 − ρX1), Y − rX1} (1.22)

Then the x-axis is equal to the change in the fitted values between the full model and

the model only including X1:

E(Y |X1, X2)− E(Y |X1) = (β1X1 + β2X2)− rX1

= (β1 − r)X1 + β2X2

= −ρβ2X1 + β2X2

= β2(X2 − ρX1).

This plot has been discussed by Cook and Weisberg (1991), and is especially useful

for seeing the effect of adding more than one variable at once, as it results in a

two-dimensional plot even when q > 1.

Example 1.5

Using the data from Example 1.2, idealized and estimated versions of the added-

variable plot, the residual plot, and the general added-variable plot are plotted in

Figure 1.9. Using ordinary least squares, r̂ = 0.94; the other estimated values are as

in Example 1.4.

To demonstrate that the X1 dependence really has been removed, each of the plots

have been sliced over X1, with the points in each slice drawn using a different symbol,

and a fitted line drawn to each slice. In the idealized plots, these lines exactly overlap

because the slope is known. Although they are slightly different in the estimated plots
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(c) Idealized residual plot.
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Figure 1.9: The three types of added-variable plots, using data from Example 1.5.
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because of random variation, they do share the same conditional mean. In contrast to

the component-plus-residual plots, in addition to removing the conditional (vertical)

dependence on X1, these added-variable plots remove horizontal dependence; that is,

the x-axis no longer depends on X1. In all plots, the points with similar symbols

are scattered evenly from left to right. Since points that have the same symbols

have similar X1 values, this shows that the x-axis is not associated with X1. The

fitted lines in the estimated plots also demonstrate this independence because each

line spans the entire range of X2. This horizontal independence is not required by

condition (1.8), but is an additional feature of the added-variable plot.

In the estimated versions of the plots the points for each X1 slice are also exactly

overlaid on each other, as the fitted lines for each slice are similar both vertically

and horizontally. It is possible to overlay these points without losing information

about the distribution because the distribution for each slice is identical except for

its location.

Finally, the only difference between the three plots is in the slopes. The standard

added-variable plot has a slope of β2 = −0.56; meaning that when X2 is larger than

X1 would predict, Y is less than X1 would predict. The slope of the other plots

is defined by their construction; the residual plot has slope zero, and the general

added-variable plot has slope one. �

1.7 ARES plot

So far, the plots discussed in this section have been simple two-dimensional plots

exploring what a given model says about how a predictor is related to the response.

The ARES plot, developed by Cook and Weisberg (1989), is different in two ways;

first, instead of showing how a predictor is related to the response, it attempts to

show the general importance of a predictor in the given model, and secondly, it does
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so using an animated plot.

Consider the linear model

Y = β1X1 + β2X2 + ε. (1.23)

The ARES plot shows how the plot of the fitted values against the residuals changes

as the predictor X2 is added. The idea is to start with the plot for the model Y =

β1X1 + ε, and smoothly change to the plot for the model Y = β1X1 + β2X2 + ε. By

doing this, one can see both how the fit of the model improves when X2 is added to

the model.

Because this plot only uses fitted values and residuals, changing the parameteri-

zation of the predictors will not change the plot. So let us consider only adding the

part of X2 that is orthogonal to X1, normalized to unit length:

X̃2 = Q1X2/||Q1X2||,

so the model is

Y = Zβ∗ + ε = X1β
∗
1 + X̃2β

∗
2 + ε. (1.24)

The smooth transition is obtained by calculating the fitted values and residuals for

0 ≤ λ ≤ 1,

β̂λ =

(
Z ′Z +

1− λ
λ

bb′
)−1

Z ′Y (1.25)

where b is a vector of length p, of all zeros except for a single 1 corresponding to X2.

Then because of the orthogonality of X1 and X̃2, the fitted values Ŷ (λ) = Zβ̂λ and

residuals e(λ) = Y − Ŷ (λ) are simply

Ŷ (λ) = Ŷ1 + λ(Ŷ − Ŷ1) (1.26)
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and

e(λ) = ey|1 − λ(Ŷ − Ŷ1), (1.27)

where Ŷ1 and ey|1 are the fitted values and residuals from the fit of Y on only X1.

Example 1.6

A sample of size 100 has been taken from the multivariate normal of (1.3), with

r = 0.9, s = 0.8 and ρ = 0.95. Figure 1.10 shows six frames of an ARES plot for this

data, as λ moves from 0 to 1. The residuals reduce significantly as λ increases, so X2

is having an effect in the model. Also, the two points have the largest residuals when

λ = 0 have been marked with A and B. As λ increases and X2 is gradually added to

the model, both the fitted values and the residuals for these points change, resulting

in a better fit. For point A, the initial residual is positive, and as X2 is added, the

fitted value becomes larger, making the residual smaller. The opposite happens for

point B. �

1.7.1 Connection to added-variable plot

The ARES plot is connected to the general added-variable plot and the detrended

general added-variable plot; the y axis of the ARES plot goes between the residuals

from the full model and the residuals from the model without X2, which are the

y-axes for these two added-variable plots. Additionally, the x-axis for the general

added-variable plot is the change in fitted values between these two models, which is

the distance that the points travel in the x-direction in the ARES plot.

Example 1.7

Using the data from Example 1.6, Figure 1.11a shows the path of the points in

the ARES plot. The end of the paths farther from zero are the residuals from the
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Figure 1.10: ARES plots for multivariate normal data, when adding X2.
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Figure 1.11: Connection between the ARES plot and the added-variable plot.
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submodel, and are equal to the y-values of the general added-variable plot of Fig-

ure 1.11b. The end of the paths closer to zero are the residuals from the full model,

and are equal to the y-values in the detrended general added-variable plot of Fig-

ure 1.11c. The length of each line, which is the distance each point in the ARES plot

travels, is proportional to its horizontal shift, which is equal to the x-axis in both

added-variable plots. �

1.7.2 Derivation of ARES plot

The formulas for the ARES plot can be derived by gradually replacing the part

of the desired variable orthogonal to the other predictors with random noise that

is orthogonal to all predictors and the response. Only this part need be replaced

because whatever can be explained by the remainder of the variable is also explained

by the other variables, so when it is fully replaced, the chosen variable has no added

predictive power.

Again, let the predictor of interest be X2, and let the other predictors be X1, and

let X̃2 = Q1X2 be the part of X2 that is orthogonal to X1. Then let E be a vector

such that E ′E = X̃2
′
X̃2 and E (X1, X̃2, Y, e), where e = QXY . Without loss of

generality, assume all vectors have mean zero.

To gradually remove X̃2 from the model, let

X∗2 = w1X̃2 + w2E,

where w2
1 + w2

2 = 1 so that X∗2
′X∗2 = X̃2

′
X̃2. Projecting Y onto X∗ = (X1, X

∗
2 ), by
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orthogonality

PX∗Y = PX1Y + PX∗2Y

= PX1Y +X∗2 (X∗2
′X∗2 )−1X∗2

′Y

= PX1Y + (w1X̃2 + w2E)(X̃2
′
X̃2)−1(w1X̃2 + w2E)′Y

= PX1Y + w2
1X̃2(X̃2

′
X̃2)−1X̃2

′
Y + w1w2E(X̃2

′
X̃2)−1X̃2

′
Y

= PX1Y + w2
1PX̃2

Y + w1w2E(X̃2
′
X̃2)−1X̃2

′
Y.

The final term is in the direction of E, which is assumed to be orthogonal to Y , so it

is simply adding noise to the prediction. Removing it,

Ŷ ∗ = PX1Y + w2
1PX̃2

Y,

where the hat notation is used because this is no longer a projection, but only an

estimate of Y . Letting λ = w2
1, this is the result in (2.3) of Cook and Weisberg

(1989), as

Ŷ (λ) = PX1Y + λPX̃2
Y

= PX1Y + λ(PXY − PX1Y )

= Ŷ1 + λ(Ŷ − Ŷ1).

The coefficient vector β̂λ for a given value of λ = w2
1 can be then derived to be

β̂λ =

(
Z ′Z +

1− λ
λ

bb′
)
Z ′Y,
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where Z =
(
X1 X̃2

)
. By orthogonality of X1 and X̃2,

Zβ̂∗ = Ŷ ∗

= PX1Y + λPX̃2
Y

= X1(X ′1X1)−1X ′1Y + λX̃2(X̃2
′
X̃2)−1X̃2

′
Y

=
(
X1 X̃2

)(X ′1X1)−1 0

0 λ(X̃2
′
X̃2)−1

(X1 X̃2

)′
Y

=
(
X1 X̃2

)X ′1X1 0

0
(
1 + 1−λ

λ

)
X̃2
′
X̃2

−1 (
X1 X̃2

)′
Y

= Z

(
Z ′Z +

1− λ
λ

bb′
)
Z ′Y

where b is a vector of zeros except for a single 1 corresponding to X̃2.

The ARES plot shows the residuals against the fitted values, dynamically changing

λ between 0 and 1. When λ is 0, the fit is totally without X2 and when λ is 1, the fit

is with all variables.

It may also be of interest to note how the R2 value changes as λ changes. Writing

R2(λ) = ||Ŷ ∗||2/||Y ||2, the numerator can be written as

||Ŷ ∗||2 = ||PX1Y + λPX̃2
Y ||2

= ||PX1Y ||2 + λ2||PX̃2
Y ||2

= ||PX1Y ||2 + λ2
(
||PZY ||2 − ||PX1Y ||2

)
so dividing by ||Y ||2,

R2(λ) = R2
1 + λ2(R2 −R2

1)

so the change in R2 is linear in λ2.
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If instead the R2 value is calculated using the projection onto X∗, so that it

includes the term in the E direction, there is an added term in the numerator of

||w1w2E(X̃2
′
X̃2)−1X̃2

′
Y ||2 = w2

1w
2
2

(
Y ′X̃2(X̃2

′
X̃2)−1E ′E(X̃2

′
X̃2)−1X̃2

′
Y
)

= λ(1− λ)
(
Y ′X̃2(X̃2

′
X̃2)−1X̃2

′
Y
)

= (λ− λ2)||PX̃2
Y ||2

so the R2 for a given value of λ is instead

R2(λ)∗ = R2
1 + λ2(R2 −R2

1) + (λ− λ2)(R2 −R2
1)

= R2
1 + λ(R2 −R2

1)

and so is linear in λ, instead of λ2.

1.7.3 Derivation without orthogonality

It is also of interest to see how this changes when the entire variable is replaced with

random noise, not just the orthogonal part. Let X∗2 = w1X2 + w2E. Now projecting

Y onto X∗ = (X1, X
∗
2 ) is more complex because X1 and X∗2 are not necessarily

orthogonal. Projecting Y onto X∗ by using the orthogonal basis of X1 and QX1X
∗
2 ,

PX∗Y = PX1Y + PQX1
X∗2
Y.

When w1 = 1,

PXY = PX1Y + PQX1
X2Y,
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so only the second term will be investigated, with the goal of putting PX∗Y in terms

of PXY . First

PQX1
X∗2
Y =

(QX1X
∗
2 )(QX1X

∗
2 )′Y

||QX1X
∗
2 ||2

=
(w1QX1X2 + w2E) (w1QX1X2 + w2E)′ Y

||QX1X
∗
2 ||2

=
w2

1(QX1X2)(QX1X2)′Y + w1w2E(QX1X
′
2Y )

||QX1X
∗
2 ||2

.

Additionally, as

QX1X
∗
2 = X∗2 − PX1X

∗
2

= w1X1 + w2E − PX1(w1X1 + w2E)

= w1X1 + w2E − PX1(w1X1)

= w1QX1X2 + w2E

the denominator can be written as

||QX1X
∗
2 ||2 = ||w1QX1X2 + w2E||2

= w2
1||QX1X2||2 + w2

2||E||2

= ||QX1X2||2
(
w2

1 + w2
2

||X2||2

||QX1X2||2

)
= ||QX1X2||2

(
w2

1 + w2
2

||X2||2

||X2||2 − ||PX1X2||2

)
= ||QX1X2||2

(
λ+ (1− λ)

(
1

1−R2
X

))

where R2
X = ||PX1X2||2/||X2||2.
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Then removing the term in the E direction from PQX1
X∗2
Y as it is known to be

orthogonal to Y ,

Ŷ ∗ = PX1Y +
w2

1(QX1X2)(QX1X2)′Y

||QX1X2||2
(
w2

1 + w2
2

(
1

1−R2
X

))
= PX1Y +

λ

λ+ (1− λ)
(

1
1−R2

X

)PQX1
X2Y.

= Ŷ1 + g(λ)
(
Ŷ − Ŷ1

)
where

g(λ) =
λ

λ+ (1− λ)
(

1
1−R2

X

) .
For λ = 0, it is as if X2 is not in the model at all and for λ = 1, it as if X2 is fully

included. However, the change is not linear in λ but is instead curved. The change

in R2 is nonlinear in the same way (except squared),

R2(λ)∗ = R2
1 + (g(λ))2 (R2 −R2

1

)
.

So even if fully removing two variables results in the same change in R2, adding the

same amount of noise to each may result in different changes in R2.

Example 1.8

For this example, consider three predictors and a single response that are multivariate

normal with covariance matrix

Cov


y

x1

x2

x3

 =


1.00 0.40 0.20 0.40

0.40 1.00 0.00 0.00

0.20 0.00 1.00 0.90

0.40 0.00 0.90 1.00

 .
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(b) When removing the entire variable.

Figure 1.12: The change in R2 when removing each of the three variables of Exam-
ple 1.8 gradually.

The changes in R2 as λ changes were calculated directly from this covariance matrix,

and plotted in Figure 1.12, both when only the orthogonal part of the variable was

replaced with noise and when the entire variable was replaced with noise.

The variable x1 is completely orthogonal to x2 and x3, so the change for x1 will be

linear in λ2 using both methods. However, x2 and x3 are not orthogonal, so there is

instead a non-linear relationship, as shown in Figure 1.12. Additionally, the values in

the covariance matrix have been chosen so that when only part of the entire variable

is removed, the change in R2 for x2 is larger than the change for x1, even though

when the entire variable is removed, the change for x1 is larger. That is, the lines for

x1 and x2 cross. �
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1.8 Marginal model checking plot

To model the general regression context, where the object of study is the conditional

distribution of a response Y given the value of predictors X, let

fT (y|x)

represent the true, but unknown, conditional density of Y |X, and let

f̂M(y|x)

be the estimate of fT from the sample data when assuming a model M is true. If the

method of finding this estimate is Fisher-consistent, let

f̂M(y|x)→ fM(y|x).

Then if M is true, then the estimated density approaches the true density as the

sample size increases, and fM = fT .

One purpose of plots in this situation is diagnostic, with the goal of discovering

if M = T . There are many different kinds of plots that do this, including residual

plots, quantile plots, and many others. Which to use often depends on the type

of model. One particular method, the marginal model checking plot, is a general

method for testing if M = T . It will be discussed in detail because it can also aid

in understanding the relationship between a given predictor X2 and the response Y

as estimated under model M , and whether that estimated relationship matches the

data.

This plot was developed by Cook and Weisberg (1997) with the goal of providing

plots that check the adequacy of a model M by comparing the estimated distribution

under the assumption that M is true, f̂M(y|x), with the true but unknown distri-

bution, fT (y|x). If the distributions are similar, the model can then be declared

adequate. Pardoe (2001) explored Bayesian methods of formally testing whether or

not the distributions are similar.
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A straightforward comparison of the conditional distributions f̂M(y|x) and fT (y|x)

is difficult because they are multivariate functions that depend on p + 1 variables, p

from the p predictors in x, and one from the response y. The comparison is greatly

simplified by reducing the distributions to univariate functions so that they can easily

be compared on two-dimensional plots. As Cook and Weisberg (1997) show, for two

conditional distributions F (y|x) and G(y|x), F (y|x) = G(y|x) for all x in the sample

space Ωx if and only if F (y|a′x) = G(y|a′x) for all values of a′x ∈ {a′x|a ∈ Rp, ||a|| =

1, x ∈ Ωx}. So instead of comparing the multivariate functions f̂M(y|x) and fT (y|x),

the bivariate functions f̂M(y|a′x) and fT (y|a′x) can be compared over several values

of a′x. Checking more combinations of a′x provides more support for the model, as

the model holds only if all marginal models are true. Cook and Weisberg (1997)

suggest several choices for a, including setting a′x equal to each predictor in turn.

This reduces the distributions to functions that depend on two variables; the

response y and a linear combination of the predictors a′x. To visualize in two dimen-

sional plots, certain functions of these distributions must be chosen to be compared.

Usually the mean, E(y|a′x), and the variance, Var(y|a′x), are chosen, although quan-

tile regression (see Koenker, 2005) provides the possibility of comparing the distribu-

tions in other ways. For fT , these functions can be estimated by smoothing plots of

{a′x, y}, as these plot shows the conditional distributions of y|a′x.

For f̂M , applying the rules of iterated expectations also leads to smoothing, as will

be demonstrated in Section 1.8.1. Smoothing is now done on plots of {a′x, ŷ}, where

ŷ refers to the fitted values of f̂M . Functions of f̂M may also be computed directly

from the model if the relationship between the predictors can be well understood.

A marginal model plot is created by plotting {a′x, y} and adding lines for the

estimated functions of f̂M and fT ; E(y|x)±SD(y|x) is a usual choice. The adequacy

of the model M is supported if the lines describing f̂M and fT are similar. Again,

checking more values of a′x provides more support for the model, as the model holds
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only if all marginal models are true.

1.8.1 With a single predictor on the x-axis

Choosing a′x equal to the predictor X2 is also useful as an explanatory plot. Since

this is a marginal response plot of {X2, Y } with the desired functions of f̂M(Y |X2)

and fT (Y |X2) added, it shows both the true relationship between X2 and Y when

ignoring the other variables, and how this relationship is estimated by the model M .

The estimated true mean of Y |X2, ÊT (Y |X2), can be found by smoothing the plot

of {X2, Y }, and the estimated true variance by smoothing

{
X2,

(
Y − ÊT (Y |X2)

)2
}

.

For the estimated mean under model M , the rule of iterated expectations with

estimated expectations is

ÊM(Y |X2) = Ê
(
ÊM(Y |X1, X2)|X2

)
≈ Ê

(
Ŷ |X2

)
(1.28)

where ÊM(Y |X1, X2) are the fitted values from the fit of M , or Ŷ . In most cases, it is

simplest to estimate these values by smoothing. The goal is to estimate E
(
Ŷ |X2

)
by

finding the mean value of Ŷ over the possible values of X1 for a fixed X2. Although

with continuous data there is at most one value of X1 for a fixed X2, by assuming

a smooth relationship between X1 and X2, points with X2 near the fixed X2 can be

used to help in the estimation by using a non-parametric smoother. So the estimated

mean under model M , ÊM(Y |X2), is found by smoothing
{
X2, Ŷ

}
.

If VarM(Y |X) = σ2 is a constant, then for the estimated variance under model
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M , the rule of iterated expectation for variance using estimated expectations yields

V̂arM(Y |X2) = V̂ar
(
ÊM(Y |X1, X2)|X2

)
+ Ê

(
V̂arM(Y |X1, X2)|X2

)
≈ V̂ar

(
Ŷ |X2

)
+ Ê(σ̂2|X2)

= V̂ar
(
Ŷ |X2

)
+ σ̂2, (1.29)

where V̂ar
(
Ŷ |X2

)
can be estimated by smoothing

{
X2,

(
Ŷ − ÊM (Y |X2)

)2
}

.

When the relationship between X1 and X2 can be easily estimated, the conditional

mean and variance under model M can also be directly estimated. For example, in the

context of the multivariate normal of (1.3), OLS regression can be used to estimate

Ê(X1|X2) = X̂1|2 and V̂ar(X1|X2) = σ̂2
1|2. Under the full model, let the estimated

mean ÊM(Y |X1, X2) be β̂0+β̂1X1+β̂2X2 and the estimated variance V̂arM(Y |X1, X2)

be σ̂2. Then using estimated expectations,

ÊM(Y |X2) = Ê
(
ÊM(Y |X1, X2)|X2

)
= Ê(β̂0 + β̂1X1 + β̂2X2|X2)

= β̂0 + β̂1Ê(X1|X2) + β̂2X2

= β̂0 + β̂1X̂1|2 + β̂2X2. (1.30)

And by the rule of iterated expectations for variance,

V̂arM(Y |X2) = V̂ar
(
ÊM(Y |X1, X2)|X2

)
+ Ê

(
V̂arM(Y |X1, X2)|X2

)
= V̂ar(β̂0 + β̂1X1 + β̂2X2|X2) + σ̂2

= β̂1

2
V̂ar(X1|X2) + σ̂2

= β̂1

2
σ̂2

1|2 + σ̂2. (1.31)
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(Ŷ
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Figure 1.13: Steps in using the smoothing method to find the model-based conditional
mean and variance to build a marginal model checking plot, in Example 1.9.

Example 1.9 (Marginal model checking plot.)

An ordinary least squares model M was fit to the data of Example 1.2, and the

conditional model mean and variance were estimated both by smoothing and by

using a linear model. These estimates were plotted on Figure 1.14 over a scatterplot

of {X2, Y }, the marginal response plot of Section 1.2. Remember that this plot shows

the relationship of Y and X2 without taking X1 into account, so it may look quite

different from the component-plus-residual plot or the added-variable plot, but instead

has a similar form to the marginal-plus-residual plot.

The necessary plots and smooths for the smoothing method for f̂M are shown in

Figure 1.13. These smooths were used to find the expected value and the standard

deviation as a function of X2, as shown by the dashed line in Figure 1.14.

