1. The amount of money spent on textbooks per student each semester has mean $\$ 120$ and standard deviation $\$ 30$. It's probably not normally distributed because some students don't have buy any texts. Suppose a random sample of 50 students are asked how much they spent on textbooks this semester.
a) Consider the sampling distribution of the sample mean. What's the mean and standard deviation? Describe the shape.
b) Find the probability that the sample mean is greater than 125 .
c) What sample size would you need to make this probability equal to 0.05 ?
2. Consider a random sample of size n from a distribution with density

$$
f(x \mid \theta)=\theta^{2} x \exp (-\theta x)
$$

for $x>0$, and $\theta>0$. For this distribution, $E X=2 / \theta$.
a) What's the likelihood function for θ ?
b) Find a sufficient statistic.
c) Calculate the maximum likeilhood estimator of θ.
d) Calculate the method of moments estimator of θ.
3. Like 9-51.
4. Consider a random sample of size n from a $\operatorname{Poi}(\lambda)$ distribution, with probability function

$$
f(x \mid \lambda)=\frac{\lambda^{x}}{x!} e^{-\lambda}
$$

for $x=0,1,2, \ldots$, and $\lambda>0$. For this distribution, $E X=\operatorname{Var} X=\lambda$, and the MLE for λ is \bar{x}.
a) Find the MSE of \bar{x} by finding the bias and the variance.
b) Is \bar{x} consistent for λ ?
c) Determine if \bar{x} is efficient by calculating the Cramer-Rao lower bound.
5. Multiple choice; questions given but not potential answers.
a) As the sample size increases, the sampling distribution of the sample mean looks more like \qquad .
b) As the sample size increases, the standard deviation of the sample mean \qquad .
c) A sample of size 100 is taken from population A, which has a standard deviation of 5 . What's the standard deviation of the sample mean?
d) We now desire to estimate the mean of Population B, which has a standard deviation of 10 . To get the same standard deviation of our estimate of the population mean, the sample size from B should be \qquad than the sample size from A.
e) Which of these statements does not follow from the central limit theorem?
f) Which of these statements would be made by a Bayesian, and which by a Frequentist?
6. The top left plot is the density function for a given population.
a) Which graph (A-E) represents a sampling distribution of sample means for samples of size 1 from this population? Justify your choice.
b) Which graph (A-E) represents a sampling distribution of sample means for samples of size 10 from this population? Justify your choice.

