Review

- More on Estimation
 - Finding estimators using Maximum Likelihood and the Method of Moments
 - Large sample properties of MLEs (won't be on exam)
- Concepts of Statistical Testing
 - Elements of a test (null and alternate hypotheses, test statistic, rejection region)
 - Type I and Type II Errors
 - Power
 - relationship of these to sample size
 - p-values
- Large Sample Testing
 - execute tests for the four basic large sample cases
 - find Type II Error/Power for a given sample size and vice versa
 - find the p-value for a given test
 - be able to relate hypothesis testing, p-values, and confidence intervals
- Theory of Hypothesis Testing
 - Use Neyman Pearson Lemma to find the most powerful test for simple hypotheses
 - Extend the Neyman Pearson Lemma to find the UMP for composite hypotheses, or show that a UMP test does not exist.
 - Test composite hypotheses using the Likelihood Ratio Test

Exam Logistics

- You are permitted two sheets of notes.
- Bring a calculator.
- I'll give you copies of the front and back covers of the text and any other tables (such as the χ^2) that you may need.

Practice Exam

- 1. Suppose you have a data set of 50 observations with sample mean $\bar{x} = 12$ and sample variance $s^2 = 56 = 7.5^2$.
 - (a) Find a 95% confidence interval for the population mean μ . Does this confidence interval support the hypothesis that $\mu = 10$, or not? Explain why.
 - (b) Find a *p*-value for testing $\mu = 10$ against $\mu \neq 10$. Give an interpretation of this *p*-value in your own words.
 - (c) Do the confidence interval and the *p*-value lead you to the same conclusion? Did you expect this? Explain why or why not.
- 2. Consider this same data set of 50 observations. Now, you wish to test the null hypothesis of $\mu = 10$ against the alternate hypothesis of $\mu > 10$.
 - (a) Against $\mu = 12$, you want the power to be 0.8. Find the rejection region.
 - (b) What's the size of the Type I error for this rejection region?
 - (c) Using this rejection region, how large of a sample size would you need to reduce the Type I error to 0.05? Does this increase or decrease the power? Explain.
- 3. Let y_1, \ldots, y_n be a random sample of size *n* from a Gamma distribution with $\alpha = 2$ and $\beta = 1/\theta$, so

$$f(y|\theta) = \theta^2 y e^{-\theta y}$$
 for $y > 0$,

where $\theta > 0$.

- (a) Derive the maximum likelihood and the method of moments estimator for θ .
- (b) Use the Neyman Pearson Lemma to find the rejection region for $H_0: \theta = 1$ vs. $H_a: \theta = 2$.
- (c) Is this a uniformly most powerful test for testing against $H_a: \theta > 1$? Explain why or why not.
- (d) Perform the test, using n = 10 and $\bar{y} = 1.5$. Use the fact that $(2\theta) \sum_{i=1}^{n} y_i \sim \chi^2(4n)$.
- 4. We have independent samples of size 20 each from three independent exponential populations, with means β_1 , β_2 , and β_3 . The sample means are 3, 4, and 8. Use the likelihood ratio test to test the null hypothesis that $\beta_1 = \beta_2 = \beta_3$ against the alternate that at least two are different.