To perform the direct estimation using a linear model, β̂0, β̂1, β̂1, and σ̂2 were

estimated by a least squares fit of Y on X1 and X2. Additionally, X̂1|2 and σ̂2
1|2 were
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estimated from the least squares fit of X2 on X1. For each value of X2, (1.30) yields

ÊM(Y |X2) = β̂0 + β̂1X̂1|2 + β̂2X2

= −0.01 + 1.59(−0.03 + 0.93X2) + 1.59X2

and (1.31) yields

V̂arM(Y |X2) = β̂1

2
σ̂2

1|2 + σ̂2

= 1.592 · 0.332 + 0.452. �

The mean and standard deviation are shown by the thinner solid line in Figure 1.14.

Finally, estimates of ET (Y |X2) and VarT (Y |X2) were found by smoothing plots

of {X2, Y } and {X2, (Y − ÊT (Y |X2))2}, and the mean and standard deviation shown

on Figure 1.14 using the thick line. Both of the model-based estimates match up

well with this model-free estimate. Although there is some disagreement at the edge

of the plot, this is probably due to edge effects in the particular smoother that was

used. This agreement provides some evidence that the model is a good fit. To be more

certain, the process would have to be repeated for several different linear combinations

of X.
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Figure 1.14: Marginal model checking plot, from Example 1.9.



1.9. Example: Island deforestation 41

1.9 Example: Island deforestation

When Europeans first reached the islands of the South Pacific, some islands had

already been deforested, and the societies that had previously existed on the islands

had collapsed. On other islands, the original trees had survived or been replaced

with introduced species and the societies had survived. Rolett and Diamond (2004)

studied the environmental conditions of 81 sites on 69 islands in the South Pacific to

determine if there were environmental explanations for these differences, as opposed

to differences in the societies themselves.

The predictors they considered were rainfall, latitude, island age, amount of vol-

canic ash fallout, called tephra, dust fallout, elevation, area, and distance from the

nearest island with at least 25% of the area of the current island, called isolation.

They additionally studied the terrain type, specifically, how much of the island was

covered in makatea, a terrain in which plants and trees have difficulty growing. Since

only a few islands had any makatea, the data will be analyzed without that pre-

dictor. Any data with missing values for any of these eight predictors will also be

removed, leaving only 75 sites. Additionally, rainfall, elevation, area, and isolation

were log-transformed.

Two response variables were studied, how much of the island was deforested, called

deforestation, how much of the island had non-native species that had replaced the

original ones, called replacement. Both were measured on a five point scale that

they treated as a continuous ordinal scale. Only the deforestation response will be

considered here. Data was provided by the authors at http://www.nature.com/

nature/journal/v431/n7007/suppinfo/nature02801.html, last accessed on July

1, 2008.

The main goal of Rolett and Diamond was to determine which of these predictors

affected deforestation, what the possible effects looked like, and which of the predictors
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Figure 1.15: Marginal response plots of the eight predictors in the island deforestation
data set.

were most important. This example will revisit these questions using the methods

developed so far, using linear models to fit the data. Later chapters will revisit this

example with other modeling methods and algorithms, which may prove to be more

appropriate.

1.9.1 Marginal response plots

Figure 1.15 shows marginal response plots of the eight predictors, with linear fits

added. Because the response is only integers, the y-axis has been jittered to separate

points and make the patterns clearer. Additionally, the x-axis has been jittered on

the Age and Tephra plots. To complement these plots, the coefficient and p-value of

the univariate regressions are shown in Table 1.1.

Marginally, all eight variables are statistically significant with p-values less than

0.02, except for isolation. As the p-values are mostly very small, it is difficult to know

from the table what the relative effects of each are. The response plots help make
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Estimate p-value
logRainfall −1.860 0.000

Latitude 0.067 0.000
Age 0.533 0.011

Tephra −0.471 0.000
Dust −0.002 0.017

logElevation −0.792 0.000
logArea −0.335 0.000

logIsolation25 0.266 0.078

Table 1.1: Univariate regression coefficients of the island deforestation data.

these effects clearer, for instance, that rainfall seems to have a stronger effect than

dust.

From both the plots and the regression, more rainfall, smaller latitudes, younger

ages, more tephra, more dust, higher elevation, and more area are associated with less

deforestation. According to Rolett and Diamond, these environmental explanations

are all sensible.

However, all of these plots and regressions are all done marginally, and do not

take into account any possible correlation between the predictors which might cause

the conditional effect to be different than the marginal effect.

1.9.2 Net-effect plots

For instance, logRainfall and Latitude are correlated (ρ = −0.42), as shown in the

scatterplot in Figure 1.16. Additionally, this plot displays the Deforestation for each

site by sizing each point proportionally, so large points have higher deforestation

values. The points get larger in the upper-left corner, and smaller in the lower-right

corner, but it is unclear if this due to the change in Latitude, the change in Rainfall,

or some of both.

Figure 1.17 shows these relationships using net-effect plots. Deforestation is plot-
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Figure 1.16: Scatterplot of logRainfall and Latitude, with point diameter proportional
to Deforestation.

D
ef

or
es

ta
ti

on

2.6 3.0 3.4

2.
0

3.
0

4.
0

5.
0

logRainfall

(a) Deforestation against
logRainfall, sliced by
Latitude.

D
ef

or
es

ta
ti

on

10 20 30 40

2.
0

3.
0

4.
0

5.
0

Latitude

(b) Deforestation against
Latitude, sliced by
logRainfall.

D
ef

or
es

ta
ti

on

5 10 20

2.
0

3.
0

4.
0

5.
0

Latitude

(c) Deforestation against
Latitude, sliced by
logRainfall, without the
two sites with highest
Latitude values.

Figure 1.17: Sliced net-effect plots of Deforestation against logRainfall and Latitude.
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ted against one of logRainfall and Latitude, with slices created using the other. Lines

are shown for each slice, fit using least squares. These plots show that there is some

effect from both predictors. In Figure 1.17a, the lines show the effect of logRainfall

for sites with similar latitudes; the effect of logRainfall is negative, regardless of lati-

tude. Conversely, in Figure 1.17b, the lines show the effect of Latitude for sites with

similar rainfall levels. However, the effect of latitude does not seem to be the same

for all rainfall levels. If so, this would be evidence of an interaction between rainfall

and latitude, as the effect of latitude would be different for different rainfalls. But

in fact, only the two sites with the largest latitude values are causing this effect. In

Figure 1.17c these sites have been removed, and there is no longer visible evidence of

the interaction. However, this doesn’t necessarily mean that these sites should still be

considered outliers after all eight predictors are accounted for; perhaps one or more

of the other predictors explain the large difference seen here.

This example also illustrates how difficult it would be to view net-effect plots

for each predictor by accounting for every other predictor. The above process could

be repeated for all pairs of predictors, but that would result in a prohibitively large

number of plots. Additionally, it would not account for any possible interactions in

the other predictors. Cook (1995) states that one option is to slice over a function

of all the other predictors, but in this case, it is unclear what function might be

appropriate. This example demonstrates the need for global net-effect plots, such

as the component-plus-residual plot or the added-variable plot, which gather the

information from many plots together in appropriate ways.

1.9.3 Component-plus-residual plot

To build the component-plus-residual plots, the necessary coefficients must first be

obtained by performing a multiple regression. These are shown in Table 1.2, along

with the corresponding p-values. Some of these coefficients are different than the
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marginal coefficients; for example, the coefficient for logArea changes from −0.33 to

−0.088 and is now not statistically significant.

Estimate Pr(>|t|)
logRainfall −1.222 0.000

Latitude 0.038 0.000
Age 0.229 0.116

Tephra −0.092 0.277
Dust 0.000 0.686

logElevation −0.394 0.056
logArea −0.088 0.337

logIsolation25 0.231 0.014

Table 1.2: Multivariate regression coefficients of the island deforestation data.

First, the two predictors investigated earlier, logRainfall and Latitude, will be

revisited. Component-plus-residual plots for these variables are shown in Figure 1.18a

and Figure 1.18b. The effect seen in the net-effect plots when only slicing for one

variable holds up here after all the other variables are accounted for; an increase in

logRainfall or a decrease in Latitude when all other variables are held constant is

associated with a smaller Deforestation score.

Figure 1.18d and Figure 1.18e show these same plots, except sliced over the other

variable. The dependence on the other variable has been properly removed, except

again in the Latitude plot, because of the points with high Latitude. Figure 1.18c

and Figure 1.18f show these plots recreated from the model without these two sites,

and again the dependence has been properly removed.

Figure 1.19a shows the component-plus-residual plots for all eight variables, cal-

culated from the full model. These show how each predictor affects the response, and

give a sense of the size of the effect. As in the marginal plots, the points in the Age

and Tephra plots have been jittered horizontally as those variables are discrete.

Researchers occasionally try to get a sense of the size of the effect of each predictor
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Figure 1.18: Component-plus-residual plots for Latitude and logRainfall, using the
coefficients from the multiple linear regression.
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(a) With default x-axis scaling.
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(b) With standardized x-axis scaling.

Figure 1.19: Component-plus-residual plots for all eight variables in the islands de-
forestation data set, using linear fits.
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by standardizing the predictors to have equal standard deviations and then fitting the

data; in this way the units of the coefficients are more directly comparable; for each

variable the coefficient is the change in the response when that variable is increased

by one standard deviation but all other variables are held constant. However, as

Weisberg (1985) explains, these coefficients then depend on the standard deviation

of each variable, so different experiments will result in different values if the experi-

ments test the variables over different ranges. This occurs even if the unstandardized

coefficients are identical. Nevertheless, this type of comparison can be achieved by

viewing component-plus-residual plots where the horizontal axes are standardized to

each include the same range of standard deviations, as in Figure 1.19b. The slopes

of the fitted lines in these plots are directly comparable in the same way that stan-

dardized coefficients are. However, an advantage of using this method is that the

standardization is hidden; the scale on the x-axis of each plot is still on the scale of

the original predictor, it simply extends farther than would be necessary in order to

make the slopes comparable. Comparing the coefficients in this way instead of stan-

dardizing them also makes comparisons between experiments clearer, as the x-axes

of the plots from two different experiments can be directly compared.

Finally, it should be remembered that all these plots rely on the assumption that

each of the predictors does enter the model linearly. As will be seen in Section 2.1,

when this assumption does not hold, these plots do not properly show the component

due to each variable and so do not properly remove the dependence on the other

variables.

1.9.4 Added-variable plots

Figure 1.20a shows added-variable plots for each of the eight predictors. Unlike the

component-plus-residual plot, these plots do not necessarily show the practical signif-

icance of each predictor, but the statistical significance. That is, the plot shows how
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much of the information left unexplained by the other predictor can be explained by

this particular predictor.

In these particular plots, lines have been drawn to show both the fitted slope and

a 95% confidence interval for the slope. Thus a nonsignificant slope at the 5% level

corresponds to bounds that include the line with slope 0, a helpful visual clue to

which predictors are significant and which are not.

These plots can also help identify points that are either outliers or that have high

leverage, after accounting for all the other variables. For example, in the logRainfall

plot, there is one site that gets substantially more rainfall than might be predicted

from the other variables; this point has a higher leverage and is more influential in

the fit. Additionally, many of the plots show an outlier with substantially lower

deforestation. This outlier is one of the sites with high latitude that was discussed

earlier when investigating only logRainfall and Latitude.

The general added-variable plots are shown in Figure 1.20b. These instead have

the change in fitted values when the given predictor is removed from the model on

the x-axis. The points in these plots are all centered around a line with a slope of

one, which has been added to each plot. These plots can also help identify any points

that are outliers or have more influence, but since the slopes are all the same, it can

be hard to use them to visually compare the effect of the variables.

Standardizing the x-axis, as in Figure 1.20c, can aid in this. Now the horizontal

spread of the plots, which show how much the fit changed when each predictor was

added, can be compared. The plots for logRainfall and Latitude have the largest

spreads, and so in this sense, are the most important. Conversely, Dust has very little

spread, so is much less important.
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(a) Standard added-variable plots, with default x-axis.
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(b) General added-variable plots, with different x-axis scales.
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(c) General added-variable plots, with a common x-axis scale.

Figure 1.20: Added-variable plots for all eight predictors in the island deforestation
data set, using linear fits.
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Figure 1.21: The marginal response, marginal-plus-residual, component-plus-residual,
and standard and general added-variable plots for Tephra.

1.9.5 Comparing various plots

To compare these plots with each other, five plots for Tephra, including the marginal-

plus-residual plot of Section 1.5.2, are shown in Figure 1.21. In this way, the marginal

and conditional effects of a given predictor can be compared. Marginally, an increase

in Tephra is associated with a decrease in Deforestation, but as most of this decrease

can be accounted for the other variables, the conditional relationship is much weaker.

This comparison can also made by plotting the component due to each of the other

variables, that is, β̂kXk, where β̂k is the coefficient and Xk is the variable, against

Tephra, as in Figure 1.22. This shows how the contribution to Deforestation from

each of the other predictors changes as Tephra changes. When Tephra is uncorrelated

with a predictor, the contribution will be the same across the range of Tephra, as with

logIsolation (ρ = −0.02). But when it is correlated, this contribution may change,

as with logRainfall (ρ = 0.49). Thus the marginal plot of Figure 1.22a shows that

Tephra is marginally related to Deforestation. But the component plots show that a

large part of this relationship is due to logRainfall, and that an increase in Tephra

is associated with an increase in logRainfall, which is associated with the decrease in

Deforestation.
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Tephra also contains the residuals, so is a component-plus-residual plot. Plots
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Figure 1.22: Marginal plot for Tephra, compared with component plots for each other
variable plotted against Tephra.





Chapter 2

Additive models

When the relationship between the predictors and the response, or between the predic-

tors themselves, are not linear, the plots explored in the multivariate normal context

must be adapted. Consider an additive model with two predictors, X1 and X2, where

one, X2, is of interest, a response Y , and independent normal errors, so the true model

can be expressed as

Y = f1(X1) + f2(X2) + ε, (2.1)

where ε ∼ N(0, 1). In this model f1 and f2 may be nonlinear, as well as the rela-

tionship between X1 and X2, or between f1(X1) and f2(X2). Several nonparametric

algorithms have been proposed to fit models like this, including backfitting and pe-

nalized spline smoothing. These have been implemented in the gam and mgcv libraries

in R, respectively.

The backfitting method, described in detail by Hastie and Tibshirani (1999), esti-

mates each function by iteratively smoothing the partial residuals until the fit doesn’t

change, where the partial residuals for each predictor are calculated by subtracting

the current estimates of functions of the other predictors from the response. Buja

et al. (1989) proved that this process converges to a unique solution for a large of

class of smoothers, including polynomial regression, smoothing splines, and regres-

55
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sion splines. One disadvantage of backfitting is that the degree of smoothness is

difficult to estimate and usually must be specified beforehand.

In contrast, when using penalized spline smoothing to fit each of the smooths

simultaneously, as in Wood (2006), estimation of the degree of smoothness can be

integrated into the algorithm. However, more data points are needed, as the effective

dimension of the system is greater when smoothing all of the predictors simultaneously

than when smoothing each individually.

Regardless of the fitting method used, marginal response plots and local net-

effect plots can be constructed exactly as in the multivariate normal context, and

interpreted in exactly the same way. However, the ways that the local net-effect plots

were combined depend on the linearity of the predictors and the response, so these

methods must be modified to be useful in this context.

The goal will remain the same: to construct plots {X∗, Y ∗} where

Y ∗|(X∗, X1) ∼ Y ∗|X∗ (2.2)

so the plot has no conditional dependence on X1. As in Chapter 1, let

Y ∗ = Y − g(X1, X2), and X∗ = h(X1, X2).

Assuming the errors are additive and independent of the predictors, the conditional

distribution of Y ∗|X∗ will again change only in the mean, so determining sufficient

conditions for (2.2) to hold may be found by investigating only E(Y ∗|X∗). As

E(Y ∗|X1, X2) = E(Y − g(X1, X2)|X1, X2)

= f1(X1) + f2(X2)− g(X1, X2), (2.3)

to satisfy (2.2), only functions of X∗ = h(X1, X2) must be on the right side. There

are again many choices, so interpretability will be a guide to the choice of X∗. There
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are three main classes of plots that are easily interpretable, corresponding to the

component-plus-residal plot, the marginal-plus-residual plot, and the added-variable

plot.

2.1 Component-plus-residual plot

One interpretable option for the x-axis is simply X∗ = X2. Then there are several

ways to make (2.3) a function of only X2; the simplest option is to set g(X1, X2) =

f1(X1) so (2.3) becomes simply f2(X2). This results in the idealized plot of

{X2, Y − f1(X1)}. (2.4)

Because Y − f1(X1) = f2(X2) + ε, this plot may also be written as

{X2, f2(X2) + ε}, (2.5)

and is now recognizable as a component-plus-residual plot, as in Section 1.5. A plot

of this type allows the form of f2 to be inspected, and shows how X2 is related to Y

for fixed X1.

A version of this plot using an estimate f̂2 of f2 and without the residuals,

{X2, f̂2(X2)}, (2.6)

is also commonly used; it one of the default plots in the R implementation of both the

backfitting (gam) and the spline smoothing (mgcv) methods of fitting additive models.

This plot makes the characteristics of f̂2 easier to see because it is uncluttered by the

underlying data. However, this clarity comes at a price, as the variability of the data

around this estimate is no longer shown. Including the residuals allows one to see if
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the estimated form of f2 is significant in relationship to the residuals and can help in

determining if f̂2 is influenced by any individual points.

When the method used for fitting the model results in an estimate of f2, as in

backfitting and spline smoothing, estimated versions of these component plots, either

with or without the residuals, are especially easy to construct. An advantage of using

one of these methods to fit the model and create this plot is these methods do not

rely on linearity in f1, f2, or between the predictors, so can be used for any additive

model. Section 2.1.1 will show that when certain of these relationships are linear, other

methods exist, including partial residual plots, augmented partial residual plots, and

CERES plots. All of these methods estimate each component only up to an arbitrary

additive constant.

As in the multivariate normal context, the component-plus-residual plot can be

modified and still satisfy (2.2). One useful option is to detrend the plot, which

according to Mansfield and Conerly (1987) can allow one to better see the form of f2.

Another is to simply plot the residuals against X2.

2.1.1 Linear f1

When f1 is linear, say

f1(X1) = β1X1, (2.7)

several methods exist to create the component-plus-residual plot. These methods do

not estimate f2 directly, but instead estimate the linear function f1(X1) = β1X1 and

use the equality

Y − f1(X1) = f2(X2) + ε. (2.8)
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to estimate the component-plus-residual, f2(X2)+ε. Several methods exist, depending

on the form of E(X1|X2).

When E(X1|X2) is linear in X2 or when X1 and X2 are independent, a consistent

estimate of β1 can be found by fitting the model

Y = β1X1 + β2X2 + ε. (2.9)

Although this model is known to be incorrect because f2(X2) 6= β2X2, Cook (1993)

proved that it does provide a consistent estimate of β1 that can be used in constructing

the component-plus-residual plot. Additionally, this model will consistently estimate

β1 when f2 is linear, no matter what the form of E(X1|X2), because then the model

is correct. Plots constructed using this model are called partial residual plots. Earlier

references include Larsen and McCleary (1972) and Wood (1973).

When E(X1|X2) is quadratic in X2, the model (2.9) no longer consistently esti-

mates β1. Instead, the model

Y = β1X1 + β2X2 + β3X
2
2 + ε (2.10)

should be used, even though this model may again be incorrect. This model also is

appropriate when f2 is quadratic, no matter the form of E(X1|X2). These plots are

called augmented partial residual plots, and were proposed by Mallows (1986).

A general method for consistently estimating β1, no matter the form of E(X1|X2),

was introduced by Cook (1993), who proved that the model

Y = β1X1 + β2m(X2) + ε, (2.11)

where m(X2) = E(X1|X2) − E(X1), will always consistently estimate β1. Plots

using the estimate of β1 from this model are called CERES plots, which stands for
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Combining Expectations and RESiduals. If E(X1|X2) is unknown, a nonparametric

estimate of E(X1|X2) can be used.

Proof 2.1 (Fisher consistency of the CERES plot)

Consider the true model

Y = α0 + α1X1 + g(X2) + ε

where ε ∼ N(0, I). It is often of interest to plot the form of g using a component-

plus-residual plot

{X2, g(X2) + ε},

which is equivalent (up to a constant) to the partial residual plot

{X2, Y − α1X1}.

To estimate this plot, a Fisher-consistent estimate of α1 is needed. An early idea was

to fit the model

Ŷ1 = b0 + b1X1 + b2X2

by minimizing the loss L(Y − Ŷ1) for some convex loss function. However, Cook

showed that this only results in Fisher-consistent estimates when E(X1|X2) is linear

or g(X2) is linear. Instead, the model

Ŷ = b0 + b1X1 + b2m(X2)

where m(X2) = E(X1|X2)− E(X1) should be used.

To show that b1 is Fisher-consistent for α1, let β = (β0, β1, β2) be the values that

minimize the expected loss (the risk) of

R(b0, b1, b2) = EL [(α0 + α1X1 + g(X2) + ε)− (b0 + b1X1 + b2m(X2))] ,



2.1. Component-plus-residual plot 61

so by definition, b = (b0, b1, b2) is Fisher consistent for β. Assuming β is unique, if α1

also minimizes this expected loss, then α1 = β1, and b1 is Fisher consistent for α1.

