Group Beta

Jaya Jha, Jieun Lee, Tianbi Men, Qi Shi, Xinling Xu, Henry Wyneken

May $1^{\text {st }} 2013$

Outline

- Introduction
- Problem Statement
- Data Exploration
- Model Selection
- Data Analysis
- Results
- Conclusion
- Further Study

Introduction

Problem

Does an instructor discriminate among his

 students based on their gender and/or clothing?
Introduction

Data Collection:

- Video recording
- Two evaluators

Population:

- Male and female students
- Introductory class

Sample Size:

- 231 students

Introduction

Variables:

Instructor-Student interaction: Positive/Negative

Gender: Male/Female

Clothing Type: Unisex/Standard/Other

Introduction: N/A vs. Zero

Objective

Is there evidence of discrimination?

Data Exploration

Data Summary: Sample

Female	111	48.1%
Male	120	51.9%
Total	231	100%
Unisex	54	23.4%
Standard	72	31.2%
Total	105	100%

Data Summary: Sample

Unisex Female	19	8.2%
Unisex Male	35	15.2%
Standard Female	39	16.9%
Standard Male	33	14.3%
Other Female	53	22.9%
Other Male	52	100%
Total	231	22.5%

The distribution of Positive response VS Clothing:Gender

The mean proportion of Positive response VS.Clothing:Gender

Model Selection

Candidate Models

1. Poisson Model
2. Zero-inflated Poisson Model
3. Negative Binomial Model
4. Binomial Model
5. Multinomial Model

Candidate Model: Poisson

- Motivation
- Count data, non-negative integers
- Assumptions

$$
\begin{aligned}
& y_{i} \sim \operatorname{Poisson}\left(\mu_{i}\right) \\
& \mu_{i}=\operatorname{Var}\left(y_{i}\right)
\end{aligned}
$$

- Concerns
- Highly skewed
- mean < variance (too many zeros)

Candidate Model: Poisson

- Models
In (Positive)=Clothing*Gender
\ln (Positive)=Clothing+Gender
\ln (Negative)=Clothing*Gender
In(Negative)=Clothing+Gender

Candidate Model: ZI Poisson

- Motivation
- Count Data
- Many zeros, especially for Negative Feedback
- Assumptions
- Some Zero All zero
- Some Count Poisson process
- Concerns
- Too few predictors (Gender \& Clothing)

Candidate Model: ZI Poisson

- Model

Positive~Clothing*Gender|1
Negative~Clothing*Gender|1
Positive~Clothing*Gender|Clothing*Gender
Negative~Clothing*Gender|Clothing*Gender

Candidate Model: Negative Binomial

- Motivation:
- Count Data
- Overdispersion
- Assumptions

$$
\begin{aligned}
& y_{i} \sim \operatorname{Negbin}\left(\mu_{i}\right) \\
& \mu_{i}=\operatorname{Varar}\left(y_{i}\right)
\end{aligned}
$$

- Limitations
- Fit Positive feedback and Negative feedback separately

Candidate Model: Negative Binomial

- Models

In(Positive)=Clothing*Gender
In(Positive)=Clothing+Gender
In(Negative)=Clothing*Gender
In(Negative)=Clothing+Gender

Data Analysis

Final Model: Binomial

- Motivation:
- Interaction=Bernoulli Experiment
- Simplicity
- Negative and Positive in a Single Model
- Assumptions

$$
\begin{aligned}
y_{i} & \sim \operatorname{Bin}\left(n_{i}, p_{i}\right) \\
y_{i} & =\# \text { Positive Interaction } \\
n_{i} & =\# \text { Total Interaction }
\end{aligned}
$$

Final Model: Binomial

- Data Deletion:
- 26 observations with no interaction
- R Function
glm(cbind(Positive,Negative)~Gender+Other+Unisex, family=binomial(link=logit),data)

Final Model: Binomial

- Logit: response= $\log (p /(1-p))$
- Probit: response $=\Phi^{-1}(\mathrm{p})$, where Φ^{-1} is the inverse normal cumulative distribution function

Final Model: Binomial

- Final Model:

$$
\operatorname{Ln}\left(\frac{\hat{p}}{1-\hat{p}}\right)=1.72+0.82 \text { Unisex }
$$

- Model Indication
- $p_{\text {unisex }}=92.7 \%$ vs $p_{\text {non-unisex }}=84.8 \%$
- Gender not statistically significant

Final Model: Binomial

- Limitations:
- Low deviance explained

Null deviance: 243.51 on 204 degrees of freedom
Residual deviance: 232.72 on 203 degrees of freedom

- Poor residual plot

Final Model: Multinomial

- Consider a restatement of the problem
- For each student, there are three possibilities
- Only positive interactions (somePos)
- Only negative interactions (someNeg)
- Both positive and negative interactions (Both)

Final Model: Multinomial

- Do Gender and Clothing matter?
- No interactions: 26 Students
- Likelihood-ratio tests: Gender matters

Final Model: Multinomial

- Let Base be the base group
- Let j be the jth group
- Let x be a predictor
- Under the multinomial model:

$$
\log \left(\frac{p_{j}}{p_{\text {Base }}}\right)=\beta_{0 j}+\beta_{1} j x
$$

- Base group in our model: Both

Final Model: Multinomial

$$
\log \left(\frac{\hat{p}_{\text {someNeg }}}{\hat{p}_{\text {Both }}}\right)=-2.35-0.73 \text { GenderMale }
$$

$$
\log \left(\frac{\hat{p}_{\text {somePos }}}{\hat{p}_{\text {Both }}}\right)=1.22-0.83 \text { GenderMale }
$$

- Only the GenderMale for somePos was significant

Final Model: Multinomial

Fitted Probabilities by Gender

Final Model: Multinomial

- Only Positive is the most likely category
- Only Negative is the least likely category
- 20\% gap for males

Conclusions

Conclusions

- Different results in the final models

Choice of response matters

- We can measure associations, not discrimination
- Statistical significance does not equal practical importance

Further Study

To improve the study:

- Student's academic performance (i.e. GPA)
- Student's major
- Clearer definitions of clothing type
- More observers
- Semester evaluation by students
- Interview the four students (only negative)
- Do this study at the first week of school

Afterword: All Zeroes

	Unisex	Standard	Other	Total
Female	3	6	8	17
Male	2	2	5	9
Total	5	8	13	26

