Gosset (Student), who created the T-distribution, reported on the results of seeding eleven plots with two different kinds of seed. Each type of seed (regular and kiln-dried) was planted in adjacent plots, accounting for 11 plots. The article cited (W.S. Gosset, "The Probable Error of a Mean," Biometrika, 6 (1908), pp 1-25.) is perhaps the most famous in statistical literature and bears reading even today.

The problem of interest was if kiln-drying the seed improved the corn yield. Each plot has both kinds of seed in it, so we can measure the difference between regular and kiln-dried, as shown in the table.

plot	REG	KILN	diff
1	1903	2009	106
2	1935	1915	-20
3	1910	2011	101
4	2496	2463	-33
5	2108	2180	72
6	1961	1925	-36
7	2060	2122	62
8	1444	1482	38
9	1612	1542	-70
10	1316	1443	127
11	1511	1535	24

Table 1: Corn yield (lbs/acre) from regular seed (REG), kilndried seed (KILN), and the difference ($\bar{x}=33.7, s=66.2$).

1. First, analyze this using frequentist methods:

- Perform the Z test, the T test, the sign test, and the sign rank test. For each test, set up the null and alternate hypothesis, calculate the p-value, and write a brief statement about what the conclusion is. Remember we're interested in if kiln-drying improved the yield.
- There are four different p-values! Explain why.
- Comment on the appropriateness of using each type of test for this data.
(Hint: the Z test is not appropriate.)

2. Now, analyze it using Bayesian methods:

- Using a prior of $N\left(0,20^{2}\right)$ for the difference and assuming the difference is normally distributed with 66.2 as the true population standard deviation σ, use the results on page 358 to find the posterior distribution of the difference.
- Under both the prior and the posterior, find the probability that kiln-dried seed improves yield.
- Suppose that a difference of $10 \mathrm{lbs} /$ acre is not practically significant. Find the posterior probability that the difference between regular and kiln-dried seed is not practically significant, that is $P(-10<$ diff $<10)$.

If you aren't comfortable with Z and T tests from another class, you may wish to try some extra problems, like 8,10 , or 17 .

