Case Study 3: Dressings

Zhou, Jie, Chris, Felipe, Bryan

0

Recap of Problem

- Compare new dressing for minor operations to a standard dressing.
 - Two sites will be selected on each subject and wounds simulated at each site.
 - New dressing at one site and standard dressing at the other
- Measurements will be made on several responses such as pain, level of infection, speed of healing, and others on a I (worst) to 5(best) scale.
 - Repeated at 7 days, 14 days, and 42 days after surgery.
 - Standard dressing heals wounds in 42 days

Questions for Client

- What they want to do?
- Where sites are selected and how?
 - Same area or similar body part?
 - Randomize which body part is selected if different patients have different body parts selected
 - Area selected could affect healing time.
- Site effects of dressing?
 - Could be a random effect.
- Who is being selected?
 - Will prior medical history be accounted for?
 - Age of people could matter.
- What does the scale mean?
 - The scale I (worst) to 5 (best) measures many different responses
 - What does each number correspond to?
 - How to use the scale to measure pain?
 - Different pain tolerances

Advice on Experiment

- Depending on which body parts are selected, randomize which wound gets which dressing.
- It might actually be easier to select areas that are similar.
 - Either in the same general area
 - Or use symmetry of the human body

Number of Patients

- What is their budget?
 - Maybe the dressing is expensive
 - Take into account people may drop out
 - Demographics of people
 - Age
 - Prior medical conditions
- We could calculate the size of the sample based on perceived effects and the desired power

How to Analyze

- Could use a table to compare means of measured quantities and test for differences on each of the three different days between Standard and New Dressings for a body part selected.
 - For example we could find the New has a higher pain score on day 7, but a lower pain score on day 14 and 42.

Days	7	14	42
Standard	2.9	3.4	4.6
New	1.2	3.8	5

How to Analyze

- Could use a Time Series model if the client wants to see a change in the measurement taken over time
 - Could include random effects
 - Random Intercepts
 - Random Slopes
 - Could include both time variant and time invariant covariates
 - Maybe medical history could change during the study and biological sex remain the same