For any values of (b0, b1, b2),

R(b0, b1, b2) = EL [((α0 + α1X1 + g(X2) + ε)− (b0 + b1X1 + b2m(X2))]

≤ EX1,εL [EX2 (α0 − b0 + (α1 − b1)X1 + g(X2)− b2m(X2) + ε)]

= EX1,εL [α0 − b0 + (α1 − b1)E(X1|X2) + g(X2)− b2m(X2) + ε]

= EL[α0 − b0 − (b2 − (α1 − b1))m(X2)

+ g(X2) + ε+ (α1 − b1)E(X1)

= EL [(α0 + α1X1 + g(X2) + ε)− (b∗0 + α1X1 + b∗2m(X2))]

= R(b∗0, α1, b
∗
2)

where b∗0 = b0 − (α1 − b1)E(X1), and b∗2 = (b2 − (α1 − b1)). So the risk for b1 = α1 is

no larger than the risk for any other value of b1. If this lower bound is actually met,

then α1 is the minimizer; it is actually met because at b1 = α1, b∗0 = b0 and b∗2 = b2,

so

R(b0, α1, b2) ≤ R(b∗0, α1, b
∗
2) = R(b0, α1, b2) when b1 = α1.

Thus α1 minimizes the risk and α1 = β1, so b1 is a Fisher consistent estimate for α1.

Additionally, b0 is a Fisher consistent estimate of α0 − E(g(X2)) because

EL(b0, b1, b2) ≥ E [((α0 + α1X1 + g(X2) + ε)− (b0 + b1X1 + b2m(X2))]

= α0 + E(g(X2)) + (α1 − b1)X1 + b2E(m(X2)) + b0

= α0 + E(g(X2)) + b0 when b1 = α1,

which equals zero when b0 = α0 + E(g(X2)). �

A dynamic version of the CERES plot was proposed by Seo (1999) to show the
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change in the form of f2 when one of the other predictors is added or removed.

For example, suppose the full model has three predictors where the third may be

nonlinear, so

Y = β1x1 + β2x2 + f3(x3) + ε.

To see how f3 changes when x1 is removed from the model, this plot morphs between

a CERES plot for x3 calculated using the full model, and a CERES plot for x3

calculated using the submodel without x1 included.

As discussed earlier, an alternative method in any of these cases is to use nonpara-

metric techniques to estimate f2 directly. When X1 is assumed to enter the model

linearly, this method can be used by restricting the smoother to only consider linear

terms of X1. This is called AMONE by Berk and Booth (1995), who cite the discus-

sion of Breiman and Friedman (1985) for inspiration, and find it to be comparable to

the CERES plot.

Example 2.1 (Partial residual plot)

For this example, f1(X1) = 2X1, so β1=2, and f2(X2) = I(X2 < 0)X2
2 . 100 data

points were constructed as follows: X2 ∼ Unif(−2, 2), X1 = (0.5X2 + 1) + 0.5ε1,

and Y = f1(X1) + f2(X2) + 0.1ε, where ε and ε1 are a independent standard normal

random variables.

Figure 2.1a shows the relationship between the predictors, and Figure 2.1b shows

the idealized component-plus-residual plot.

Because f1(X1) and E(X1|X2) are both linear, it is appropriate to use the lin-

ear model of (2.9) to estimate β1. Although this model is known to be wrong, the

least squares estimate is β̂1 = 1.91, which is very close to the true value of β1 = 2.

Figure 2.1c shows the corresponding partial residual plot, which agrees well with the

idealized component-plus-residual plot.
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Figure 2.1: Component-plus-residual plots for Example 2.1, when E(X1|X2) is linear.

Example 2.2 (Augmented partial residual plot)

When the relationship between the predictors is not linear but quadratic, then an

augmented partial residual plot should be used. This example uses the same setup as

Example 2.1, except that the relationship between the predictors is changed, so

X1 = 1
2
(X2

2 + 1) + 0.5ε1,

as shown in Figure 2.2a. Since the component for X2 and the residuals did not change,

the idealized component-plus-residual plot is exactly as shown in Figure 2.1b.

Both the linear model (2.9) and the augmented model (2.10) were then used to

estimate β1. Using the linear model, β̂1 = 2.68, which is not as close to the true value

of β1 = 2 as in the last example. This discrepancy is visible in the partial residual

plot (Figure 2.2b), which no longer shows the form of the true component as shown

in Figure 2.1b. However, using the augmented model, β̂1 = 2.00, which is much closer

to the true value of β1, and so the augmented partial residual plot (Figure 2.2c) does

show the true form of f2. �

Example 2.3 (CERES plot)

As in Example 2.2, this example uses the same setup as Example 2.1 except for the
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Figure 2.2: Component-plus-residual plots for Example 2.2, when E(X1|X2) is
quadratic.

relationship between X1 and X2. In this case,

X1 = exp(X2 + 2)/25 + 0.1ε1,

as seen in Figure 2.3a. The component from X2 remains the same, so the idealized

component-plus-residual plot for this example is still Figure 2.1b.

Because E(X1|X2) is not linear or quadratic, neither the linear model or the

augmented model estimate β1 well; the estimates are 3.4 and 1.51, respectively. But

using the known E(X1|X2), the CERES plot estimates β1 to be 2.28, close to the true

β1 = 2. Figure 2.3 shows that the linear and augmented partial residual plots do not

accurately show the form of f2, but the CERES plot does. �

2.1.2 Nonlinear f1

Although CERES plots are designed for the situation where X1 enters the model

linearly, Cook and Weisberg (1999a) do suggest guidelines for their use when several of

the predictors appear to be non-linear. Since the nonlinear effects of other predictors

can leak into the CERES plot for X2, the plot can show a curve even when X2 is



2.1. Component-plus-residual plot 65

X
1

-2 -1 0 1

0
.0

1
.0

2
.0

X2

(a) The relationship
between the
predictors.

Y
−
β̂
1
X

1

-2 -1 0 1

-3
-1

1
3

X2

(b) Estimated partial
residual plot, with
lowess fit.

Y
−
β̂
1
X

1

-2 -1 0 1

0
1

2
3

4

X2

(c) Estimated
augmented partial
residual plot, with
lowess fit.

Y
−
β̂
1
X

1

-2 -1 0 1

0
1

2
3

4

X2

(d) Estimated CERES
plot, with lowess
fit.

Figure 2.3: Component-plus-residual plots for Example 2.3, when E(X1|X2) has de-
gree > 2.

linear. They suggest transforming the predictor that shows the strongest visual fit in

its CERES plot first.

An alternate method is to use a full nonparametric fit, called AMALL by Berk

and Booth (1995), to estimate the full model, and then plot the component and the

residuals.

Example 2.4 (CERES vs. AMALL)

This example uses the same setup as Example 2.3 except that f1(X1) is not linear, but

equals X2
1 . As before, f2 does not change, so the idealized component-plus-residual

for this example is as before, and is shown in Figure 2.1b.

But with a nonlinear f1, even the CERES plot does not accurately show the form of

f2, as the curve in X1 affects the plot. The estimates of β1 using the linear, augmented,

and CERES models are 3.57, 1.37, 1.78, respectively. None are sufficiently close to

the true value of 2, and the corresponding plots in Figure 2.4 do not accurately show

the form of f2. But the component-plus-residual plot from the model found by spline

smoothing, using the mgcv library in R, does accurately show the form of f2, as shown

in Figure 2.4d. �
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Figure 2.4: Component-plus-residual plots for Example 2.4, when E(X1|X2) is non-
quadratic and f1 is non-linear.

2.2 Marginal-plus-residual plot

Setting g(X1, X2) = f1(X1) is not the only way for E(Y ∗|X1, X2) to be a function of

only X2. From (2.3),

E(Y ∗|X1, X2) = f1(X1) + f2(X2)− g(X1, X2). (2.12)

By the rule of iterated expectations, E(Y |X2) = E(f1(X1)|X2) + f2(X2). Solving for

f2(X2) and substituting into (2.12),

E(Y ∗|X1, X2) = f1(X1) + E(Y |X2)− E(f1(X1)|X2)− g(X1, X2). (2.13)

Now there are several options for g that result in E(Y ∗|X1, X2) being a function of

X2. One that results in an interpretable plot is to set

g(X1, X2) = f1(X1)− E(f1(X1)|X2) (2.14)



2.2. Marginal-plus-residual plot 67

so E(Y ∗|X1, X2) = E(Y |X2), which is indeed a function of only X2. The resulting

plot is

{X2, Y − [f1(X1)− E(f1(X1)|X2)]}, (2.15)

which is a marginal-plus-residual plot, like that in Section 1.5.2. This plot is appar-

ently new. It makes the marginal conditional mean relationship between X2 and Y

easier to see by removing variability that can be explained by the other variables.

Unless f1 is linear, the idealized form of g will be difficult to compute. However,

it is not difficult to estimate, since it is simply the change in fitted values between a

model with only X2 and a model with both X1 and X2, as

E(Y |X1, X2)− E(Y |X2) = E(Y |X1, X2)− E(E(Y |X1, X2)|X2)

=
[
f1(X1) + f2(X2)

]
−
[
E(f1(X1)|X2) + f2(X2)

]
= f1(X1)− E(f1(X1)|X2)

= g(X1, X2),

so an equivalent way to write (2.15) is

{X2, Y − [E(Y |X1, X2)− E(Y |X2)]}. (2.16)

Example 2.5 (Marginal-plus-residual plot)

This example uses the simulated data from Example 2.3, where f1(X1) = β1X1,

f2(X2) = I(X2 < 0)X2
2 , and X1 = exp(X2 + 2)/25 + 0.1ε.

A first view of the marginal conditional mean of Y |X2 is shown in a marginal

response plot, Figure 2.5a. The relationship appears close to quadratic, though there

is enough variation that further details could be masked.

The marginal-plus-residual plot removes variation that can be explained by the
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Figure 2.5: Marginal plots from Example 2.5.
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other variables, so may allow a closer look at the conditional mean function. In this

example, the linearity of f1 allows the idealized marginal-plus-residual plot for X2 to

be calculated. From (2.14),

g(X1, X2) = f1(X1)− E(f1(X1)|X2

= β1X1 − E(β1X1|X2)

= β1X1 − β1E(X1|X2)

= β1X1 − β1 exp(X2 + 2)/25.

Figure 2.5b shows the idealized marginal-plus-residual plot created using this g.

An estimated version of the marginal-plus-residual plot, shown in Figure 2.5c, was

calculated using the second form of g, as used in (2.16), where

g(X1, X2) = E(Y |X1, X2)− E(Y |X2).

These conditional means were estimated using the lowess smoother, and the fitted val-

ues used to create the estimated marginal-plus-residual plot. This estimated version

matches the idealized version well, demonstrating that the two forms of g available

are equivalent.

The role that a marginal-plus-residual plot can play is clearer when X1 is con-

sidered to be the variable of interest. Again, the marginal response plot, shown in

Figure 2.5d, is a good first view of the marginal relationship. But here, there is signif-

icant variation for small X1. Figure 2.5e shows an estimated marginal-plus-residual

plot for X1, calculated in the same way as the estimated plot for X2. In this plot,

the extra variation around small X1 has been removed, as it was explainable by the

other variables, allowing the shape of the marginal mean function to be clearer than

in the marginal response plot. �
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2.3 Added-variable plot

Returning to the original goal, g and h must be chosen to make E(Y ∗|X1, X2) a

function of only X∗ = h(X1, X2), where, as in (2.3),

E(Y ∗|X1, X2) = f1(X1) + f2(X2)− g(X1, X2). (2.17)

Similar to calculations done for the marginal-plus-residual plot, by the rule of iterated

expectations, E(Y |X1) = f1(X1)+E(f2(X2)|X1). Solving for f1 and substituting into

(2.17),

E(Y ∗|X1, X2) = E(Y |X1)− E(f2(X2)|X1) + f2(X2)− g(X1, X2). (2.18)

Then setting g(X1, X2) = E(Y |X1), and h(X1, X2) = f2(X2)−E(f2(X2)|X1) satisfies

the desired condition, as E(Y ∗|X∗) = X∗, and results in the plot of

{f2(X2)− E(f2(X2)|X1), Y − E(Y |X1)}. (2.19)

As shown for the marginal-plus-residual plot, f2(X2)− E(f2(X2)|X1) is equal to the

change in fitted values between a model with only X1 and a model with both X1 and

X2, so this plot can equivalently be written as

{E(Y |X1, X2)− E(Y |X1), Y − E(Y |X1)}. (2.20)

The x-axis can be interpreted as the change in fitted values when adding X2 to the

model, and the y-axis can be interpreted as the amount unexplained by X1, so this

plot is a direct generalization of the general added-variable plot of Section 1.6.2.

Because E(Y ∗|X∗) = X∗, the plot will always have a slope of 1, so the relative

importance of the predictor X2 cannot be determined by the slope. Instead, the x
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Figure 2.6: General added-variable plots for X2, from Example 2.6, showing how
correlated data and magnitude of f2 affect the plot.

and y range of the plot holds clues to how important a predictor is, as in Example 2.6.

Example 2.6 (General added-variable plot)

This example uses the simulated data from Example 2.1, where f1(X1) = β1X1,

f2(X2) = I(X2 < 0)X2
2 , and X1 = (0.5X2 + 1) + 0.5ε. Figure 2.6a shows an estimated

general added-variable plot for X2, where E(Y |X1) and E(Y |X1, X2) were estimated

with a nonparametric smoother. The points in this plot are all very close to a line of

slope 1. So for instance, if the amount unexplained by X1 for a certain point is +2,

then the amount that X2 changes the fitted value by is close to +2, so adding X2

removes most of the variability remaining in the model.

To demonstrate further how this added-variable plot can show the importance of

adding a term to the model, the example has been tweaked in two ways, and the

added-variable plot reconstructed.

The first change is to let X1 = (0.5X2 + 1) + 0.1ε, which increases the sample

correlation between X1 and X2 to 0.99, X2 will have less new information about Y .

The added-variable plot is shown in Figure 2.6b. The points are still near the line of

slope 1, but not as close as in Figure 2.6a, so adding X2 removes less of the variability
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that remains in the model. Also both the horizontal and vertical ranges of the plot

are smaller, showing that there is less variability unexplained by X1 and also less

explained by adding X2.

The second change is to reduce the effect of X2 on Y by 95% by multiplying f2

by 0.05, so adding X2 will have a smaller effect. The added-variable plot is shown in

Figure 2.6b. There are two changes in the plot; first, the vertical range is substantially

smaller, showing that without the added variation from X2, X1 can explain a larger

part of the variation in Y . Secondly, the points do not fall as clearly on a line with

slope 1, so adding X2 is not as able to explain the variation that does remain in the

model. �

2.3.1 Linear f2

When f2 is linear, say f2(X2) = β2X2,

f2(X2)− E(f2(X2)|X1) = β2X2 − E(β2X2|X1

= β2(X2 − E(X2|X1).

So in this case, X2 − E(X2|X1) can be put on the x-axis, as in the plot

{X2 − E(X2|X1), Y − E(Y |X1)}, (2.21)

which will have slope β2. This version of the plot is a generalization of the standard

added-variable plot introduced in Section 1.6, and was suggested by Cook (1995) as

a more general way to combine local net-effect plots. It has the same interpretation

as the multivariate normal version; it shows how the information left unexplained in

the response after fitting X1 is related to new information in X2 beyond that in X1.

Estimating E(X2|X1) or E(Y |X1) accurately can be important, especially when
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they are nonlinear. This can happen even when the true model is linear,

Y = β1X1 + β2X2 + ε, (2.22)

as this model does not specify anything about the relationship between the predictors

or about E(Y |X1). When these expectations are estimated using a linear fit when

they are not really linear, there will be more information about Y left unexplained

by X1 and more new information in X2 beyond X1, so the added-variable plot will

show X2 to be more important than it really is (Cook, 1995, p. 267).

A plot using linear fits in this context will satisfy (2.2), and remove the conditional

dependence on X1. But the interpretation is different than the usual added-variable

plot, as it only shows the effect of adding the new variable X2 to a linear fit on X1.

If the linear fit on X1 is not appropriate, this may have little meaning.

Example 2.7

For this example, 100 data points were simulated from the linear model of (2.22),

with β1 = β2 = 1, and a nonlinear relationship between X1 and X2, where X1 ∼

Unif(−2, 2), and

X2 = X2
1 + 0.2ε.

Then to show that simply using linear estimates is not as precise, added-variable plots

for X2 were estimated using both nonparametric and linear fits. Figure 2.7 shows the

fits that were used, as well as the two added-variable plots. The added-variable plots

were sliced over X1, and individual fitted lines drawn for each slice. The lines overlap

well for each plot, showing that the dependence on X1 has been removed for each plot

and both plots meet the required criteria.

Additionally, the added-variable plot using linear fits shows adding X2 to be sig-

nificantly more valuable than the added-variable plot using the nonlinear fits. This
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Figure 2.7: Marginal fits and added-variable plots of the data in Example 2.7, using
linear and non-parametric fits. The added-variable plot using the linear fits overstates
the importance of X2. In the added-variable plots, points with similar X1 values were
given similar point shapes, and fitted lines were drawn through these points using
a loess smoother, showing that both added-variable plots do remove conditional X1

dependence.



2.3. Added-variable plot 75

is true; it is more important when adding it to only a linear fit. But a linear fit is a

poor model, so it overstates the true effect of adding X2 to the analysis. �

2.3.2 Nonlinear f2

When f2 is nonlinear and there is a curve in the variable of interest, the plot

{X2 − E(X2|X1), Y − E(Y |X1)} (2.23)

is not as useful, especially for finding the form of f2. This has been analyzed by

many, including Cook (1996), Berk and Booth (1995), Landwehr (1986), Johnson

and McCulloch (1987). Landwehr and Pregibon (1993) describe the problem as a

“jumbling” the x-axis, so the values of X2 are no longer in order. That is, because the

x-axis consists of X2 − E(X2|X1) instead of X2, it will not accurately show a curve

in terms of X2.

Similar reasoning is provided by Landwehr (1986) (as cited by Berk and Booth,

1995), who proved when using linear fits, an added-variable plot for X2 is equivalent

to a partial residual plot for X2 − E(X2|X1). While under certain conditions partial

residual plots do accurately show the shape of the curve, this shows that in general

this version of the added-variable plot shows the curve of X2 − E(X2|X1), not the

curve of X2.

Cook (1996) formalized this, determining that the amount of collinearity between

the predictors determines how useful the added-variable plot is for showing the curve.

When there is no collinearity and the predictors are independent, X2 − E(X2|X1) =

X2, so X2 is on the x-axis. But as the collinearity increases and X2 −E(X2|X1) and

X2 become more different, X2 is no longer represented on the x-axis.

As the problem seems to be on the x-axis, several authors have suggested simply
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using X2 on the x-axis,

{X2, Y − E(Y |X1)} (2.24)

including Draper and Smith (1981), Mosteller and Tukey (1977) and Atkinson (1985).

According to Berk and Booth (1995), Landwehr (1986) showed that this modified

added-variable plot does not show the correct slope when X2 is linear.

This analysis adds another reason that these two plots are not useful for showing

the form of f2, which is that both of them do not correctly remove the conditional

dependence on X1. From (2.3),

f1(X1) + f2(X2)− g(X1, X2) (2.25)

must be a function only of X∗, the value on the x-axis. For the regular added-variable

plot of (2.23), g(X1, X2) = E(Y |X1), and X∗ = X2 − E(X2|X1). Then

f1(X1) + f2(X2)− g(X1, X2) = f1(X1) + f2(X2)− E(Y |X1)

= f1(X1) + f2(X2)− [f1(X1) + E(f2(X2)|X1)]

= f2(X2)− E(f2(X2)|X1)

which can only be written as a function of X2 − E(X2|X1) if f2 is linear. For the

modified added-variable plot of (2.24), X∗ = X2, so this should be a function of X2;

this is only true if E(f2(X2)|X1) is zero, which may not be true even when f2 is linear.

Example 2.8 (Added-variable plots and nonlinear f2)

This example uses the data from Example 2.3, where E(X2|X1) = exp(2+X2)/25 and

E(Y |X1, X2) = 2X1 + I(X2 < 0)X2
2 . X1 enters the model linearly, so added-variable

plots for X1 should successfully remove conditional dependence on X2, but X2 enters
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the model nonlinearly, so the conditional dependence on X1 should not be removed.

Figure 2.8 shows net-effect plots, added-variable plots, and added-variable plots

with modified x-axis for both X1 and X2. All expected values were estimated using

the lowess nonparametric smoother.

The net-effect plots for X1 shows that the conditional mean for each slice of X2 is

linear, with nearly the same slope. So the added-variable plot is able to combine the

slices by centering around their means in both directions and thus remove conditional

dependence on X2. But the modified added-variable plot, which only centers the

slices around their mean in the vertical direction, fails to remove this dependence.

In the net-effect plots for X2, the shape of the conditional mean function de-

pends on X2, so the structure is not identical except for the mean. Thus the added-

variable plot, which centers each around the mean, still has conditional X1 de-

pendence. Finally, although the modified added-variable plot is better, the condi-

tional mean of each slice is different. This is because E(f2(X2)|X1), which equals

E(I(X2 < 0)X2
2 |X1) in this example, is non-zero. �
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Ê

(Y
|X

2
)

-0.5 0.5

-2
0

1
2

3

X1 − Ê(X1|X2)

(b) Estimated added-variable
plot for X1.

