Group Beta

Jaya Jha, Jieun Lee, Tianbi Men, Qi Shi, Xinling Xu, Henry Wyneken

May 1st 2013

Outline

- Introduction
 - Problem Statement
 - Data Exploration
- Model Selection
- Data Analysis
 - Results
- Conclusion
- Further Study

Introduction

Problem

Does an instructor discriminate among his students based on their gender and/or clothing?

Introduction

Data Collection:

- Video recording
- Two evaluators

Population:

- Male and female students
- Introductory class

Sample Size:

– 231 students

Introduction

Variables:

Instructor-Student interaction: Positive/Negative

Gender: Male/Female

Clothing Type: Unisex/Standard/Other

Introduction: N/A vs. Zero

Objective

Is there evidence of discrimination?

Data Exploration

Data Summary: Sample

Total	231	100%
Other	105	45.4%
Standard	72	31.2%
Unisex	54	23.4%
Total	231	100%
Male	120	51.9%
Female	111	48.1%

Data Summary: Sample

Unisex Female	19	8.2%
Unisex Male	35	15.2%
Standard Female	39	16.9%
Standard Male	33	14.3%
Other Female	53	22.9%
Other Male	52	22.5%
Total	231	100%

The distribution of Positive response VS Clothing:Gender

The distribution of Negative response VS Clothing:Gender

The mean proportion of Positive response VS.Clothing:Gender

Model Selection

Candidate Models

- 1. Poisson Model
- 2. Zero-inflated Poisson Model
- 3. Negative Binomial Model
- 4. Binomial Model
- 5. Multinomial Model

Candidate Model: Poisson

Motivation

- Count data, non-negative integers

• Assumptions

 $y_i \sim \text{Poisson}(\mu_i)$ $\mu_i = Var(y_i)$

- Concerns
 - Highly skewed
 - mean < variance (too many zeros)</p>

Candidate Model: Poisson

• Models

In(Positive)=Clothing*Gender
In(Positive)=Clothing+Gender
In(Negative)=Clothing*Gender
In(Negative)=Clothing+Gender

Candidate Model: ZI Poisson

- Motivation
 - Count Data
 - Many zeros, especially for Negative Feedback
- Assumptions
 - Some Zero All zero
 - Some Count Poisson process
- Concerns
 - Too few predictors (Gender & Clothing)

Candidate Model: ZI Poisson

• Model

Positive~Clothing*Gender | 1 Negative~Clothing*Gender | 1 Positive~Clothing*Gender | Clothing*Gender Negative~Clothing*Gender | Clothing*Gender

Candidate Model: Negative Binomial

- Motivation:
 - Count Data
 - Overdispersion
- Assumptions

 $y_i \sim Negbin(\mu_i)$ $\mu_i = \phi Var(y_i)$

- Limitations
 - Fit Positive feedback and Negative feedback separately

Candidate Model: Negative Binomial

• Models

In(Positive)=Clothing*Gender In(Positive)=Clothing+Gender In(Negative)=Clothing*Gender In(Negative)=Clothing+Gender

Data Analysis

- Motivation:
 - Interaction=Bernoulli Experiment
 - Simplicity
 - Negative and Positive in a Single Model
- Assumptions

 $y_i \sim Bin(n_i, p_i)$

y_i = *# Positive Interaction*

n_i = *# Total Interaction*

• Data Deletion:

- 26 observations with no interaction

• R Function

glm(cbind(Positive,Negative)~Gender+Other+Unisex, family=binomial(link=logit),data)

- Logit: response=log(p/(1-p))
- Probit: response= $\Phi^{-1}(p)$, where Φ^{-1} is the inverse normal cumulative distribution function

• Final Model:

$$Ln\left(\frac{\hat{p}}{1-\hat{p}}\right) = 1.72 + 0.82 Unisex$$

- Model Indication
- $-p_{unisex} = 92.7\% vs p_{non-unisex} = 84.8\%$
- Gender not statistically significant

• Limitations:

Low deviance explained

Null deviance: 243.51 on 204 degrees of freedom Residual deviance: 232.72 on 203 degrees of freedom

Poor residual plot

- Consider a restatement of the problem
- For each student, there are three possibilities
 - Only positive interactions (somePos)
 - Only negative interactions (someNeg)
 - Both positive and negative interactions (Both)

• Do Gender and Clothing matter?

• No interactions: 26 Students

• Likelihood-ratio tests: Gender matters

- Let Base be the base group
- Let j be the jth group
- Let x be a predictor
- Under the multinomial model:

$$\log\left(\frac{p_j}{p_{Base}}\right) = \beta_{0j} + \beta_1 j x$$

• Base group in our model: *Both*

$$log\left(\frac{\hat{p}_{someNeg}}{\hat{p}_{Both}}\right) = -2.35 - 0.73GenderMale$$

$$log\left(rac{\hat{p}_{somePos}}{\hat{p}_{Both}}
ight) = 1.22 - 0.83GenderMale$$

 Only the GenderMale for somePos was significant

• Only Positive is the most likely category

• Only Negative is the least likely category

• 20% gap for males

Conclusions

Conclusions

Different results in the final models
 Choice of response matters

• We can measure associations, not discrimination

• Statistical significance does not equal practical importance

Further Study

To improve the study:

- Student's academic performance (i.e. GPA)
- Student's major
- Clearer definitions of clothing type
- More observers
- Semester evaluation by students
- Interview the four students (only negative)
- Do this study at the first week of school

Afterword: All Zeroes

	Unisex	Standard	Other	Total
Female	3	6	8	17
Male	2	2	5	9
Total	5	8	13	26