Case Study 3: Dressings

Wen, Matt, Emily, Greg, and Garrett

STAT 8801 Statistical Consulting

February 10, 2012

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Recap of Situation: What is the Question?

- Goal: compare a new dressing for minor operations to a standard dressing
- Experiment procedure:
 - \blacktriangleright two sites selected on each subject \rightarrow
 - \blacktriangleright wounds be simulated at each site \rightarrow
 - each subject has new dressing at one site and standard dressing at the other
- Measurement procedure:
 - outcomes (on a 1-5 scale): pain, infection level, healing speed, etc.

repeated at 7 days, 14 days, and 42 days after the surgery

A random sample of subjects representative of the target population (however, socioeconomic status?)

- A random sample of subjects representative of the target population (however, socioeconomic status?)
- Same sites across subjects, preferrably symmetrical sites within each subject

- A random sample of subjects representative of the target population (however, socioeconomic status?)
- Same sites across subjects, preferrably symmetrical sites within each subject
- Dressings should be as similar in appearance as possible

- A random sample of subjects representative of the target population (however, socioeconomic status?)
- Same sites across subjects, preferrably symmetrical sites within each subject
- Dressings should be as similar in appearance as possible
- Determine primary, secondary and surrogate responses before experiment

- A random sample of subjects representative of the target population (however, socioeconomic status?)
- Same sites across subjects, preferrably symmetrical sites within each subject
- Dressings should be as similar in appearance as possible
- Determine primary, secondary and surrogate responses before experiment
 - continuous: scores at 14th day, differences from 7 to 14 days

- binary: did level reach a threshold?
- categorical: trajectory pattern (e.g., increasing, flat, decreasing, etc.)
- time to event: healing time
- weighted combination

- A random sample of subjects representative of the target population (however, socioeconomic status?)
- Same sites across subjects, preferrably symmetrical sites within each subject
- Dressings should be as similar in appearance as possible
- Determine primary, secondary and surrogate responses before experiment
 - continuous: scores at 14th day, differences from 7 to 14 days
 - binary: did level reach a threshold?
 - categorical: trajectory pattern (e.g., increasing, flat, decreasing, etc.)
 - time to event: healing time
 - weighted combination
- Collect as detailed personal information as possible at baseline (e.g., gender, age, socioeconomic status, etc.)

- A random sample of subjects representative of the target population (however, socioeconomic status?)
- Same sites across subjects, preferrably symmetrical sites within each subject
- Dressings should be as similar in appearance as possible
- Determine primary, secondary and surrogate responses before experiment
 - continuous: scores at 14th day, differences from 7 to 14 days
 - binary: did level reach a threshold?
 - categorical: trajectory pattern (e.g., increasing, flat, decreasing, etc.)
 - time to event: healing time
 - weighted combination
- Collect as detailed personal information as possible at baseline (e.g., gender, age, socioeconomic status, etc.)
- Make efforts to ensure no subjects dropping out the study before it ends

FDA's requirement

¹Diggle, P.J. et al. 2002. Analysis of Longitudinal Data (2nd ed.). Oxford, U. K.: Oxford University Press.

- FDA's requirement
- Past studies

¹Diggle, P.J. et al. 2002. Analysis of Longitudinal Data (2nd ed.). Oxford, U. K.: Oxford University Press.

- FDA's requirement
- Past studies
- Statistically,

outcomes measured at a single time point:

$$\frac{2(z_\alpha+z_\beta)^2}{[(\mu_1-\mu_2)/\sigma]^2}$$

outcomes measured across timepoints:1

$$\frac{2(z_{\alpha}+z_{\beta})^{2}(1+(n-1)\rho)}{[n(\mu_{1}-\mu_{2})/\sigma]^{2}}$$

¹Diggle, P.J. et al. 2002. Analysis of Longitudinal Data (2nd ed.). Oxford, U. K.: Oxford University Press.

- FDA's requirement
- Past studies
- Statistically,

outcomes measured at a single time point:

$$\frac{2(z_\alpha+z_\beta)^2}{[(\mu_1-\mu_2)/\sigma]^2}$$

outcomes measured across timepoints:1

$$\frac{2(z_{\alpha}+z_{\beta})^{2}(1+(n-1)\rho)}{[n(\mu_{1}-\mu_{2})/\sigma]^{2}}$$

Realistic constraints: money, time, effort

¹Diggle, P.J. et al. 2002. Analysis of Longitudinal Data (2nd ed.). Oxford, U. K.: Oxford University Press.

Consider this question: is the new dressing more effective in reducing infection level at day 7 compared to the standard dressing?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Subject	Trt(D7)	Infection(D7)	
1	New	2	
1	Std	4	
2	New	4	
2	Std	4	

• • •

Consider this question: is the new dressing more effective in reducing infection level at day 7 compared to the standard dressing?

Subject	Trt(D7)	Infection(D7)
1	New	2
1	Std	4
2	New	4
2	Std	4

...

Key: Within-subject observations (e.g., rows 1 and 2) are correlated, whereas between-subject observations (e.g., subjects 1 and 2) are independent.

Approaches:

- Simplify responses
- Control for subject id
- Model the within-subject correlation explicitly

Simplify responses: one response for each subject

- Case I: continuous outcomes:
 - Compute the difference between the infection score under new dressing and that under standard dressing for each subject $\frac{Subject \quad I_{new}(D7) \quad I_{std}(D7) \quad \delta}{1 \quad 2 \quad 4 \quad -2} \\
 2 \quad 4 \quad 4 \quad 0$

▶ Paired *t*-test: mean(δ) different from zero?

Simplify responses: one response for each subject

- Case I: continuous outcomes:
 - Compute the difference between the infection score under new dressing and that under standard dressing for each subject Subject *I_{new}*(D7) *I_{std}*(D7) δ

•) (,
1	2	4	-2
2	4	4	0

Paired t-test: mean(δ) different from zero?

Case II: binary outcomes:

. . .

. . .

Choose a threshold, e.g., 3				
Subject	$I_{new}(D7)$	$I_{std}(D7)$	Profile	
1	2	4	LH	
2	4	4	HH	

Pearson's residual test

- Control for subject id: subjects as fixed blocks (consumes a lot of degrees of freedom but requires weaker assumption)
 - > aov(infection ~ factor(subject) + factor(trt))

- Control for subject id: subjects as fixed blocks (consumes a lot of degrees of freedom but requires weaker assumption)
 - > aov(infection ~ factor(subject) + factor(trt))
- Model the within-subject correlation explicitly: subjects as random blocks (only two parameters are needed but assumptions may not hold)
 - > lmer(infection ~ factor(trt) + (1|subject))

- Control for subject id: subjects as fixed blocks (consumes a lot of degrees of freedom but requires weaker assumption)
 - > aov(infection ~ factor(subject) + factor(trt))
- Model the within-subject correlation explicitly: subjects as random blocks (only two parameters are needed but assumptions may not hold)
 - > lmer(infection ~ factor(trt) + (1|subject))

- Control for subject id: subjects as fixed blocks (consumes a lot of degrees of freedom but requires weaker assumption)
 - > aov(infection ~ factor(subject) + factor(trt))
- Model the within-subject correlation explicitly: subjects as random blocks (only two parameters are needed but assumptions may not hold)
 - > lmer(infection ~ factor(trt) + (1|subject))
- Similar logic extends into repeated measures analysis (e.g., if responses from all three measurement occasions are considered)
 - > lmer(infection ~ factor(trt) + (1|subject) +
 (1|subject: day))