Y
−
Ê
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Figure 2.8: Various added-variable plots for data with nonlinear f2, from Example 2.8.
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2.4 Alternate forms

The three main plots in this chapter, the ordinary added-variable plot, the component-

plus-residual plot, and the marginal-plus-residual plot, can each be written in an

alternate form, based on the following more general form. Remember that the goal

is to define X∗ and Y ∗ so

Y ∗|(X∗, X1) ∼ Y ∗|X∗. (2.26)

Then choosing

X∗ = X2 − g(X1) and (2.27)

Y ∗ = Y − E (Y |X1, X2 = g(X1)) (2.28)

will satisfy this requirement when eitherX2 enters the model linearly, or g is a constant

and the model is additive. This form will be used directly to derive the added-variable

plot and the component-plus-residual plot; a similar idea will be used for the marginal-

plus-residual plot.

2.4.1 Added-variable plot

When X2 enters the model linearly, E(Y |X1, X2) = f1(X1) + β2X2, so this becomes

E(Y ∗|X1, X
∗) = E [Y − E (Y |X1, X2 = g(X1)) |X1, X

∗ = X2 − g(X1)]

= E (Y |X1, X2 = g(X1) +X∗)− E (Y |X1, X2 = g(X1))

= f1(X1) + β2 (g(X1) +X∗)− f1(X1)− β2g(X1)

= β2X
∗,
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and dependence on X1 is removed. The ordinary added-variable plot results when

g(X1) = E(X2|X1).

The general added-variable plot can also be made using this alternate form, using

{E(Y |X)− E(Y |X1, X2 = g(X1)), Y − E(Y |X1, X2 = g(X1))},

which has the change in predicted values using the actual values of X2 and X2 = g(X1)

on the x-axis, and the residuals from the predictions using X2 = g(X1) on the y-axis.

With g(X1) = E(X2|X1), this equals the standard general added-variable plot when

X2 enters the model linearly.

2.4.2 Component-plus-residual plot

Consider an additive model E(Y |X1, X2) = f1(X1)+f2(X2), and constant g(X1) = k.

Then X∗ = X2 − k and Y ∗ = Y − E(Y |X1, X2 = k). Then

E(Y ∗|X1, X
∗) = E(Y |X1, X2 = X∗ + k)− E(Y |X1, X2 = k)

= f1(X1) + f2(X∗ + k)− f1(X1)− f2(k)

= f2(X∗ + k)− f2(k),

which can be written instead as

E(Y ∗|X2) = f2(X2) + C

which not only removes the dependence on X1, but is the standard component-plus-

residual plot. Because in an additive model,

f2(X2) + ε = Y − f1(X1),

the above method can also directly retrieve the component for X1, for

E(Y |X1, X2 = k) = f1(X1) + f2(k)

which can be written as f1(X1)+C and so is the component for X1, with no residuals.
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2.4.3 Marginal-plus-residual plot

A version of the marginal-plus-residual plot can be written in a similar manner. The

original marginal-plus-residual plot for X2 has X2 on the x-axis and E(Y |X2) + ε on

the y-axis. Using the framework of building plots using

E(Y |X1, X2 = g(X1)),

set g(X1) = E(X2|X1) and instead put

E (Y |X1, X2 = E(X2|X1)) + ε

on the y-axis. The ε term could also be removed to simply plot the line given by the

expected value.

When the model is additive,

E (Y |X1, X2) = f1(X1) + f2(X2);

this alternate marginal expectation is

E (Y |X1, X2 = E(X2|X1)) = f1(X1) + f2(E(X2|X1)). (2.29)

This is not equal to the actual marginal expectation

E(Y |X1) = f1(X1) + E(f2(X2)|X1), (2.30)

so this plot does not show the actual marginal relationship between X1 and Y , but

instead an alternate marginal relationship: the mean function of the response against

X1 when the other variables equal their predictions given X1 alone. Other options

for g(X1) could also be considered, such as the median or other quantiles of interest.

Only the behavior for g(X1) = E(X2|X1) will be investigated here.
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This alternate marginal mean relationship may be of interest because it shows

how the response Y depends on the variable X1, using only the data from X1, but

including any knowledge about how the other variables behave given X1 and the fitted

model reflected through Ê(Y |X1, X2). As will be seen, at times this will be equal to

the actual marginal function; at times it will be equal to the component from X1,

and at times it will be some compromise between them. Additionally, this function

is straightforward to calculate because it depends only on one-dimensional smooths

of each other variable given X1, and a model that can produce predicted values from

the resulting data.

When X2 enters the model linearly, so f2(X2) = β2X2, the actual and alternate

marginal relationships are equal, as

f2(E(X2|X1)) = β2E(X2|X1) = E(β2X2|X1) = E(f2(X2)|X1).

But when f2 is not linear, they are not equal. Their relationship can be investigated

further by using the Taylor approximation, called the delta method (Oehlert, 1992).

For general θ,

f2(X) = f2(θ) + f ′2(θ)(X − θ) + f ′′2 (θ)(X − θ)2/2 + · · · .

Letting θ = EX and taking the expectation of both sides,

Ef2(X) = f2(EX) + f ′′2 (EX) Var(X)/2 + · · · .

With X2 as X and θ = E(X2|X1), and taking the expectation with respect to X1,

E (f2(X2)|X1) = f2(E(X2|X1)) + f ′′2 (E(X2|X1)) Var(X2|X1)/2 + · · · .

If the remainder of the terms are small, the difference between E(f2(X2)|X1) and

f2(E(X2|X1)) is approximately equal to

f ′′2 (E(X2|X1)) Var(X2|X1)/2



2.4. Alternate forms 83

and depends only on f ′′2 (E(X2|X1)) and Var(X2|X1). This is true even if X2 is

multivariate. A few examples will illustrate this dependence.

Example 2.9 (Linear f2)

Let X1 be a sequence of 1000 points evenly spaced between −1 and 1, and consider

three possibilities for X2. First, with constant conditional mean and variance: X2 ∼

Unif(−1, 1). Second, with changing conditional mean, but constant variance: X2 ∼

Unif(X1− 2, X1 + 2). Third, with constant conditional mean, but changing variance:

X2 ∼ Unif(−X1 − 1, X1 + 1). Pictures of these three relationships are shown in

Figure 2.9a. Let the response variable be

Y = −X1 + 2X2.

For clarity, no error will be added. Here f2(X2) = 2X2, so f2 is linear and f ′′2 (·) = 0,

so there is no difference between the actual and alternate marginal relationship. This

is true whether or not E(X2|X1) and Var(X2|X1) are constant. Marginal response

plots for X1 for each of the three sets of predictors are shown in Figure 2.9b, with a

solid line added to show both the alternate and actual marginal relationships. �

Example 2.10 (Quadratic f2)

Now consider a response variable

Y = −X1 +X2
2 .

Again for clarity, no error will be added. Here f2(X2) = X2
2 , so f2 is quadratic and

f ′′2 (·) = 2. Here the difference between the true relationships is exactly

f ′′2 (E(X2|X1)) Var(X2|X1)/2;

the additional terms are zero because the additional derivatives of f2 are zero. So

for quadratic f2, a changing E(X2|X1) does not affect the difference, but a changing
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Figure 2.9: Marginal relationships for linear, quadratic, and cubic f2, for three possible
predictor relationships. The dotted line shows the actual marginal relationship; the
solid line shows the alternate marginal relationship.
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Figure 2.10: Plot of the data set with nonconstant variance and quadratic f2, from
Example 2.10, with the alternate marginal function added.

variance does. A constant variance results in a constant difference, while a changing

variance will change the difference.

Plots of the marginal relationship between X1 and Y for each of the three sets of

predictors given in Example 2.9 are shown in Figure 2.9c, with lines added to show the

alternate (solid line) and actual (dotted line) marginal relationships. The difference

between them is constant in the first two plots, where the variance is constant, but

changes in the third plot, where the variance is not constant.

The cause of the difference in the third plot is perhaps clearer in a three dimen-

sional plot, shown in Figure 2.10. The line at X2 = E(X2|X1) = 0 is always at the

bottom of the quadratic curve, so it goes down as X1 increases, even as the curve

causes the true marginal relationship to increase as X1 increases. �

Example 2.11 (Cubic f2)

Finally, consider a response variable

Y = −X1 + 3X2
2 +X3

2 .
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Figure 2.11: Plot of the data set with nonconstant variance and quadratic f2, from
Example 2.11, with the alternate marginal function added.

Again for clarity, no error will be added. Here f2 is cubic and f ′′2 (·) = 6X2 + 6. The

difference between the true relationships is again exactly

f ′′2 (E(X2|X1)) Var(X2|X1)/2.

The next term contains the third central moment, which is zero because the distri-

bution of X2|X1 is symmetric, and the additional terms are zero because additional

derivatives of f2 are zero. So in this case, a changing E(X2|X1) does affect the dif-

ference, as well as a changing variance.

Marginal response plots for X1 for each of the three sets of predictors given in

Example 2.9 are shown in Figure 2.9d, with lines added to show the alternate (solid

line) and actual (dotted line) marginal relationships The difference between them is

constant only in the first plot, where the conditional mean and variance are both

constant. It changes in the both the second plot, where the mean is not constant,

and the third plot, where the variance is not constant.

The cause of the difference in the second plot is investigated again in a three-
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Figure 2.12: Component-plus-residual plots for Rainfall, using four methods.

dimensional plot, shown in Figure 2.11. The alternate mean function is the line

shown, at X2 = E(X2|X1). It does increase with X1, but because the function is

cubic, the actual marginal mean function increases at a greater rate. �

Finally, these examples only explore the case where X1 and X2 are additive. If

there is any interaction, it can be more complex.

2.5 Example: Island deforestation

Previously, plots for the island deforestation data were made assuming that each vari-

able entered the model linearly. While several of the variables were log transformed

to better meet this assumption, no systematic analysis was made, so it is possible

that those plots are not as accurate as they could be, so using the methodology in

this chapter, these plots will now be revisited using non-parametric additive methods.

As the relationships are no longer required to be linear, Rainfall and Elevation will

no longer be log-transformed.

2.5.1 Component-plus-residual plots

Figure 2.12 and Figure 2.13 show component-plus-residual plots for Rainfall and Ele-

vation, respectively, estimated using four different methods; a partial residual plot, an
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Figure 2.13: Component-plus-residual plots for Elevation, using several methods.

augmented partial residual plot, a CERES plot, and a plot using the gam estimates.

For Rainfall, each of the plots is roughly the same and show a nonlinearity.

However, for Elevation, the plots for the gam estimate are distinctly different. The

first three methods all depend on only one term being nonlinear, while the gam fitting

method allows multiple terms to be nonlinear. A idea that sometimes works with

CERES plots when multiple predictors are thought to be nonlinear is to fit CERES

plots for all the terms, and then refit the model after subtracting the effect of the

term with the largest curve from the response. In this case, Rainfall had the largest

curve; the CERES plot after removing its effect is shown in Figure 2.13c. It may have

slightly more curve than the first CERES plot, but is still quite unlike the plot from

gam.

Figure 2.14a shows component-plus-residual plots for all variables from the gam

fit, allowing the effect of each variable to be visually compared. Rainfall, Latitude,

Age, and Elevation seem to have more of an effect than the other predictors.

However, it also seems that several points may have especially large influences;

two points with high latitudes, two points with Age equal to 1.5 and three points

with the high elevations. These points represent only four sites; two on Hawaii and

two on New Zealand. Specifically, the two Hawaii points have both low Age and high

Elevation; and according to the fit, the Age causes a large decrease, while Elevation
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(a) For all variables from the gam fit.
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(b) For all variables from the gam fit, but with four outliers removed.

Figure 2.14: Component-plus-residual plots for all variables in the island deforestation
data set, using an additive model.

causes a large increase. It is likely that the model is overfitting to these points;

component-plus-residual plots without them are shown in Figure 2.14b. The fit does

not significantly change, but the visual assessment of the comparative effect does; Age

and Elevation now seem to be less significant than they did in the previous plots, as

the vertical change over the displayed range of the predictor is smaller. Whether the

fit for Age and Elevation is correct or not, this example does show how the measured

range of each predictor can affect the visual assessment of importance.
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2.5.2 Marginal-plus-residual plots

In addition to the component-plus-residual plots, which show the conditional effect of

each variable, it can be helpful to show the marginal and the marginal-plus-residual

plots, which show the marginal effects.

The regular marginal plots, shown in Figure 2.15a, simply plot the response against

each variable in turn. Lines showing the marginal gam fit and alternate marginal mean

functions for the linear and gam fits has also been added; they all show similar behavior

here.

The marginal-plus-residual plots, shown in Figure 2.15b, have the same marginal

line, but the scatter of points around the lines correspond to the residuals from the

full model. This shows how large the marginal effect is compared to the residuals. For

example, the marginal effects of Rainfall and Latitude seem strong, but logIsolation25

does not.

2.5.3 Added-variable plots

The added-variable plot is another way to show the importance of the various predic-

tors, though instead of showing how much the response changes, it shows how much

new information about the response is included in the predictor.

When the variables enter the model linearly, the standard added-variable plot

for a given predictor plots the residuals from fitting the response against the other

predictors against the residuals from fitting the given predictor against the others,

and shows both the slope of the fit and the residuals. But when the variables do

not enter linearly, this plot is not as useful, and instead the general added-variable

plot should be used, which has the change in fitted values when the given predictor

is removed from the model on the x-axis.

Figure 2.16a shows these added-variable plots for all eight variables, where all fits
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(a) Marginal plots, with marginal gam fits (solid lines) and alternate marginal mean functions for
the linear fit (dashed lines) and additive fit (dotted lines) added.
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(b) Marginal-plus-residual plots.

Figure 2.15: Marginal and marginal-plus-residual plots for all variables in the island
deforestation data set, using an additive model.
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(a) General added-variable plots with different x-axis scales.
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(b) General added-variable plots with a common x-axis scale.

Figure 2.16: Added-variable plots using the additive model fit with the gam library.
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are performed using the gam library. The points in these plots are all centered around

a line with a slope of one, which has been added to each plot. These plots help to

show any points that may be outliers or have more influence; an example is in the plot

for logArea, where there is one point farther to the right than the other points. This

point corresponds to the Necker island of the Hawaii chain, which had the smallest

area of the islands in the data set. For the other islands the change in fitted values

due to logArea was usually no more than ±0.1, but for this island it was over 0.2. It

also falls almost precisely on the line with slope 1; this shows that the residual for

this point without logArea is almost exactly equal to the change in fitted values when

logArea is added. It is likely that he model is overfitting to this point.

A disadvantage of these plots as in Figure 2.16a is that it can be difficult to visually

compare the effect of the eight predictors. Standardizing the scale of the x-axis, as in

Figure 2.16b, can aid in this. Now the horizontal spread of the plots, which show how

much the fit changed when each predictor was added, can be compared. Rainfall has

the largest spread, and so in this sense, it is the most important. Conversely, logArea

has very little spread, so is much less important.





Chapter 3

Model selection and combining

According to the criteria of (1.8), a good plot for showing how a predictor Xk is

related to the response Y is {X∗, Y ∗}, where

Y ∗|(X∗, X\k) ∼ Y ∗|X∗,

so the conditional distribution of Y ∗ given X∗ is independent of the other variables.

The added-variable plot and the component-plus-residual plot both meet this criteria.

These two plots are especially useful because they show both the conditional

relationship between Xk and Y and the residuals of the model. In making these plots,

a distinction was made between idealized plots, which were constructed using the true,

but unknown, population parameters, and estimated plots, which were constructed

using estimates of these parameters. However, the effect of the method of estimation

was not investigated, except for the specific case of CERES plots, but even then, the

specific estimation technique was unspecified. Partly, this is because these plots work

for any sensible estimation method, if the estimation method results in a model that

meets the requirements of additivity and/or linearity, depending on the desired plot.

Of course, the better the estimated values, the better the plot will be.

95



96 Chapter 3. Model selection and combining

3.1 Correlated predictors

One of the causes of poor estimated values, especially values regarding the effect of

a single predictor, can be correlation between the predictors. When this correlation

exists, it creates uncertainty about which of the predictors should be associated with

the effect.

Additionally, error in estimation with correlated predictors can significantly change

the way these plots look. When predictors are uncorrelated and the effects are ad-

ditive, the marginal effect of a given predictor Xk is equal to the conditional effect.

That is, when

E(Y |Xk, X\k) = fk(Xk) + g(X\k),

the conditional effect of Xk is described by fk, the marginal effect of Xk is

E(Y |Xk) = fk(Xk) + E(g(X\k)|Xk).

When Xk and X\k are uncorrelated, E(g(X\k)|Xk) is constant so the effect is still

described by fk. But when they are correlated in some way, this may nonconstant,

and the marginal effect different from the conditional effect.

Example 3.1

Consider two data sets, each with 2 predictors and 100 data points. In the first, the

two predictors are completely uncorrelated; in the second their correlation is 0.9. In

both cases, the response Y equals X1 +0.1X2 +ε, where ε ∼ N(0, 1), and the variance

of the predictors is equal to one. The estimate of the coefficient for X1 is similar in

the two data sets (0.65 vs. 0.55), but the standard error is more than twice as large

when the correlation is equal to 0.9 (0.3 vs. 0.69). Figure 3.1 shows confidence regions

for these two coefficients for both models.

Figure 3.2 shows marginal and component-plus residual plots for X2, for both the

data set with uncorrelated predictors and the data set with correlated predictors.
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Figure 3.1: Confidence regions for α = 0.2, 0.1, and 0.05, for coefficients from linear
models using uncorrelated predictors (solid lines) and correlated predictors (dashed
lines).

The plots for the data set with uncorrelated predictors have identical slopes, but the

plots for the data set with correlated predictors have different slopes, as the marginal

plot for X2 includes not only the effect from X2, but also part of the effect from X1,

because they are correlated. �

Although the following sections apply whether or not the predictors are correlated,

the focus will be on cases with correlated predictors, as the possibility of misleading

plots is increased. In particular, the focus will be on cases where there are many

predictors, some of which probably have little to no effect on the response, but are

correlated with those that do.
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Figure 3.2: Marginal and component-plus-residual plots for data with uncorrelated
and correlated predictors, from Example 3.1.



3.2. Variable selection 99

3.2 Variable selection

In data sets with a large number of variables, often a better model can be obtained

by leaving some of the variables out of the model altogether. The process of choosing

which to leave out and which to leave in is called variable selection, and is a special case

of a more general process called model selection in which one model is selected among

many candidate models, some of which may be of a completely different functional

form. There are several competing variable selection criteria, including AIC and BIC,

and algorithms, such as forward and backward selection. These methods are described

in Cook and Weisberg (1994) and other standard texts. These algorithms all result

in a set of variables to include in the model, denoted by XA, and a set to leave out,

denoted by X\A. For example, in the case of a linear model with mean function

E(Y |X) =
∑
i

βiXi,

if a variable selection procedure includes only variables in the set XA, the estimates

of the coefficients βi are zero for all i /∈ A, so

Ŷ =
∑
i∈A

β̂iXi +
∑
i/∈A

0Xi.

Remember that the criteria for a good plot about Xk is

Y ∗|(X∗, X\k) ∼ Y ∗|X∗, (3.1)

where X\k denotes all predictors except Xk. However, now that only the terms XA

remain the model, an alternate criteria is possible; that

Y ∗|(X∗, XA\k) ∼ Y ∗|X∗. (3.2)

This condition only requires that the axes of the plot are conditionally independent

of variables that remain in the model.
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These criteria will be compared for the component-plus-residual plot and the

added-variable plot.

3.2.1 Component-plus-residual plot

When the relationship between the response and the predictors is of the form

Y = fk(Xk) + g(X\k) + ε,

the idealized component-plus-residual plot for Xk is defined as

{Xk, fk(Xk) + ε},

or equivalently,

{Xk, Y − g(X\k)}.

This plot meets (3.1) and is conditionally independent of all of the other variables.

Now the plot that only requires conditional independence of XA\k can be written as

{Xk, Y − g(XA\k)}.

However, since only the set of variables XA are needed in this model, g(X\k) =

g(XA\k), so this plot is equivalent to the earlier plot. It therefore satisfies both the

full criteria (3.1) and the reduced criteria (3.2).

Incidentally, this holds true for Xk with both k ∈ A and k /∈ A; if k /∈ A the plot

reduces to the residual plot

{Xk, ε},

as fk is zero.

As described in the earlier sections, there are several ways to estimate this plot. If

f and g are both nonlinear, methods such as backfitting or spline smoothing are ap-

propriate. And if g is linear, the CERES plot (Cook, 1993) is a Fisher-consistent way

to estimate the coefficients of X\k. As AIC and BIC are Fisher-consistent methods,

they may be used in the process of estimating the CERES plot.
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3.2.2 Added-variable plot

When the relationship between the response and the predictors is of the form

Y = βkXk + g(X\k) + ε,

the idealized added-variable plot for Xk is defined as

{Xk − E(Xk|X\k), Y − E(Y |X\k)}.

and, as written here, is conditionally independent of X\k as in (3.1).

However, if only conditional independence of XA\k is required, as in (3.2), the

variables X\A are ignored, and the plot is

{Xk − E(Xk|XA\k), Y − E(Y |XA\k)}, (3.3)

which can look noticably different. Interestingly, though, because the variables in

X\A are not needed to compute g(X\k), this second plot satisfies the full condition of

(3.1) as well.

