Homework 2, due Jan. 31

This handout, plus problems 19, 35, 37, 39, and 42 from Chapter 8.

1 Sampling Distributions and the Central Limit Theorem

1. Go to http://www.stat.tamu.edu/~west/ph/sampledist.html.
2. The top plot shows population distribution, with summary parameters shown at left.

- Change it from Uniform to Normal.
- Change it from Normal to Custom and try drawing in the box.
- Change it back to Uniform.
- Record the mean and median of the default uniform distribution:
mean \qquad median \qquad

3. The second plot shows sample data from the above population, with summary statistics shown at left.

- Set $n=2, N=1$, and check the box by Animate.
- Click Sample five times, and record the five means below.
- Explain why the five sample means are different.

4. The third and fourth plots show the means and the medians of the samples that have been drawn.

- Record the mean of your five samples means (shown in 3rd plot), and the mean of your five sample medians (shown in 4th plot).
mean of means \qquad mean of medians \qquad
- Why aren't these values equal to the population mean and median?

5. Go back to the second plot, and change n to 10 , leaving N at 1 .

- Record the five sample means, as well as the mean and median of the sample means.
mean of means \qquad mean of medians \qquad
- Are these five sample means closer to the population mean than the five sample means for $n=2$? Is this what you expected? Why or why not?

6. Now instead of clicking sample 5 times, we'll use N to take multiple samples.

- Turn off animation, and set N to 10 , and n back to 2 . Click Sample to get 10 samples.
- Change N to 100 and click Sample again to get 100 additional samples.
- Make a rough sketch of the distribution of sample means.

7. Before you go on, make sure you understand the difference between n and N. Experiment if you need to. Reset the bottom three plots by changing the distribution to something else, and then back to uniform.

- Explain the difference between n and N in this applet.

8. Now make rough sketches of the distribution of sample means for n equal to 5,10 , and 30 . Take as many samples as you think necessary.

- Describe the changes in these distributions. Comment both on the shape and on the spread. Is this what you expected? Why or why not.
- How big do you think n needs to be for the distribution of the sample means to be approximately normal?

9. Now change the population distribution to bell shaped. Experiment with different values
of n (start at $n=3 ; 2$ gave me errors). Now how big do you think n needs to be for the distribution of the sample means to be approximately normal? (your answer should be 3; why?)
10. Now change the population distribution to custom, and draw in a funny shape.

- Sketch your distribution here:
- What is your distribution's mean, median, and standard deviation?
- Set n to 100 and N to 100 . What's the mean and standard deviation of the distribution of sample means?
- Compare this standard deviation with the population standard deviation by calculating the ratio of sample sd to population sd. What's the ratio? \qquad It should be close to 0.1 . Why?
- Experiment with different values of n. How big does n need to be for the distribution of the sample means to be approximately normal?

11. Explain the central limit theorem in your own words.

2 The Normal Approximation to the Binomial

One particularly common application of the central limit theorem is the approximation to the binomial distribution.

1. For $X \sim \operatorname{Bin}(n, p)$, state the approximate distribution of $\hat{p}=X / n$ (the sample proportion) for large n .
2. Go to http://www.stat.tamu.edu/~west/ph/sampledist.html, Change the population distribution to binary. The proportion of 1 s is 0.5 by default.

- Calculate the population standard deviation for $p=0.5$. \qquad
- Calculate the standard deviation of \hat{p} for $n=30$. \qquad
- Set $n=30$ and $N=100$ (with animation off), and sample. What's the mean and standard deviation of the sample proportions (shown in the 4th plot)?
mean \qquad standard deviation \qquad

3. Go to http://www.stat.tamu.edu/~west/applets/binomialdemo2.html. If possible, open this in another window; if you have to use the same window try to remember what the plot of sample counts on the last page looked like.

- This applet compares the true binomial distribution with the approximating normal. Set $\mathrm{p}=0.5$ and $\mathrm{n}=30$. Why doesn't this plot look exactly the plot of sample counts on the last page?
- Looking at the new page, how well does the normal approximate this binomial?
- Change $\mathrm{p}=0.1$, leaving n at 30 . How well does the normal approximate this binomial?
- For very small or very large p, do you need a smaller or larger sample size than if $p=0.5$?

3 Comments

Please go to http://www.stat.umn.edu/~arendahl/Teaching/Spring2007-STAT4102/03-CLT.html (it's also linked from the homework page) and write me a comment about this worksheet. After submitting, you'll get a codeword; write it here: \qquad -.