This can be shown with the following form of (4.14). Any plot {X∗, Y ∗} where

X∗ = Xk − h(X\k) and

Y ∗ = Y − E
(
Y
∣∣∣Xk = h(X\k), X\k

)
will satisfy the desired criterion of

E
(
Y ∗|X∗, X\k

)
= E (Y ∗|X∗) .
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Working with the full conditional expected value,

E
(
Y ∗|X∗, X\k

)
= E

(
Y − E

(
Y |Xk = h(X\k), X\k

) ∣∣∣X∗ = Xk − h(X\k), X\k

)
= E

(
Y
∣∣∣Xk = X∗ + h(X\k), X\k

)
− E

(
Y
∣∣∣Xk = h(X\k), X\k

)
= βk

(
X∗ + h(X\k)

)
+ g(X\k)− βkh(X\k)− g(X\k)

= βkX
∗,

which depends only on X∗ and is thus conditionally independent of X\k.

In the case under consideration, h(X\k) = E(Xk|XA\k), so to have full conditional

independence of X\k,

Y ∗ = Y − E
(
Y |Xk = E(Xk|XA\k), X\k

)
= Y −

(
βkE(Xk|XA\k) + g(X\k)

)
is needed. In this case, g(X\k) only depends on XA, so g(X\k) = g(XA\k) and

Y ∗ = Y − E(βkXk + g(XA\k)|XA\k)

= Y − E(Y |XA\k)

which is the same as in (3.3), the plot derived initially only from conditional inde-

pendence of XA\k.

Thus both options actually fulfill the strongest requirement for a good plot, so

the question of which plot to use becomes a matter of interpretation, and will be

investigated in the following example.
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Figure 3.3: Marginal response plot of X3 from Example 3.2, with least squares line
added; X3 and Y are not independent marginally, even though they are independent
given X1 and X2.

Example 3.2

Let N = 50 data points be constructed using

X ∼ N




0

0

0

 ,


1.00 0.70 0.90

0.70 1.00 0.90

0.90 0.90 1.00


 ,

and

Y = −1X1 + 1X2 + 0X3 + ε,

where ε ∼ N(0, IN). In this example, X3 is not in the full model. Should the added-

variable plot for X1 be constructed by taking X3 into account, or by ignoring it?

In this example, although X3 does not have any additional information about Y

after X1 and X2 are accounted for, when viewed marginally (Figure 3.3), there is

a positive association with Y . The question is whether this association should be
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(a) Centered marginal plot.
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(b) Added-variable plot,
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(c) Added-variable plot,
accounting for X3.

Figure 3.4: Idealized added-variable plots showing the relationship between X1 and
Y , marginally, accounting for only X2, and accounting for both X2 and X3.

accounted for before constructing the added-variable plot for X1. Figure 3.4 shows

both options, as well as the centered marginal plot of X1 and Y .

If predictors that are left out of the model when constructing the added-variable

plot are ignored, the fact that those variables may indeed have some information about

the response is lost, as in this example. Indeed, the added-variable plot without

X3 (Figure 3.4b) overstates the importance of X1 compared to the plot with X3

(Figure 3.4c).

However, if a variable really should be left out of the model, the argument can also

be made that it should also be left out of the added-variable plot. For example, there

may be many variables that are associated with the variable of interest that have no

effect on the response. If all of them are included, the added-variable plot will show

that the variable of interest is of little importance after accounting for the others.

While this is true, it can also be considered misleading, as they probably shouldn’t

be accounted for in the first place. From this perspective, the full added-variable plot

of Figure 3.4c understates the importance of X1.

It is also instructive to slice these plots along X3, as in Figure 3.5, to see if they are

indeed conditionally independent of X3. In these plots, the lines associated with each
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(a) Centered marginal plot.
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(c) Added-variable plot,
accounting for X3.

Figure 3.5: Idealized added-variable plots, as in Figure 3.4, but now sliced along X3

to show any X3 dependence.

slice are the least squares lines through those points, so because of random variation,

they do not line up exactly. In the marginal plot, there is still X3 dependence because

when ignoring X2, Y does depend on both X1 and X3 because of the correlation

between X2 and X3. In the first added-variable plot, the axes are conditionally

independent of X3 even though it does not take X3 into account, because conditional

on X1 and X2, X3 is independent of Y . Finally, the last added-variable plot does

account for X3, and its axes are conditionally independent of X3. �

3.2.3 Estimated versions

When it is clear which variables to include in the model, the above methods work

well, as the estimated values are consistent for the true population values. Which

variable to include is not always clear, however, and different choices may yield very

different results.

Example 3.3

Consider a sample data set of size 50, constructed in the following way: X1 ∼

Unif(−1, 1), X2 = X2
1 + 0.1ε1, and Y = 1X1 + 1X2 + 0.4ε, where ε and ε1 are
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Figure 3.6: Scatterplots of the marginal relationships for the variables in Example 3.3.
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(b) For the model with only X1.

Figure 3.7: Component-plus-residual plots for X1 in Example 3.3.

independent standard normals. What is the effect of X1 on the response Y ?

Scatterplots showing the relationships between the variables are shown in Fig-

ure 3.6. Because of the strong relationship between X1 and X2, it maybe difficult to

decide which of these terms, or both, should be in the model. This choice will affect

the apparent effect of X1.

First, consider the model where Y depends on both X1 and X2. This model is

actually the true model, but this information would not be known when analyzing

a real data set. A linear least squares fit for this model result in fitted values of

Ŷ = 0.05 + 1.04X1 + 0.95X2, an AIC value of 69.9, and an R-squared value of
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0.75. The component-plus-residual plot for X1 based on these estimates is shown in

Figure 3.7a, along with the fitted component line. Because a linear model was used,

it is linear.

Next, consider the model where Y depends only on X1. This relationship is

quadratic, so a quadratic least squares fit was used, resulting in fitted values of Ŷ =

0.01 + 1.07X1 + 1.03X2
1 , an AIC value of 68.7, and an R-squared value of 0.75. The

component-plus-residual plot for X1 based on these estimates is shown in Figure 3.7b,

along with the fitted component line. As expected from the form of the model used,

it is quadratic.

These two models fit the data almost equally well, and in fact, by AIC, the true

model is slightly worse. But the effect due to X1 as shown in the component-plus-

residual plots, is distinctly different.

Finally, consider the model where Y depends only on X2. An linear least squares

fit for this model results in fitted values of Ŷ = −0.13 + 1.52X2, an AIC value of

120.1, and an R-squared value of 0.28. This model is not as good as the other two,

so plots showing these results will not be considered. �

Chatfield (1995) discusses this effect. He says that traditionally, statisticians have

performed inference assuming that the chosen model is correct. He then shows that

in several simple cases, the variability from model selection can outweigh the variance

included in any particular model, and encourages statisticians to consider these sorts

of issues when doing an analysis.

Indeed, different models can result in different plots, with different inferential

conclusions about the effect of a single predictor on the response. To determine

which model to use, a model selection procedure is traditionally used. But even in

cases where two models have similar selection criteria, different plots and conclusions

can result. One possible solution is to combine the most plausible models together.
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3.3 Model combining

In multiple linear regression settings with many predictors, the final model used often

does not include all the possible predictor variables. This can avoid overfitting the

model to the data, especially when some variables are truly not important, and result

in a model that has more predictive power than the model with all variables. As

discussed previously, several model selection criteria, such as AIC and BIC, have

been proposed, and there are various procedures for using them to choose a model,

including forward and backward selection.

However, in many cases it can be difficult to choose which particular model to

use. Two models may have very similar AIC values but include entirely different sets

of predictors. It is also well known that ad hoc procedures like forward and backward

selection can result in two different models. In cases like these, it can be difficult

to decide which model to use. And as Chatfield (1995) describes, the uncertainty in

the model selection process is usually ignored once the model has been chosen. But

because each of the possible models could give different conclusions, choosing one

while ignoring the other possibilities can lead to incomplete or erroneous conclusions.

This can be especially true for models that are sensitive to the particular data set

used, such as tree-based models.

In response to these difficulties, several model combining methods have been pro-

posed. The basic idea of these methods is to not choose only one model, but to choose

several likely models and combine them in a given way. This can have the advantages

of avoiding overfitting and decreasing bias while avoiding the uncertainty involved in

choosing only one model.

One method, stacking, finds a weighted linear combination of the possible models

that minimizes the mean squared error by using a type of cross-validation. Initially

proposed by Stone (1974) and called “model-mix,” it was later redeveloped indepen-
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dently by Wolpert (1992) in the neural network literature and applied to regression by

Brieman (1995). Another method, bootstrap aggregation, or bagging, was developed

by Brieman (1996). For this method, a set of N possible models are obtained by

applying a given model selection criteria to N independent bootstrap samples. The

average of the N fitted models is the final estimate. Several variations and gener-

alizations of this type of method have been proposed in the machine learning under

the name of learning ensembles; Friedman and Popescu (2003) provide a general

framework.

A method called adaptive regression by mixing (ARM) has been developed by

Yang (2001). This method also uses a weighted average of the possible models,

where each of the possible models are found by choosing a subset of the data at

random and applying a given model selection technique to the subset. The weights

are proportional to the error, calculated using the other half of the data set. Yuan

and Yang (2005) adds a screening step to this method, and also provides a measure of

the instability of selecting a given model for a particular data set to help in deciding

whether to combine possible models or to select just one. This enhanced method is

called adaptive regression by mixing with screening (ARMS).

A Bayesian approach to model combining has also been studied. Called Bayesian

model averaging (BMA), the basic idea is to put a prior on the possible models as well

as on the parameters in those models and then calculate the posterior distribution of

the possible models. The expected value of the quantity of interest can be found by

computing a weighted average of the estimates from each model, using the posterior

probabilities of each model as weights. An overview of techniques is provided by

Hoeting et al. (1999).

While many of the graphical procedures presented earlier may be applied to other

methods, in this the focus will be on applications using ARMS. The basic idea of

ARMS is as follows: The data is divided into two parts. The various models being
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considered are fit using the first part, and the top m models under both AIC and BIC

are kept. Then the accuracy of each model is measured using the second part, and

each model still under consideration is weighted accordingly. Finally, the process is

repeated many times and the weights from each repetition are averaged.

While ARMS is not necessarily restricted to linear models, the focus here will be

on that case because it is easiest to apply there. In this case, all the models under

consideration are linear models, so the fitted values for model i can be written as

Ŷi =
∑
k

β̂kiXk,

and since the final model is a linear combination of these linear models, the fitted

model can also be written as a linear model, namely,

Ŷ =
∑
i

wiŶi =
∑
i

wi
∑
k

β̂kiXk =
∑
k

(∑
i

wiβ̂ki

)
Xk

.
=
∑
k

β̂kXk.

3.3.1 ARMS and predictor correlation

Yuan and Yang (2005) did a simulation study on ARMS to determine when it per-

formed better than model selection using AIC and BIC, and BMA. These simulations

were performed using predictors that were independent and uniformly distributed.

However, because graphics on data sets with independent predictors are not as com-

plex as when the predictors are dependent, how ARMS does with correlated predictors

was first investigated, using predictors chosen from a multivariate normal distribution.

With uncorrelated predictors

To better compare these results with the uncorrelated results in Yuan and Yang

(2005), their simulations were rerun with independent normal predictors instead of

independent uniform predictors.
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The simulated scenarios are as follows. There are ten independent candidate

predictors; in Yuan and Yang (2005) they were uniformly distributed on [−1, 1], here

they are normally distributed with mean 0 and variance 1/3, so the variance is the

same in the two simulations. The sample size is one hundred. The response variable is

Xβ+ ε, where ε is independent of the predictors and normally distributed with mean

0 and variance σ2. Simulations were run with four different predictor coefficients (β),

as described below, and five different variances (σ2 = 0.1, 0.5, 1.0, 2.25, and 4.0). In

these simulations, the true intercept is always zero.

The first model, Small Coefficients, has four small and four large coefficients, and

two coefficients of zero:

Y = 1.5X1 + 1.6X2 + 1.7X3 + 1.5X4 + 0.4X5 + 0.3X6 + 0.2X7 + 0.1X8 + ε.

The second model, Large Coefficients, has five large coefficients and five coefficients

of zero:

Y = 1.0X1 + 1.0X2 + 1.0X3 + 1.0X4 + 1.0X5 + ε.

The third model, Large Model, has all nonzero coefficients of varying sizes:

Y = 1.8X1 + 1.9X2 + 2.0X3 + 1.2X4 + 1.5X5

+ 0.9X6 + 0.8X7 + 0.4X8 + 0.3X9 + 0.1X10 + ε.

The fourth model, Small Model, has only two nonzero coefficients:

Y = 0.8X1 + 0.9X2 + ε.

One hundred data sets were created from each of these models for each variance,

and fitted using ARMS, AIC, and BIC. The risk for each model was then found by

simulating 1000 new predictor values and calculating the average squared difference

between the true function and the predicted value. Results are shown in Table 3.1,
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with standard errors for each estimate in parentheses. The risk reduction is calculated

as the percent improvement of the risk using the ARMS model compared with the

smaller of the risks using AIC and BIC.

The results using normally distributed predictors have the same general pattern

as those using uniformly distributed predictors. For most models, ARMS does better

as the variance increases; this is because as the variance increases, model uncertainty

also increases. In the models Small Coefficients and Small Model, this is especially

true because AIC and BIC will occasionally remove entirely the predictors with small

or zero coefficients; in contrast, ARMS will almost always give some weight to the

correct model and models similar to it. In the model Large Coefficients, AIC and BIC

usually can choose the correct model because it is clearer which terms are important

and which are not. And in the model Large Model, AIC does well because all the

terms are important, so there is no opportunity for it to overfit the model.

With correlated predictors

When predictors are uncorrelated, ARMS can improve the fit for certain models

when variance is large. However, graphics in this case are fairly simple, because

the relationship between the predictor and the response is the same whether or not

one takes into account the effects of the other variables. So before investigating

graphics for ARMS, whether or not ARMS is useful with correlated predictors will

be investigated

First, ARMS is not invariant under transformations of the predictors. As it chooses

potential models by leaving out various predictors, if the predictors change, the po-

tential models will change, and the final model will change. Thus it is necessary to

give ARMS the actual correlated predictors, rather than predictors that have been

transformed to be uncorrelated.

Simulations were run using the same models and variances as in the uncorrelated
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Small Coefficients

0.1 0.5 1 2.25 4
ARMS 0.0113 0.0566 0.107 0.214 0.383

(0.00062) (0.0028) (0.0051) (0.012) (0.025)
BIC 0.013 0.0726 0.135 0.246 0.442

(0.00072) (0.0033) (0.0053) (0.011) (0.04)
AIC 0.0114 0.0594 0.123 0.268 0.446

(0.00062) (0.0031) (0.0061) (0.013) (0.026)
RiskReduction 0% 5% 13% 13% 13%

Large Coefficients

0.1 0.5 1 2.25 4
ARMS 0.00839 0.042 0.086 0.231 0.477

(0.00047) (0.0023) (0.0053) (0.014) (0.025)
BIC 0.00739 0.037 0.0758 0.251 0.674

(0.0005) (0.0025) (0.0058) (0.023) (0.042)
AIC 0.00998 0.0499 0.101 0.236 0.475

(0.00052) (0.0026) (0.0059) (0.014) (0.028)
RiskReduction−13% −14% −13% 2% −1%

Large Model

0.1 0.5 1 2.25 4
ARMS 0.0118 0.0608 0.121 0.27 0.496

(0.00055) (0.0028) (0.0055) (0.013) (0.023)
BIC 0.0137 0.0771 0.145 0.322 0.657

(0.00056) (0.0032) (0.0063) (0.015) (0.034)
AIC 0.0123 0.0616 0.13 0.279 0.492

(0.00056) (0.0029) (0.0061) (0.013) (0.024)
RiskReduction 4% 1% 7% 3% −1%

Small Model

0.1 0.5 1 2.25 4
ARMS 0.00616 0.0309 0.0642 0.162 0.302

(0.0005) (0.0025) (0.0054) (0.013) (0.022)
BIC 0.0054 0.027 0.0569 0.166 0.346

(0.00055) (0.0028) (0.0062) (0.016) (0.026)
AIC 0.00877 0.0439 0.0877 0.207 0.39

(0.00059) (0.0029) (0.0059) (0.014) (0.025)
RiskReduction−14% −14% −13% 2% 13%

Table 3.1: Estimated mean squared error for prediction for ARMS, AIC, and BIC,
using uncorrelated predictors. Risk reduction is the improvement in ARMS compared
to the better of AIC and BIC. Negative values suggest ARMS is worse. Columns
denote different values of σ2.
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case, but now with correlation ρ = 0.9 between all ten predictors. They all still

have mean 0 and variance 1/3. Results for this simulation are shown in Table 3.2.

The risk reduction is significantly greater in these simulations than in the uncorrelated

simulations, because now predictors with small and nonzero coefficients are correlated

with those with large coefficients, so it is more likely for AIC or BIC to select a

predictor with a small or nonzero coefficient in place of a predictor with a large

coefficient.

These two sets of results are directly compared in Figure 3.8, where the bars show

the risk reduction calculated from the mean risk for ARMS and the mean risk for the

better of AIC and BIC. Since the mean risk is an estimate, error bars were calculated

using a parametric bootstrap to show the quality of the risk reduction estimate. For

each estimate, 1000 ARMS risks and 1000 AIC/BIC risks were simulated from normal

distributions with the estimated means and standard errors. The risk reduction was

then calculated, and a 90% confidence interval plotted.

Although the confidence intervals on the risk reduction are large, ARMS does

significantly better than AIC/BIC with correlated predictors than with uncorrelated

predictors, particularly for the Large Coefficients model. As n → ∞, the results

with correlated predictors are expected to resemble the results from uncorrelated

predictors.
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Small Coefficients

0.1 0.5 1 2.25 4
ARMS 0.0121 0.0515 0.112 0.242 0.381

(0.00051) (0.0027) (0.0057) (0.011) (0.017)
BIC 0.0152 0.0575 0.131 0.343 0.58

(0.00061) (0.0035) (0.0085) (0.014) (0.021)
AIC 0.0137 0.0581 0.125 0.302 0.505

(0.00056) (0.0026) (0.0063) (0.015) (0.022)
RiskReduction 11% 10% 10% 20% 25%

Large Coefficients

0.1 0.5 1 2.25 4
ARMS 0.00879 0.0603 0.115 0.215 0.318

(0.00045) (0.0026) (0.0044) (0.0088) (0.014)
BIC 0.00776 0.0792 0.164 0.327 0.463

(0.00044) (0.004) (0.0061) (0.011) (0.019)
AIC 0.0102 0.0635 0.133 0.277 0.46

(0.00052) (0.0033) (0.0057) (0.011) (0.02)
RiskReduction−13% 5% 13% 22% 31%

Large Model

0.1 0.5 1 2.25 4
ARMS 0.0133 0.0706 0.146 0.311 0.492

(0.0006) (0.0034) (0.0067) (0.014) (0.024)
BIC 0.0159 0.0896 0.198 0.472 0.762

(0.00063) (0.0046) (0.0093) (0.019) (0.028)
AIC 0.0139 0.0721 0.145 0.341 0.584

(0.00063) (0.0032) (0.007) (0.016) (0.026)
RiskReduction 4% 2% 0% 9% 16%

Small Model

0.1 0.5 1 2.25 4 6.25
ARMS 0.00647 0.0393 0.0728 0.142 0.226 0.331

(0.00055) (0.0029) (0.0052) (0.011) (0.018) (0.028)
BIC 0.00581 0.0466 0.0927 0.17 0.257 0.365

(0.00063) (0.0037) (0.0059) (0.013) (0.022) (0.035)
AIC 0.00904 0.0507 0.104 0.224 0.358 0.546

(0.00066) (0.0037) (0.0066) (0.013) (0.024) (0.038)
RiskReduction−11% 16% 21% 16% 12% 9%

Table 3.2: Estimated mean squared error for prediction for ARMS, AIC, and BIC,
using correlated predictors. Risk reduction is the improvement in ARMS compared
to the better of AIC and BIC. Negative values suggest ARMS is worse. Columns
denote different values of σ2.
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Figure 3.8: Comparison of Risk Reduction between ARMS and the better of AIC and
BIC, for uncorrelated predictors (the dark bars) and correlated predictors (the light
bars), for several values of σ2.
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3.3.2 Component-plus-residual plot

When the true model is

Y = fk(Xk) + g(X\k) + ε,

the idealized component-plus-residual plot for Xk is

{Xk, fk(Xk) + ε}, or {Xk, Y − g(X\k)}.

This plot shows the contribution to Y from Xk when all other variables are held

constant. When g is linear, g(X\k) =
∑

i 6=k βiXi, and this can be written as

{Xk, Y −
∑
i 6=k

βiXi}.

Since a model combining method such as ARMS can be thought of as a way of

estimating β, using the ARMS estimates β̃ in the plot

{Xk, Y −
∑
i 6=k

β̃iXi},

is the proper component-plus-residual plot; if the true value β of the estimate β̃, is

substituted, the true component-plus-residual plot would result. Additionally, as β̃ is

consistent for β, this estimated plot will be consistent for the true plot.

Fisher-consistency of ARMS and applicability to CERES plots

As described in the earlier sections, when g is linear and there is a nonlinear rela-

tionship between Xk and X\k, a CERES plot will obtain Fisher-consistent estimates

of this plot. Since ARMS can be shown to be Fisher-consistent, as follows, it can be

appropriate to use ARMS in estimating the coefficients for use in a CERES plot.

The ARMS method of model combining is Fisher-consistent for the true coefficient

parameters when the composite methods are Fisher-consistent and at least one model

including all predictors with non-zero coefficients is considered. For a method to be
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Fisher-consistent, the method must result in the true parameters when applied to the

entire population.

As described in Yuan and Yang (2005), ARMS first splits the data into two parts;

given that the entire population is being considered, population calculations will be

done no matter which part is being used. Then, the fitted values f̂j are estimated

for each model j using least squares, using the first half of the data. For models that

include all predictors with nonzero coefficients, and perhaps also some unneeded pre-

dictors as well, the fitted values and the coefficients will be the true values, assuming

the method used is Fisher consistent. For models that do not include all predictors

with non-zero coefficients, the fitted values and coefficients will not be equal to the

true values. ARMS then screens these models by only considering models with the

lowest k AIC or BIC values. Given the population, the true model will have the

lowest AIC and BIC, so that model is sure to be considered. AIC is defined as

AIC = n log(σ̂2) + 2k

where the mean has k parameters. For models that leave off important terms, σ̂2 is too

big, and eventually the first term will dominate. For models that include unimportant

terms, σ̂2 will converge to the correct value, but the penalty 2k will be too big. Hence

the true model is always selected, and it does not matter which other models are also

considered.

An overall measure of discrepancy,

Dj =
∑
i

(
Yi − f̂j(Xi)

)2

,

is then computed for each model being considered, using the second half of the data.

In the population, this is proportional to the error variance σ2
j . So the proportional

weight for model j

(σj)
−n/2 exp(−σ−2

j Dj/2)
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is in turn proportional to (σj)
−n/2. Thus models with smaller variances have larger

weights, and the relative weight increases as n increases. Since this calculation is done

in terms of the population, the model(s) with the smallest variance will have weight

one and all other models will have weight zero.

Now, all models including all necessary predictors will have the same error vari-

ance, and all models missing one or more of these predictors will have a larger error

variance, as the variance explained by the missing predictor will be included in the

error variance.

So given the whole population, the models that do not include all necessary terms

will have zero weight, and the models that have all necessary terms will have equal

weight. Since these models all result in the same estimates (in the population),

assuming they are Fisher-consistent, the ARMS method is also Fisher-consistent.

3.3.3 Added-variable plot

When using a fitting method such as ARMS or BMA that uses a weighted average

of linear models, the method may not fully throw out certain predictors, but instead

may give models with those predictors small weights. Let the fit for the ith submodel

be

Ŷi = β̂kiXk + ĝi
(
X\k

)
,

with residuals ei = Y − Ŷi. Because of the fitting method, each ĝi will include a

different subset of X\k. Then let the overall fit be

Ŷ =
∑

iwiŶi

=
(∑

iwiβ̂ki

)
Xk +

∑
iwiĝi

(
X\k

)
.
= β̂kXk + ĝ

(
X\k

)
,
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with residuals e = Y − Ŷ . By this definition,
∑

iwiβ̂ki = β̂k and
∑

iwiei = e.

Then to construct an added-variable plot for Xk, there are two options, as dis-

cussed in Section 3.2; either to construct the axes by accounting for all the other

variables, or by only accounting for the variables that are selected by the various

submodels.

Accounting for all the variables

When the true model is

Y = βkXk + g(X\k) + ε,

one option to construct the added-variable plot for Xk is

{Xk − E
(
Xk|X\k

)
, Y − E

(
Y |X\k

)
},

which takes into account all the other variables. There are several ways to estimate

these expected values; one way is to estimate them independently using whatever

methods are appropriate; ARMS, an additive model, or whatever. However, this plot

will not be based at all on the full ARMS model, which is believed to be the best fit,

nor will it show exactly the slope and residuals from that full model.

Remember that in an idealized added-variable plot, the residuals around a line

with slope βk will be equal to the errors ε, for

E
(
Y |X\k

)
= E

(
E(Y |X)|X\k

)
= E

(
βkXk + g(X\k)|X\k

)
= βk E

(
Xk|X\k

)
+ g

(
X\k

)
(3.4)
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so

Y ∗ = Y − E(Y |X\k)

=
[
βkXk + g

(
X\k

)
+ ε
]
−
[
βk E

(
Xk|X\k

)
+ g

(
X\k

)]
= βk

(
Xk − E

(
Xk|X\k

))
+ ε (3.5)

= βkX
∗ + ε. (3.6)

In these idealized versions of these plots, the slope and the residuals are exactly

equal to the true values, as the equality in (3.4) holds exactly. But when these plots

are estimated, the slope and the residuals may not be exactly equal to the values

estimated by the full model. For this to be true, the equality in Equation (3.4) must

hold when those values are estimated. That is, if

Ê (Y |X)
.
= β̂k + ĝ

(
X\k

)
and

Ê
(
Y |X\k

)
= β̂k Ê

(
Xk|X\k

)
+ ĝ

(
X\k

)
, (3.7)

then

Y − Ê(Y |X\k) = β̂k

(
Xk − Ê

(
Xk|X\k

))
+ e, (3.8)

as in (3.5). Now if the methods used to estimate these expectations are consistent,

(3.5) will be true asymptotically. But for small samples, it will only hold in special

cases, such as when ordinary least squares are used for all fits. In general, for the

equality in (3.8) to hold exactly, only two of the three expected values in (3.7) should

be estimated, and the third computed from the first two. Since the full model fit uses

all of the available information, a usual choice is to use β̂k and ĝ from the estimate

of E(Y |X). Then to meet the equality in (3.8) exactly, either E(Y |X\k) can be
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estimated and E
(
Xk|X\k

)
computed, or vice versa.

In many cases, the plots are very similar, though this is not necessarily so. For

example, when βk is small, it is difficult to calculate E
(
Xk|X\k

)
from E(Y |X\k)

because it requires division by βk, as from (3.4),

E
(
Xk|X\k

)
=

1

βk

(
E
(
Y |X\k

)
− g

(
X\k

) )
.

This plot may nevertheless be helpful because it can be written in terms of a change

in fitted values between the model including Xk and the model without Xk, as when

computed this way,

X∗ = Xk − E
(
Xk|X\k

)
= Xk −

1

βk

(
E
(
Y |X\k

)
− g

(
X\k

) )
=

1

βk

(
βkXk + g

(
X\k

)
− E

(
Y |X\k

) )
=

1

βk

(
E (Y |X)− E

(
Y |X\k

) )
When βk is large, this should not cause any problems, but when βk is small, it may

be more appropriate to use only the change in fitted values as X∗, in the form of the

general added-variable plot, described in Section 1.6.2.

As for the other way, it might seem that there are two ways to compute E(Y |X\k)

from an estimate of E
(
Xk|X\k

)
; either by using the full model estimate of βk and g

directly, or by using the estimates for each submodel βki and gi and then weighting,

but these turn out to be equivalent. Letting

Êi (Y |X) = β̂kiXk + ĝi
(
X\k

)
be the fit from the ith submodel, then the calculated version of E(Y |X\k) based on

this submodel would be

Êi
(
Y |X\k

)
= β̂kiE

(
Xk|X\k

)
+ ĝi

(
X\k

)
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so setting

Ê
(
Y |X\k

) .
=
∑
i

wiÊi
(
Y |X\k

)
=
∑
i

wiβ̂kiE
(
Xk|X\k

)
+ ĝi

(
X\k

)
=

(∑
i

wiβ̂ki

)
E
(
Xk|X\k

)
+
∑
i

wiĝi
(
X\k

)
= β̂kE

(
Xk|X\k

)
+ ĝ

(
X\k

)
,

which is the same result as when it is computed using the full model estimate.

Accounting for only the variables selected by the submodels

Alternatively, only the predictors suggested by each submodel could be used, weighted

appropriately. Let Ai be the indices of the predictors chosen by submodel i, so

according to submodel i, E(Y |XAi) = E(Y |X). Then to construct an added-variable

plot for Xk using this submodel only the set of predictors XAi\k would be used. Then

X∗i = Xk − E(Xk|XAi\k) and

Y ∗i = Y − E(Y |XAi\k).

A weighted average of these plots gives a horizontal axis of
∑

iwiX
∗
i and a vertical

axis of
∑

iwiY
∗
i .

This will not meet criteria (3.6), unless it gives full weight to the submodel that

correctly includes the actual predictors. But because which submodel is actually true

is unknown, this plot may be a better representation of the effect of Xk than just

taking one of the plots generated by a submodel.

The axes in this plot are now a compromise between retaining and removing the
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borderline variables. Although it is consistent for the true added-variable plot, the

axes do not correspond to the correct expected values, as each of the submodels

estimates different expected values. If it is believed that the correct added-variable

plot should only account for the variables selected by the correct submodel, this plot

is more appropriate than the version that accounts for all variables.

Accounting for only the variables selected by the submodels; an alternate

method

A nice feature of added-variable plots is that they show both the proper slope and

the residuals, so ideally,

Y ∗ = β̂kX
∗ + e. (3.9)

For a weighted model to satisfy this,

∑
i

wiY
∗
i = β̂k

∑
i

wiX
∗
i + e. (3.10)

However, for each submodel,

Y ∗i = β̂kiX
∗
i + ei,

so by taking the proper weighted average, instead

∑
i

wiY
∗
i =

∑
i

wi

(
β̂kiX

∗
i + ei

)
=
∑
i

wiβ̂kiX
∗
i + e

= β̂k
∑
i

(
wiβ̂ki

β̂k

)
X∗i + e.
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So using the full model weights to take the weighted average of each of the axes does

not satisfy (3.10); on the x-axis weights equal to wiβ̂ki/β̂k should instead be used, so

the axes are

Y ∗ =
∑
i

wiY
∗
i and (3.11)

X∗ =
∑
i

(
wiβ̂ki/β̂k

)
X∗i ≡

∑
i

w∗iX
∗
i . (3.12)

This plot is also consistent for the idealized plot, for as n → ∞, wm → 1 and

β̂km → β̂k, where m is the index of the correct model.

Example 3.4

Figure 3.9 shows four estimated added-variable plots for the data from Example 3.2,

using a weighted model with equal weights on two models: (1) the model including

all three variables, and (2) the model only including X1 and X2. Plots are shown

that fully ignore X3, fully account for X3, and somewhat account for X3, based on

these weights. Figure 3.9c uses the weighted average on both axes, while Figure 3.9d

uses the weighted average only on the y-axis, and on the x-axis uses the weights in

(3.12) instead. Here, these weights are are 0.64 and 0.36, as the estimates of β1 for

these two models are −1.59 and −0.9. The averaged versions are both compromises

between the other two plots. �
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Figure 3.9: Estimated added-variable plots for Example 3.4, accounting for X3 in
different ways.



3.4. Example: Beef consumption 127

3.4 Example: Beef consumption

Consider the following data set from the U. S. Department of Agriculture on beef

consumption from 1925–1941, as well as possible predictors beef price, pork price and

consumption, disposable income (both actual and adjusted for inflation), a food price

index (both actual and adjusted for inflation) and a food consumption index. Plots

of these variables by year are shown in Figure 3.10.

3.4.1 Model selection and inference

Suppose it is desired to display the effect of disposable income on beef consumption.

This may be difficult because actual and adjusted disposable income are highly cor-

related, so it may be difficult to tell what part of the effect comes from the actual

disposable income, and what part comes from the adjusted disposable income.

Consider first only the adjusted disposable income. Component-plus-residual plots

and added-variable plots using three different models are shown in Figure 3.11 and

Figure 3.12. The added-variable plots have lines added to them showing the estimated

slope and the associated 95% confidence interval.

The first model considered is the full model, with all predictors. This model has

an AIC value of 38.9 and an R2 value of 0.991, so it fits very well, and is probably

even overfit. According to the plots in Figure 3.11a and Figure 3.12a, an increase in

adjusted income is associated with an increase in beef consumption, when all other

variables, including actual income, are held constant. While the increase looks large

in the component-plus-residual plot, in the added-variable plot it is not statistically

significant, as a slope of zero falls within the confidence bounds.

The second model is the model without actual income, but with all the other

predictors. This model has an AIC value of 39.04 and an R2 value of 0.990, so by

these measures it is very comparable to the full model. The plots for this model are
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Figure 3.10: Seven variables about beef and pork, 1925–1941.
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Figure 3.11: Component-plus-residual plots for adjusted income, constructed from
three different models.

shown in Figure 3.11b and Figure 3.12b, and show that an increase in adjusted income

is associated with a decrease in beef consumption, again when all other variables are

held constant. The added-variable plot shows that this decrease is not statistically

significant either.

The third model is the model with only beef price, pork price and consumption,

and adjusted income. This model has an AIC value of 53.9 and an R2 value of 0.96,

so using the AIC measure, it should not be considered as good a fit, but since the

R2 value is still very high, the fit is still very good. Plots for this model, shown in

Figure 3.11c, again show a slight decrease, but this time it is significant.

These three different models offer three different answers to the question of how

adjusted disposable income affects beef consumption.

The component-plus-residual plots for both actual and adjusted income, in Fig-

ure 3.13, gives one explanation for these three different answers. Since adjusted and

actual income are correlated, these plots together can show income is generally related

to beef consumption.

For the full model, an increase in adjusted income is associated with a large

increase in beef consumption, but an increase in actual income is associated with
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Figure 3.12: Added-variable plots for adjusted income, constructed from three differ-
ent models.

an even larger decrease in beef consumption. So the overall effect of an increase in

disposable income is a slight decrease in beef consumption.

The reduced model plots tell a slightly different story; that the small decrease in

beef consumption is due totally to the increase in adjusted disposable income, and

that the corresponding increase in actual income has no effect on beef consumption.

These two models tell the same story about disposable income in general, but

disagree about how that increase is associated with the two correlated predictors,

actual and adjusted disposable income. While the models themselves can include some

of this uncertainty, as in the added-variable plots, it is also important to be aware

of the uncertainty about which model to choose, as the plots about one particular

predictor variable and the resulting inferences can be very different between two

models.

3.4.2 Plots using ARMS

Model combining methods can be useful in situations where multiple models seem

appropriate, as they do not choose only one model, but combine multiple appropriate
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Figure 3.13: Component-plus-residual plots for actual and adjusted disposable in-
come, estimated using the full model, a reduced model, and the ARMS model.
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models using appropriate weights. For this data, a combined model was fit using

ARMS, and various plots constructed.

Figure 3.13 shows component-plus-residual plots for actual and adjusted income

estimated using the ARMS model, in addition to the plots estimated using the full

model and the model without actual income. The ARMS plots average out the

differences between models, as they are compromises between the two other plots, as

well as plots from other submodels.

Figure 3.14 shows two added-variable plots for adjusted income constructed from

two submodels and three plots constructed using the ARMS fit. The axes on all of

these plots are common to assist in comparison. First, the importance of adjusted

income is much smaller in the full model (Figure 3.14a) than in the model without ac-

tual income (Figure 3.14b); the range of the x-axis, which shows how much additional

information is in the variable, is much smaller, for when actual income is omitted,

adjusted income is the only source of information about income.

The added-variable plot using ARMS, when fully accounting for the other variables

(Figure 3.14c), is very similar to the plot using the full model; indeed, the values on

the x-axis are identical, as ARMS uses ordinary least squares to fit each submodel.

The difference is on the y-axis; it shows a smaller slope than that in the full model

because it compromises between the various submodels considered. This shows the

same information as in the standard added-variable plot; the information unexplained

by the other variables against the new information in adjusted income.

However, it can be misleading because perhaps actual income shouldn’t be in-

cluded in the model at all, and therefore should be considered one of the “other

variables.” The other two added-variable plots weight the x-axis according to the

weights given by ARMS to remove some, but not all of the dependence on actual

income, as well as some of the dependence on the other variables. It is a nice com-

promise between the plot for the full model and the plot for the model without actual
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Figure 3.14: Added-variable plots for adjusted income, using the full model, the model
without actual income, and several methods for the ARMS model. The response Y
is Beef Consumption and the variable of interest Xk is adjusted income.
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income; this suggests that adjusted income is not as unimportant as it looks in the

full model, nor as important as it looks in the submodel, but instead is somewhere in

between.

3.5 Example: Island deforestation

In Chapter 1, the plots showing the importance and effect of each of the eight variables

on island deforestation were made using straightforward linear methods. But several

of the variables were correlated, and some seemed to have no effect, so it is unlikely

that the best model includes all eight variables, but it may be difficult to determine

which variables to include. So the data was analyzed using the ARMS method of

model combining, and new plots produced.

The component-plus-residual plots are shown in Figure 3.15, and the added-

variable plots, both when fully accounting for the other variables, and when weighting

them appropriately, are shown in Figure 3.16 and Figure 3.17, respectively. These

plots are very similar to the plots in Section 1.9; see Figure 1.19 and Figure 1.20.
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Figure 3.15: Component-plus-residual plots for the island deforestation data, using
the ARMS model.
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Figure 3.16: Added-variable plots for the island deforestation data, using the ARMS
model and fully accounting for all predictors.
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Figure 3.17: Added-variable plots for the island deforestation data, using the ARMS
model and weighting the other predictors using the ARMS weights.



Chapter 4

Generalized linear models

While a ordinary linear model assumes Y |X is normally distributed, with the mean

equal to a linear combination of the predictors, a generalized linear model (McCullagh

and Nelder, 1983) allows Y |X to follow any exponential distribution, with the mean

µ = E(Y |X) equal to some function of a linear combination of the predictors, so

g(µ) = β′X.

These two generalizations allow for a much greater range of data to be properly

analyzed, including binary data and count data.

In this chapter, the proposals for extending the added-variable plot to this gener-

alized setting by Wang (1985) and O’Hara Hines and Carter (1993) will be reviewed

and a new version proposed. Additionally, the extension of partial residual plots and

CERES plots to this setting by Landwehr et al. (1984) and Cook and Croos-Dabrera

(1998), respectively, will be briefly reviewed.

4.1 Added-variable plot

To explore what plots may be useful to show the effect of X2 on the response Y ,

consider a Poisson regression example with the canonical log link. In this case, Y ∼

Poi(µ) and g(·) = log(·), so log(µ) = β′X. To make the situation clear, let there be
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Figure 4.1: Net-effect plot for X2, from a sample from a Poisson regression model.

two discrete predictors, where X1 is equally likely to be −1, 0, or 1, and X2 is equally

likely to be X1 − 1, X1, or X1 + 1. Let β′X = 3 + X1 + X2. Figure 4.1 shows a

net-effect plot for a random sample of size 100. For all values of X1, increasing X2

is associated with an increase in Y , but the amount of that increase depends on X1.

For example, for points where X1 = −1, shown with circles, X2 causes only a small

increase. But for points where X1 = 1, shown with plus signs, X2 causes a large

increase.

A goal in constructing useful plots can be to combine these net-effect plots so the

distribution of the variable on the y-axis, Y ∗, given the variable on the x-axis, X∗,

is independent of the other variables. In general, this goal is impossible to reach for

generalized linear models because the response Y may be discrete. A binary response

is the most extreme example.

So instead, the mean and the variance will be studied. Because the variance is not

constant but instead may vary with the mean, controlling the mean and the variance

simultaneously can result in plots that are difficult to interpret. So the primary focus
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of this investigation will be to find plots where

E(Y ∗|X∗, X1) = E(Y ∗|X∗), (4.1)

and methods of either standardizing the variance or displaying it appropriately will be

applied after these plots are found. Methods will include using the Pearson residuals

on the y-axis, standardizing the variances around the mean function, and multiplying

both axes by appropriate weights. This third method is appropriate only when the

axes are related linearly, as otherwise it will distort the shape of the data points.

Other methods suggested by Landwehr and Pregibon (1993) are to vary the size of

the points with the size of the variances or to use a secondary plot with variance

information.

For the contexts thus far, useful plots have been found by adding or subtracting

functions of the predictors from the axes. The varied effects of X2 as shown in

Figure 4.1 suggest that adding or subtracting may no longer be sufficient, and that

applying some other function to Y may be required.

To begin, consider the plot shown in Figure 4.2a,

{X2 − E(X2|X1), Y − E(Y |X1)}, (4.2)

where each slice is centered around its mean both vertically and horizontally by

subtracting the conditional expected value. This plot is quite understandable, as it

plots the amount unexplained by X1 against the new information in X2. However,

both the mean function and the variance function are still dependent on X1, as not

only are the three lines for the three values of X1 distinctly different, but so is the

spread of the points around the three lines.

In general, the dependence of the mean on X1 cannot be fixed. Consider the
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Figure 4.2: Three possible estimated added-variable plots, for a sample from a Poisson
model.

position where X∗ = X2 − E(X2|X1) = 0. Then

E(Y ∗|X∗ = 0, X1) = E(Y − E(Y |X1)|X2 = E(X2|X1), X1)

= E(Y |X1, X2 = E(X2|X1))− E(Y |X1). (4.3)

When g is linear, E(Y |X1, X2) = β1X1 + β2X2, so

E(Y |X1) = E(β1X1 + β2X2|X1)

= β1X1 + β2E(X2|X1)

= E(Y |X1, X2 = E(X2|X1)), (4.4)

so E(Y ∗|X∗ = 0, X1) = 0 for all X1. But when g is not linear,

E(Y |X1) 6= E(Y |X1, X2 = E(X2|X1)), (4.5)

so E(Y ∗|X∗ = 0, X1) will not always be 0, and it instead depends on the concavity

of g at µ̂, which in turn depends on X1. Multiplying by a constant cannot remove
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this dependence, as it can even be positive for some values and negative for others if

g changes concavity, as it does when using a logit link.

Nonetheless, there are two existing methods that use this framework; the first

is the added-variable plot proposed by Wang (1985), who multiplies both axes by

appropriate weights. This method calculates E(Y |X1) by fitting a generalized linear

model, leaving out X2, and uses weights W1 equal to the inverse of the fitted variances.

The expected value of X2|X1 is also estimated using these weights. Because the

weights are a function of only X1, this expected value of this estimate is on average

equal to the expected value without the weights, although it is not as efficient. The

proposed plot is

{
W

1/2
1 (X2 − EW1(X2|X1)) ,W

1/2
1 (Y − E(Y |X1)

}
, (4.6)

and is shown in Figure 4.2b. In this example, both the mean function and the variance

function still depend on X1.

One of the reasons that this plot does not properly standardize the conditional

variance of Y ∗|X∗ is because the method of calculating the conditional mean and

variance is appropriate only if X2 has no effect. If X2 does have an effect, the variance

will be underestimated because the variation due to X2 is not included in the model.

The values on the y-axis of Figure 4.2b show that this has happened in this case.

Multiplying by the square root of the weights results in Pearson residuals, which

should mostly be within 2 standard deviations of the mean. The values on this axis

range from −10 to 10, showing that the extra variation due to X2 has not been

accounted for. Also, this method of standardizing the variance is only appropriate

when the fit is linear, as otherwise it can disguise the pattern of the points.

Additionally, this plot has little explanatory value; having W
1/2
1 (X2−EW1(X2|X1))

on the x-axis does not help in understanding the role of X2. Instead, the derivation of
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this plot by Wang (1985) shows that it can be interpreted as the graphical version of

the hypothesis test that β2 = 0, and that a nonzero slope shows evidence for β2 6= 0.

Because this hypothesis test assumes that β2 really is 0 and X2 has no effect, it is

not surprising that it lacks explanatory value when β2 is not 0 and X2 does have an

effect.

The second method also uses the Pearson residuals, as in the Wang (1985) plot,

but only on the y-axis. This plot is

{
X2 − E(X2|X1),W

1/2
1

(
Y − E(Y |X1)

)}
, (4.7)

and is used in Arc (Cook and Weisberg, 1999a). It plots the Pearson residual of the

fit only involving X1 against the new information in X2, and is shown in Figure 4.2c.

It also has dependence on X1 in both the mean and the variance.

Instead of using the usual scale for the response, consider instead the linear scale

as used in the fitting of the generalized linear model. This iterative process can be

understood as follows. The first step is converting the data to the linear scale of

g(µ) = Xβ. This cannot be done by using g(Y ), because it may not exist or be finite

for all data points. For example, in logistic regression, g(Y ) = log(Y ), so for Y = 0,

g(Y ) is not finite. Instead, a first-order Taylor approximation is used,

g(Y ) ≈ g(µ̂) + g′(µ̂)(Y − µ̂),

where µ̂ is the current best estimate of µ. This value is called the adjusted dependent

variable and will be denoted by Z. Now that the observations are on a linear scale,

weighted least squares is used to make a new estimate of µ̂, with weights equal to the

inverse of the fitted variances for each point. This process is repeated until the fitted
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values do not change. At the end of this procedure,

Z = β′X + g′(µ̂)(Y − µ̂)

= g(µ̂) + e (4.8)

where e are called the working residuals and are independent of Z and X.

Now instead of the plot of (4.2), which was on the response scale, consider the

plot

{X2 − E(X2|X1), Z − E(Z|X1)} (4.9)

as shown in Figure 4.3a, which is on the linear scale. In this plot, the mean function

does not depend on X1, although the variance still does. This independence of the

mean function can be derived; Z = β̂1X1 + β̂2X2 + e, so

E(Z|X1) = E(E(Z|X1, X2)|X1)

= E(β̂1X1 + β̂2X2|X1)

= β̂1X1 + β̂2E(X2|X1) (4.10)

and

E(Y ∗|X∗, X1) = E(Z − E(Z|X1)|X∗ = X2 − E(X2|X1), X1)

= E(Z|X1, X2 = E(X2|X1) +X∗)− E(Z|X1)

= (β̂1X1 + β̂2(E(X2|X1) +X∗)− (β̂1X1 + β̂2E(X2|X1))

= β̂2X
∗. (4.11)

.
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Figure 4.3: Three new estimated added-variable plots, for a sample from a Poisson
model.

This plot can also be interpreted by writing it terms of g(µ); the y-axis is

Z − E(Z|X1) = g(µ̂)− g(µ̂1) + e (4.12)

where µ̂1 = β̂1X1 + β̂2E(X2|X1). So the y-axis is the amount that the fitted means

on the linear scale change between using all the information about X2 and using only

E(X2|X1), plus an error term on the linear scale. The x-axis is the new information

in X2, beyond that in X1. So this plot shows how much information can be explained

by X1 and X2 together beyond that explained by X1 and E(X2|X1). A nice feature

of this plot is that the fitted slope is equal to β̂2, showing that for every unit increase

in X2 over E(X2|X1), the response on the linear scale has an estimated increase of

β̂2.

The variance in this plot still does depend on X1. Depending on the purpose,

this may be a good thing; it forces one to realize that the amount the response may

change, as measured on the linear scale, is not constant for all values of the predictors.

Still, two ways of standardizing the variance are shown in Figure 4.3b and Figure 4.3c.

The first method is to multiply both axes by the appropriate weights, as in the Wang
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(1985) plot. It is more successful here because the fit really is linear, so it maintains

the pattern of the points. However, it loses interpretability; the values on the x-axis

now are difficult to relate to the actual value of X2.

The second method of standardizing the variance is to use the Pearson residuals,

ep = (y − µ̂)/
√

Var(y) (4.13)

instead of the working residuals e in (4.12), shown in Figure 4.3c. Neither the mean or

the variance of this plot depend on X1, though it is unclear if it aids in understanding

the situation. Indeed, it may be more confusing. The mean function remains on the

linear scale, so the plot still shows that for every unit increase in X2, the response

changes by β2 units on the linear scale. But the variance function is on the stan-

dardized scale, so looking at the points at X2 near −1 in Figure 4.3c does not mean

that the response is changing between −3 and 1 units on the linear scale, but that it

is changing on average about −1 units on the linear scale, with variation of up to 2

standard deviations in each direction.

As in Section 2.4, a more general version of the added-variable plot of (4.9) is

{X2 − f(X1), Z − E(Z|X1, X2 = f(X1))}. (4.14)

As in (4.11), for this plot,

E(Y ∗|X∗, X1) = E(Z − E(Z|X1, X2 = f(X1))|X∗ = X2 − f(X1), X1)

= E(Z|X1, X2 = f(X1) +X∗)− E(Z|X1, X2 = f(X1))

=
(
β̂1X1 + β̂2(f(X1) +X∗

)
−
(
β̂1X1 + β̂2f(X1)

)
= β̂2X

∗. (4.15)
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Figure 4.4: Estimated added-variable plot suggested by O’Hara Hines and Carter
(1993).

O’Hara Hines and Carter (1993) also noted problems with the added-variable plot

of Wang (1985). Their focus was on its ability to show influential points, and they

suggested using

{X2 − EW (X2|X1), Z − EW (Z|X1)} (4.16)

with the variance corrected by multiplying both axes by the appropriate weights.

The notation EW refers to the expected value using the weights W equal to the

inverse of the fitted variances. All of their expectations, as well as the weights, are

estimated using the full model. This is an instance of the general version of (4.14)

with f(X1) = EW (X2|X1). It is not very interpretable for explanatory purposes, as

it is difficult to find any meaning in fitting X2 to X1 given weights derived from the

response. However, it does accurately represent the actual influence of each of the

data points in the fit, so is quite appropriate for diagnostics. It also has a slope equal

to β̂2. Figure 4.4a and Figure 4.4b show (4.16) without and with the weights.
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4.2 Component-plus-residual plot

Partial residual plots for generalized linear models were first proposed by Landwehr

et al. (1984). For the variable X2, the component from X2 and the residuals from a

model with linear mean function

g(u) = β1X1 + β2X2

are plotted,

{X2, β̂2X2 + e},

where e = g′(µ̂)(Y − µ̂) are the working residuals. O’Hara Hines and Carter (1993)

show that the slope of this plot does not match β̂2, and suggest that a weighted

version

{W 1/2X2, β̂2W
1/2X2 + ep},

where ep = (y− µ̂)/
√

Var(y) are the Pearson residuals, better shows influence. These

plots for X2 from the Poisson model are shown in Figure 4.5.

As in the additive model case, both of these versions require linearity of E(X1|X2).

Cook and Croos-Dabrera (1998) address this requirement by extending CERES plots

to the generalized linear model, but find an another requirement is necessary: that

the inverse link function g−1 stays away from its extremes so g is essentially linear.

This plot uses the coefficients from the model with mean function

g(µ) = β1X1 + β2l(X2),

where l(X2) is a function, perhaps multidimensional, that captures the behavior of

E(X1|X2). The CERES plot for X2 is then

{X2, β̂2l(X2) + e}.

Cook and Croos-Dabrera show this is unbiased for the true component of X2 only

when g is essentially linear and provide guidelines for commonly used link functions.



148 Chapter 4. Generalized linear models
β̂

2
X

2
+
e

-2 -1 0 1 2

-3
-2

-1
0

1
2

X2

(a) Ordinary partial residual plot.

β̂
2
W

1
/
2
X

2
+
e p

0 10 20 30 40

0
10

20
30

40

W 1/2X2

(b) Weighted partial residual plot.

Figure 4.5: Partial residual plots for X2, sliced over X1, for a sample from a Poisson
model.
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Interactions

It has been shown how various plots are useful for determining and displaying the

effect of individual variables when the underlying model is linear or additive, even

when complex weighted methods are used to fit the model. But in many cases,

additivity does not hold and interactions exist between two or more of the predictors.

In some of these cases, the marginal relationship of Y and X1 may be of interest,

even when there is an interaction present and

F (Y |X1, X2 = x20)

is completely different than

F (Y |X1, X2 = x21).

This interaction is irrelevant when investigating this marginal relationship, and the

marginal response plot is sufficient. If, however, the conditional relationships are of

interest, the plots developed so far may not be sufficient or appropriate. Plots useful

for these cases will now be investigated.

5.1 Net-effect plots

The net-effect plots of Section 1.3 are again useful here. To show the net-effect plot

for X1, the marginal plot of {X1, Y } is constructed, using symbols to show which data
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Figure 5.1: Conditioning plots for X1, split over five ranges of X2 values.

points have similar values of X2. Overall, this plot shows the marginal effect of X1,

and for each symbol type, it shows the conditional effect for that range of X2 values.

This is especially useful when interactions are present, because the conditional effect

of X1 will change as X2 changes.

Example 5.1

Let X1 and X2 be independent random variables, uniformly distributed between 0

and 1. Suppose that the response is Y1 = X1X2 + 0.1ε, where ε ∼ N(0, 1). The

net-effect plot for X1 given X2 is shown in Figure 5.1. Here X2 is sliced into five

equal parts, and for clarity, the five corresponding plots are shown separately, using a

conditioning plot (Cleveland, 1993). Fitted lines have also been added to emphasize

the effects.

The effect of X1 depends on X2, because the relationship between X1 and Y1 is

different in the five subplots. In the first plot, X2 varies between 0 and 0.2, and

because E(Y1|X) = X1X2, the slope of the fitted line is small, between 0 and 0.2.

And in the last plot, X2 varies between 0.8 and 1, so the slope is larger, between 0.8

and 1. �
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This type of plot is similar to the interaction plot used when the predictors are

factors, as shown by Cook and Weisberg (1999a, pp. 302–303). However, in that case,

there is no need to slice the other variable, as then the subplots can be made for each

value of the factor.

But just as in the linear and additive cases, these plots can be quite complex and

difficult to interpret. When the underlying model is additive and the conditional ef-

fects are the same, it was possible to combine the plots together in various ways to get

a simpler plot that was conditionally independent of the other variables. But because

the conditional effects are different when interactions are present, these methods must

be reconsidered to determine if and how they might still be useful.

5.2 Component-plus-residual plot

The component-plus-residual plot can be especially useful when two of the variables

interact only with each other, so the mean function is

E(Y |X) = f1(X1, X2) + f2(X3, . . . , Xp).

Here the variability due to variables X3, . . . , Xp may overwhelm the variability due

to X1 and X2, so the effects of X1 and X2 may not show up in a net-effect plot. An

alternative is to create a three-dimensional component-plus-residual plot for X1 and

X2 to only show the effect of X1 and X2; this plot has Y − f2(X3, . . . , Xp) on the

vertical axis and X1 and X2 on the horizontal axes. As three dimensional plots can

be difficult to visualize without the ability to view the plot from multiple angles, as

on the printed page, an alternate is to use conditioning plots to show what various

slices of the three-dimensional plot look like.

Example 5.2

Suppose Y2 = X1X2+X3+X4+0.1ε, where each of the Xi’s are independent Unif(0, 1)
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(b) Component-plus-residual plot for X1 and X2, using a conditioning plot.

Figure 5.2: Net-effect and component-plus-residual plots for X1 and X2 from Exam-
ple 5.2; the component-plus-residual plot makes the effect of the interaction between
X1 and X2 clearer.
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random variables, and ε is a independent standard normal. A net-effect plot for X1

given X2, where X2 is sliced into five equal regions, is shown in Figure 5.2a. Although

the relationship betweenX1, X2, and Y2 is the same as the relationship in Example 5.1,

it is not clear visually because of the extra variability added by X3 and X4. Fitting

the linear model with interactions only between X1 and X2, the coefficients for X3 and

X4 are 1.02 and 1.02, respectively. Figure 5.2b shows the component-plus-residual

plot for X1 and X2, by conditioning on the same five regions of X2 as in previous

plots. The behavior of the interaction is now clearer; for small values of X2, the effect

of X1 is small, but it increases as X2 increases. �

When a variable Xk is involved in an interaction, a one variable component-

plus-residual plot usually is not the right thing to do, as it shows the effect of Xk

after accounting for the other variables. When interactions are present, this effect is

different depending on what the other variables are, so it is impossible to remove the

effects of the other variables without also removing some of the effect of Xk.

Nevertheless, there are two ways this might be done; the first is to make the plot

as if the underlying model was additive. Consider splitting the interaction up into

three parts, so

f(X1, X2) = f1(X1) + f2(X2) + f12(X1, X2),

where f12 contains no additive functions of X1 or X2. Then if the underlying model

is additive, f12 = 0, and the component-plus-residual plot for X1 plots Y −f2(X2), or

f1(X1) + f12(X1, X2) + ε, against X1. But the conditional expectation of the y-axis

given the x-axis is then

E(f1(X1) + f12(X1, X2) + ε|X1) = f1(X1) + E(f12(X1, X2)|X1)

which still depends on X2, so the dependence on X2 has not been removed.
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Alternatively, the full effect of the other variable could be subtracted from Y ,

including how it may change with the variable of interest; this plot would be Y −

f2(X2)− f12(X1, X2) = f1(X1) + ε. This plot no longer conditionally depends on X2,

as

E(f1(X1) + ε|X1) = f1(X1).

However, it does not show the full effect of the variable of interest, only the additive

part. When only the additive part is of interest, this may be useful; but it must be

remembered that the variable has a more complex relationship with the response than

is pictured.

Example 5.3

Consider the data set in Example 5.1 where Y1 = X1X2 + 0.1ε and X1 and X2 are

Unif(0, 1). In this case, the interaction can be split up as follows:

Y1 = 1
4

+ 1
2
X1 + 1

2
X2 +

(
X1 − 1

2

) (
X2 − 1

2

)
+ 0.1ε.

The first option of removing only the additive part of X2 by plotting Y − 1
2
X2 against

X1 is shown in Figure 5.3a, with slices over X2. The varying slopes of the slices

show that the X2 dependence has not been removed. The second option is shown in

Figure 5.3b. As the slopes of the slices are now the same, the dependence on X2 has

been removed; but this plot now only shows the additive part of X1, with slope of 1
2
.

When fully accounting for X2, as in the net-effect plot of Figure 5.1, the slope instead

varies from 0 to 1. �
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(b) Component-plus-residual plot for X1,
leaving only additive part of X1.

Figure 5.3: Component-plus-residual plots for X1 from Example 5.3, using two dif-
ferent ways of accounting for X2 and the interaction between X1 and X2.
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5.3 Added-variable plot

When the variable Xk is involved in an interaction with another variable, the general

added-variable plot of

{E(Y |X)− E(Y |X\k), Y − E(Y |X\k)}

or the detrended version with a slope of zero, is also appropriate. It plots the residuals

from the model without Xk against the change in fitted values between the models

with Xk and without Xk.

Additionally, when the fitting method used can either include interactions or not,

an added-variable plot can be made for the interaction itself. Letting Mint be the

model where Xk is allowed to interact with other variables, and Madd the model

where it is not, then the added-variable plot is

{Eint(Y |X)− Eadd(Y |X), Y − Eadd(Y |X\k)},

where Eint and Eadd are the expected values with and without the interaction, respec-

tively.

5.3.1 Interactions compared with correlated predictors

It can be instructive to compare the effect of an interaction with that of correlated

predictors when displaying the effect of individual predictors using general added-

variable plots. These plots have the change in fitted values with and without the

predictor on the x-axis; the y-axis is either the residuals from the fit without it,

which is the change in fitted values plus the residuals from the full model, or to

detrend it to have a zero slope, the residuals from the full model.

When comparing several predictors, the range of the x-axis, which is the change

in fitted values, is one of the easily interpreted parts of the plot. When the range

of the x-axis is small, the effect of the variable can be considered small as it doesn’t
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change the fit very much; and when it is larger, the effect of the variable can be con-

sidered larger. However, both interactions and correlated predictors can complicate

this interpretation, in opposite ways.

When two predictors are correlated, the change in fitted values from each predictor

may be small, because the information contained in one is mostly contained in the

other. Conversely, when two predictors interact, the change in fitted values from each

predictor may be large, because removing one predictor may also remove most of the

influence of the other as well.

Example 5.4

Consider the following three situations, each with three predictors. First, let X1, X2,

X3, be independent Unif(−1, 1) random variables and Y = X1 +X2 +X3 + ε, where

ε ∼ N(0, 1). Then each predictor is related to the response in exactly the same way.

General added-variable plots for each variable are shown in Figure 5.4a, along with

the added-variable plot for the combined effect of X1 and X2. The range of the x-axis

is about the same for the plots for each of the three variables.

Now, let Xa = X1 + X2 + 0.2ε2 and Xb = X1 + X2 − 0.2ε2, where ε2 ∼ N(0, 1).

Here Xa and Xb are correlated, with ρ = 0.9. Consider the model with the three

predictors Xa, Xb, and X3; overall it is just as good as the previous model because

Xa+Xb = X1+X2, but because of the correlation the apparent effect of Xa and Xb will

be smaller. General added-variable plots for each variable are shown in Figure 5.4b,

along with the added-variable plot for the combined effect of Xa and Xb. The range

of the x-axis of the Xa and Xb plots are now smaller than the range for the X3 plot.

However, the combined effect of Xa and Xb remains the same as the effect of X1 and

X2 in the uncorrelated case.

Finally, let Xc be a random sample from {−1, 1}, and let Xd = Xc(X1 + X2),

and consider the model with the variables Xc, Xd, and X3. The true model is now
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Figure 5.4: General added-variable plots for the situations in Example 5.4, showing
the effect of interactions and correlation.
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Figure 5.5: Net-effect plot for Age, from the billionaires data set.

Y = Xc×Xd+X3, so there is now an interaction in the model. General added-variable

plots for each variable are shown in Figure 5.4c, along with the added-variable plot

for the combined effect of Xc and Xd. Now, the range of x-axis for the Xc and Xd

plots are larger than that for the X3 plot, while the combined effect again remains

the same as in the previous cases. �

5.4 Example: Billionaires

Each year, Fortune magazine publishes a list of the world’s billionaires. In 1992 the list

included 233 individuals, along with their net worth, age, and region (Asia, Europe,

Middle East, United States, and Other). The net worth variable is very skewed, so

the inverse transformation 1− 1/net worth in billions, called InvNetWorth, was used

to make it more symmetric.

Figure 5.5 shows a net-effect plot for age conditioned over the five regions. The

effect of age is minimal for each region except the Middle East, where older individuals

tend to have more wealth, indicating an interaction between age and region. Figure 5.6
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Figure 5.6: Added-variable plot for the interaction between Age and Region, from
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Figure 5.7: Added-variable plot for the interaction between Age and Region, condi-
tioned on Region, from the billionaires data set.
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shows the general added-variable plot for this interaction with a line of slope one

added. Most of the points are centered in the middle of the plot and so the interaction

has a small effect on them, but a few fall farther out. Figure 5.7 shows this same

added-variable plot, but conditioned over the five regions; the points that change most

when the interaction is added are shown to be those from the Middle East region.





Chapter 6

Black box methods

Many methods and algorithms exist for modeling the relationship between a set of

predictors and a given response that do not rely on assumptions such as linear or

additivity, as most of the methods used so far do. Many of these are quite complex

and difficult to understand. To the end user, in fact, they often seem like black boxes,

which take a set of predictors as input, and give a predicted value for the response as

output.

Tree based methods are good examples of these kinds of algorithms. A tree based

method is an algorithm that creates a decision tree for predicting the value of either

a categorical or continuous response from a given set of predictor values. Unlike con-

ventional statistical methods, tree based methods are nonparametric and nonlinear,

so are not concerned with estimating a few population parameters using statistical

inference, but instead with making the best prediction about the response. This flex-

ibility allows these types of models to fit data that may be difficult or impossible

to fit using conventional methods. Two of the most popular algorithms are CART

(Breiman et al., 1984), and C4.5 (Quinlan, 1993).

In one sense, the results from these methods are easy to understand; to get a

prediction from a set of values, just follow the if-then decisions given by the tree. It

is clear what the method is doing and how the prediction is found. However, because

163
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the tree may split on an individual predictor multiple times and in multiple branches,

the particular effect of that predictor may be difficult to understand.

The basic idea of tree based methods is to divide the data into several parts, or

branches, by splitting on one of the predictors, where the split is chosen to minimize

prediction error. The process continues by splitting the branches until the tree is

considered optimal. The method of calculating prediction error depends on the type

of response; for categorical responses, there are several measures of node impurity,

such as misclassification error, and for continuous responses, a common measure is

mean squared error. The prediction error can also be weighted to give more or less

importance to individual data points, or to a particular type of error.

In principle, splitting could continue until the tree perfectly explains the data

set, with the exception of data points that have identical predictors but different

responses. However, a tree like this will not be useful because it will be just as

complicated as the original data set, and it will not be accurate for predicting new

observations because the tree will have fit all characteristics of the particular data

set, even those which are solely due to random variation. So the size of the finished

tree must be restricted, by stopping construction early, by pruning the final branches

back, or by some combination of these procedures.

To stop the construction, splits are not made to branches that are too small,

measured as a fraction of either the entire data set, or for classification trees, of the

subset of a particular categorical response. To decide which branches to prune back,

several cross-validation variations have been proposed.

Breiman (2001) extended this tree methodology by combining multiple trees to-

gether, calling the new result a random forest. An advantage of this method is that

it does not usually have the sharp breaks that a single tree would have. However,

the resulting forest is more difficult to interpret and understand than a single tree

because there is no longer a straightforward decision tree describing the relationship
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between the predictors and the response.

In another variation, Friedman and Popescu (2005) explore rule-based methods,

which do not use the entire tree that has been built, but instead use the individual if-

then statements, or rules. The prediction model is the optimal weighted combination

of the rules formed by creating many possible trees.

These methods all produce algorithms for predicting the response Y for a partic-

ular set of predictor variables X, but this prediction does not necessarily correspond

to the conditional expected value E(Y |X); for example, it might instead correspond

to the conditional median or mode. To account for this possibility, in this section, E

will more generally denote the prediction resulting from the black box.

6.1 Added-variable plot

In general, these black box methods allow for interactions; if they are present, the

general added-variable plot

{E(Y |X)− E(Y |X\k), Y − E(Y |X\k)}

will be the only appropriate two-dimensional plot for showing the effect of Xk, as

discussed in Chapter 5. This plot can also be made in its alternate form of

{E(Y |X)− E(Y |X\k, Xk = E(Xk|X\k)), Y − E(Y |X\k, Xk = E(Xk|X\k))},

as described in Section 2.4.

If a term Xk enters the model linearly, where

E(Y |X) = βkXk + f\k(X\k),

an ordinary added-variable plot can be constructed from the black box, again using

either the change in predicted values when ignoring Xk,

{Xk − E(Xk|X\k), Y − E(Y |X\k)}
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or the change in predicted values when setting Xk = E(Xk|X\k),

{Xk − E(Xk|X\k), Y − E(Y |X\k, Xk = E(Xk|X\k))}.

6.2 Component-plus-residual plot

If a term enters additively, so

E(Y |X) = fk(Xk) + f\k(X\k), (6.1)

then a component-plus-residual plot is also appropriate for Xk. But since a black box

method does not necessarily fit fk and f\k separately, the usual method of plotting

fk(Xk) + ε is impossible. In this case the alternate version of the plot described in

Section 2.4,

{Xk, Y − E(Y |Xk, X\k = C)}, (6.2)

must be used. Here C is a fixed constant of dimension equal to X\k.

In a perfectly additive model, the choice of C is unimportant, as it will affect

the result only by a constant. However, even when the underlying model is strictly

additive, it is likely that there will be slight interactions in the fitted black box model.

But the effects of these interactions should be small, so averaging over various values

for C would achieve a good estimate of fk.

One way to do this is to use values of C corresponding to the actual measured

values for X\k. This is what Friedman (2001) recommends, calling it a partial depen-

dence plot. In general, the partial dependence of a function g(x1, x2) on x1 is defined

as the marginal expectation over x1, resulting in a function of only x2,

F (x2) = Ex1(g(x1, x2)) (6.3)
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which then in some way summarizes how g(x1, x2) depends on x2, and can be vi-

sualized with the plot of {x2, F (x2)}. This plot was used by Friedman (2001) and

Friedman and Popescu (2005). In the additive context of (6.1), the partial dependence

of Xk is

F (Xk) = EX\k(fk(Xk) + f\k(X\k))

= fk(Xk) + EX\k(f\k(X\k)).

Since the expected value is a constant, this results in the component fk as used in the

component-plus-residual plot. Interestingly, this method also works when the true

model is multiplicative and

E(Y |X) = fk(Xk)× f\k(X\k);

the partial dependence is then

F (Xk) = EX\k(fk(Xk)× f\k(X\k))

= fk(Xk)× EX\k(f\k(X\k)).

In practice, the empirical distribution of X\k must be used to take this expectation,

using the observed data values {X\k}i. The result is

F (Xk) = EX\k(E(Y |Xk, X\k))

=
1

n

n∑
i=1

E(Y |Xk, X\k = {X\k}i). (6.4)

This is identical to averaging the plots created by (6.2) when using each of the values

of X\k for C.

In an additive model

fk(Xk) + e = Y − f\k(X\k),
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so a component-plus-residual plot can also be made by finding the partial dependence

on X\k and subtracting it from Y . If the model is truly additive, these two plots would

be identical; any interactions between Xk and X\k would cause them to differ.

These methods hold for Xk of dimension q > 1, although the plots are (q + 1)-

dimensional, so are usually only useful when q ≤ 2. These multidimensional plot can

be useful to look for interactions between two predictors.

6.3 Example: Island deforestation

The island deforestation data from previous examples was refit using the random

forest methodology of Breiman (2001). General added-variable plots for all eight

variables are shown in Figure 6.1a, with the plots from the gam method also shown

for comparison in Figure 6.1b. Both are constructed by refitting the model without the

term in question and calculating the change in fitted values. For the most part, they

are similar; both show Rainfall to have a large effect, Latitude, Age, and Elevation

to have moderate effects. The effect of the rest are smaller, though generally larger

in the random forest model than in the gam model; Area in particular. The random

forest plots are also more spread out, as the residuals from this fitting method are

larger. This does not necessarily mean that the fit is worse; remember that the gam

method overfit to a few points in the previous analysis. In particular, there was one

outlier in the random forest plots that is not in the gam plots; it is at the bottom of

the Dust and Elevation plots. This is the site on the North Island of New Zealand;

it has a smaller deforestation value (2) than would otherwise be expected using this

model. It does not appear as an outlier in the gam model because it was one of the

sites with large area identified in Section 2.5 that the model seemed to overfit to.

Component-plus-residual plots formed using the partial dependence method are

shown in Figure 6.2a, with the plots from the gam method again shown for comparison
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(a) Using the random forest fit.
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Figure 6.1: General added-variable plots for the island deforestation data, using the
random forest and gam fits.
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(b) Using the gam fit.

Figure 6.2: Component-plus-residual plots for the island deforestation data, using the
random forest and gam fits.
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Figure 6.3: The partial dependences for Latitude calculated for each data point indi-
vidually; these are averaged to get the overall partial dependence.

in Figure 6.2b. The fits from the random forest are for the most part again similar

to the fits from the gam method, though there are some differences. In particular,

where the gam method seemed to overfit to a few points, such as the sites with high

Latitude, high Elevation, or low Age, the random forest method does not. Again,

Rainfall, Latitude, and Elevation have the strongest relationship with Deforestation.

To explore further how these partial dependence plots were formed, Figure 6.3a

shows the component-plus-residual plot for Latitude using a black line and black

points, with the partial dependence calculated individually for each individual data

point shown with gray lines. Each of these lines is centered with its mean at zero,

so some of the lines show less of an effect than the average, and some more. Fig-

ure 6.3b shows these lines in three dimensions, ordered by increasing range. This

might be evidence of an interaction between Latitude and other variables, if there is

any systematic relationship between these lines and another variable.
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Figure 6.4: Two-dimensional partial dependence plots for two predictor combinations
of the island deforestation data.

To investigate interactions, two-dimensional partial dependence plots can be cre-

ated. Plots for Latitude and Rainfall and for Elevation and Rainfall are shown in

Figure 6.4. In these plots, the effect of Rainfall does not change as Latitude or

Elevation changes, so there is no evidence for an interaction involving Rainfall.

Finally, Figure 6.5 shows marginal response plots, with lines showing marginal

loess fits and alternate marginal mean functions from the random forest fit. The

behavior is similar.
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Figure 6.5: Marginal response plots for all variables in the island deforestation data
set, with loess fits (solid lines) and alternate marginal mean functions for the random
forest fit (dashed lines) added.





Chapter 7

Variable importance

Many methods of measuring variable importance are based on decomposing the R2

value into contributions from each predictor. Several of these methods are discussed

in this chapter, and a new method based on ARMS introduced. However, these

methods rely on the predictors being a random sample from a population. For just as

the visual sense given by the component-plus-residual plots changes when the range

of a predictor changes, so does the change in R2 due to that predictor. Nevertheless,

these types of methods are presently used to measure variable importance, and so

will be discussed here.

7.1 By decomposing R2

Grömping (2007) provides a review of various variable importance measures for ad-

ditive linear regression models that are based on decomposing R2, and compares two

measures that he deems the best. There are four criteria he considers useful, they

are:

1. Proper decomposition: the contributions to R2 by each variable should sum to

the R2 of the full model.

2. Non-negativity : each contribution should be non-negative.
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3. Exclusion: if the coefficient of a given predictor is 0, the contribution should

also be 0.

4. Inclusion: if the coefficient of a given predictor is nonzero, the contribution

should also be nonzero.

When the correlation between the predictors are all zero, this is a simple problem,

as the contributions do not “overlap” in any way. When the correlation is non-zero,

but the predictors can be ordered in some way, the contributions can be divided by

considering the amount explained by the first, the amount explained by the second

given the first, the amount explained by the third given the first two, and so on.

In the general case, there is correlation and no obvious ordering. According to

Grömping, some analysts use the ordering given by an automated forward or backward

selection of variables, e.g. by stepwise methods or the lasso. But these approaches

have been criticized because the ordering can be quite arbitrary.

Another option for what to do is to compute the contributions for each possible

permutation of the variables and compute an average; see Lindeman et al. (1980)

and Kruskal (1987). This is the first measure compared by Grömping. However, this

technique does not satisfy the exclusion criteria, even in the population. Consider

a spurious predictor (i.e., one with a nonzero coefficient) that is correlated with a

nonspurious predictor. Then in the permutations where the spurious predictor is

chosen before the nonspurious predictor, it will have a nonzero contribution.

Grömping claims that in some cases this might be the right behaviour, such as

when a change in the spurious predictor causes a change in the nonspurious predictor.

Here it might be desired to highlight the effect of the spurious predictor by allowing

its importance to be nonzero.

The second measure compared by Grömping,proposed by Feldman (2005), does

satisfy the exclusion criteria. It again uses the importances from each possible per-



7.2. Using model combining 177

mutation of the predictors, but computes the overall importance using a weighted

average, where the weight for a particular permutation (r1, . . . , rp) is proportional to

p−1∏
i=1

(evar(all)− evar({r1, . . . , ri}))−1 (7.1)

where evar({S}) is the variance explained by the variables in S. Thus if in a given

permutation, the first regressor already captures a large part of the variance, that

permutation will be given a large weight.

This procedure is a compromise between the procedure that averages over all

permutations and the procedure based on a single permutation from an automated

forward or backward model selection procedure.

7.2 Using model combining

An alternate way of compromising between equal weights for all permutations and

full weight on one permutation would be to use a model averaging procedure such

as ARMS by finding the importances for each submodel by using equal weights, and

then computing a weighted average using the ARMS weights.

This asymptotically satisfies the exclusion criteria because if a coefficient is zero,

the weight of models including that term will go to zero. Inclusion also holds asymp-

totically because ARMS always includes terms with non-zero coefficients. Proper

decomposition would hold in the following sense; the sum of the contributions would

not sum to the R2 given by the model with all predictors, but instead to the weighted

average of the R2 values for each model, using the ARMS weights. This could be con-

sidered a better measure of the actual R2 as the model with all the variables actually

overfits to the actual data. In the cases investigated here, these two R2 values are

comparable; in cases where they are not, they could be compared by standardizing
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so that the contributions always sum to one.

7.3 Comparing importance measures

Grömping compared the method with equal weights, called LMG, after Lindeman

et al., and the method with weights given in (7.1), called PMVD, or proportional

marginal variance decomposition, for several simulated settings. These settings, and

a few more, have been recreated, and these methods compared with using ARMS to

determine the weights.

The first set of simulations tested two parameter vectors and two correlation struc-

tures for various values of ρ; true R2 was 0.9 for each. There were 100 repetitions, and

the mean importance of each predictor is shown in Figure 7.1. The four simulations

are shown in the four columns. They were:

1. β = (1, 1, 1, 1)T and corr(Xj, Xk) = ρ. Each predictor has equal importance,

and all three methods agree.

2. β = (1, 1, 1, 1)T and corr(Xj, Xk) = ρ|j−k|. The predictors have equal coeffi-

cients, but are given different importance because of the correlation structure.

There are slight differences between LMG and PMVD; ARMS is quite close to

LMG.

3. β = (4, 1, 1, 0.3)T and corr(Xj, Xk) = ρ. As the correlation increases, the

importances from LMG become more equal, despite the differing coefficients.

This is much less noticable in the PMVD method. ARMS behaves like LMG,

as all the variables should be included in the model.

4. β = (4, 1, 1, 0.3)T and corr(Xj, Xk) = ρ|j−k|. Same overall behavior as the

previous simulation, but with different curvatures.
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Figure 7.1: Proportions of R2 allocated to each regressor for LMG (thick dotted),
PMVD (thin dotted) and ARMS (thin line) for various ρ values. Each column (a
through d) is a distinct simulation; each row is a different predictor (X1 through X4).
The parameter vector was (1, 1, 1, 1)T for a and b and (4, 1, 1, 0.3)T for c and d. The
correlation for a and c was ρ, for b and d it was corr(Xj, Xk) = ρ|j−k|.
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For these simulations, ARMS acted like LMG; this is not surprising as all the variables

should have been included in the model.

The next set of simulations investigated the variation of the responses; Grömp-

ing claimed that this was the most interesting outcome of his simulations. The in-

terquartile ranges for simulations with seven different parameter vectors are shown in

Figure 7.2. Grömping noted that LMG usually had a smaller variation than PMVD.

ARMS is usually between the two.

As ARMS should behave like PMVD when there are spurious variables, the

parameter vector (1, 0, 1, 0, 1, 0, 1, 0) was used, so there were four parameters with

equal coefficients and four with zero coefficients. The two correlation structures were

corr(Xj, Xk) = ρ and corr(Xj, Xk) = ρ|j−k|.

Figure 7.3 shows the average importances calculated over 100 simulations. ARMS

does act more like PMVD in these examples, though it is still almost always between

the two estimates. An interesting exception is X3 and X5 in the changing correlation

simulation (Figure 7.4a) where the ARMS importance stays constant across ρ, unlike

LMG, which increases, or PMVD, which decreases.

However, while the ARMS estimate usually acts more like PMVD in terms of the

mean importance, Figure 7.4 shows that the ARMS variance does not increase like

PMVD, but instead is usually as small as that of the LMG estimate.

For situations where there are many predictors, of which some are spurious but

correlated with nonspurious predictors, using the ARMS weights to construct the

importance measure can result in importances that meet the exclusion property by

giving a small importance to the spurious predictors, but without the larger variance

seen when using the PMVD procedure.
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Figure 7.2: Interquartile ranges from 100 simulations for LMG (thick dotted), PMVD
(thin dotted), and ARMS (thin line). The actual R2 is 0.25 and the correlation
structure is corr(Xj, Xk) = ρ|j−k|.
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Figure 7.3: Average importance values for the simulations using the parameter vector
(1, 0, 1, 0, 1, 0, 1, 0), for LMG (thick dotted), PMVD (thin dotted) and ARMS (thin
line) methods.
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Figure 7.4: Interquartile ranges for the simulations using the parameter vector
(1, 0, 1, 0, 1, 0, 1, 0), for LMG (thick dotted), PMVD (thin dotted) and ARMS (thin
line) methods.





Chapter 8

Conclusions and future work

This research has investigated graphical methods of determining predictor importance

and effect. First, a criteria for determining and evaluating useful plots for this purpose

was developed; namely, that for a plot to show how an individual predictor is related

to the response, the variable on the vertical axis should be conditionally independent

of the other predictors, given the variable on the horizontal axis. Removing the

dependence on the other predictors makes the relationship between the variable of

interest and the response clearer.

Of the many plots that satisfy this criteria, plots with especially interpretable

axes were investigated further, and used to show several different aspects of the re-

lationship between the predictor of interest and the response; most importantly, the

marginal relationship and the conditional relationship after conditioning on the other

predictors. The effect of the variable of interest can look very different when the other

predictors are conditioned on, and certain plots show one relationship, and certain

plots the other.

To show the marginal relationship, the marginal response plot was first considered,

but it does not satisfy the desired condition, as it includes variability from the other

predictors. A new plot, called the marginal-plus-residual plot, was proposed to remove

this variability and clarify the marginal relationship. Additionally, a new alternate
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marginal plot was also discussed; for a given model function, it shows the relationship

between the predictor and the response when the other predictors are set to their

expected values given the predictor of interest. This plot is interesting because it

shows some kind of compromise between the marginal and conditional relationships;

it can show exactly the marginal or the conditional relationship, or something in

between, depending on the relationships between the predictors.

Two well-known plots for showing the conditional relationship are the component-

plus-residual plot and the added-variable plot. These were derived from the desired

criteria, and their usefulness explored in several contexts, including linear models,

additive models, generalized linear models, models with interactions, and models fit

using “black box” methods. Of particular note is a new added-variable plot developed

for use with generalized linear models that successfully removes the conditional de-

pendence of the other variables. Additionally, an alternate added-variable plot was

developed, and the relationship between the ARES plot and the added-variable plot

was explored.

Of special interest was determining how to construct these plots when using a

model combining method, such as ARMS. For the component-plus-residual plot, a

straightforward weighting of the plots from each of the submodels met the appropri-

ate criteria, and was shown to be an excellent picture of the effect of the predictor

of interest, as it averages over the possible effects given by the various submodels.

However, for the added-variable plot, several options are possible. One option is to

condition on all the predictors, resulting in a plot that can be interpreted just like a

regular added-variable plot. But if some of the predictors should not be conditioned

on, this may understate the effect of the predictor of interest. So a second option is to

construct the plot by only partially conditioning on the variables not included in one

or more submodel, using the weights from the model combining method. This shows

a compromise between the plot when fully conditioning, and the plot when fully not
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conditioning, and is helpful because which variables should be removed is unknown.

The weights produced by a model combining method such as ARMS were also ap-

plied to variable importance measures, which aim to reduce the relative contribution

of each predictor to a single number, rather than showing a more complex graphical

representation. Although this is straightforward when the predictors are independent,

when correlations and interactions between the predictors are present, tradeoffs must

be made, and several competing methods exist. A modification of one of these meth-

ods was proposed, using the weights from a model combining method. It was shown

in simulation that this modification had better properties than the initial method.

There are several ways this research could be extended. First, these plots could be

explored in other settings, including mixed models, or cases with categorical predictors

and responses. Another avenue for research is to continue to explore the usefulness

of the apparently new plots developed in this thesis. In the examples shown here,

they do seem helpful, but exactly which plots are helpful when, and how to determine

those times, remains open.





Appendix A

Computing

All computing for this thesis was done in R version 2.5.1 (R Development Core Team,

2007), with two additional packages. These will be available on the author’s website

at http://www.stat.umn.edu/~arendahl.

First, the ARMS package, written by Sanford Weisberg with assistance from the

author, was developed to run the ARMS procedure, as proposed by Yuan and Yang

(2005). It can run ARMS on a full linear model, using linear models of subsets of

the variables as submodels. The number of subsets to screen, the number of random

splits, the size of the split, and when to screen can all be controlled. Output includes

a list of the selected submodels, their weights, and their coefficients. Additionally, the

coefficients, fitted values, and residuals of the full weighted model can all be easily

accessed.

Secondly, the akrplots package was developed to facilitate building local net-

effect plots and several related plots, including added-variable plots, component-plus-

residual plots, marginal plots, and partial dependence plots. These specific plots can

be built for linear models, additive models from the gam library, ARMS models, and

random forest models. The added-variable plots for generalized linear models are

also available. The code for added-variable plots and component-plus-residual plots

is based on that in the car package (Fox, 2007).
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This package also can construct local net-effect plots, two variables are specified

for the axes of the scatterplot, with the option of slicing the plot on a third variable;

this slicing can be done evenly, by quantiles, by unique values, or directly specified.

The points in each slice are each given a different symbol. Additionally, linear, loess,

and gam fits can be added, either for each slice or overall. This package also can save

the information from a plot in a variable, to be replotted or modified later.

Additional packages used included gam (Hastie, 2006) and mgcv (Wood, 2006),

for fitting additive models; randomForest (Liaw and Wiener, 2002), for the random

forest models, relaimpo (Grömping, 2007), for the relative importance calculations,

and scatterplot3d (Ligges and Mächler, 2003), for the three-dimensional plots.

Finally, most plots were created in the xfig format and separated into graphical and

textual elements, which were then converted into pdf and LaTeX formats, respectively,

and overlaid to get the final result. The remaining plots were created directly in the

pdf format.
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