STAT4101 Fall 2007 Practice Exam 2 Solution.

1. (a) We know that $P(-1<X<1)=1$, so we set

$$
\begin{aligned}
1 & =\int_{-1}^{1} c\left(1-x^{2}\right) d x=\left.c\left(x-x^{3} / 3\right)\right|_{-1} ^{1} \\
& =c[(1-1 / 3)-(-1+1 / 3)]=4 / 3 c
\end{aligned}
$$

so $c=3 / 4$.
(b) $F(x)=P(X<x)$, so between -1 and 1 ,

$$
\begin{aligned}
F(x) & =\int_{-1}^{x} \frac{3}{4}\left(1-x^{2}\right) d x=\left.\frac{3}{4}\left(x-\frac{x^{3}}{3}\right)\right|_{-1} ^{x} \\
& =\frac{3}{4}\left[\left(x-\frac{x^{3}}{3}\right)-\left(-1+\frac{1}{3}\right)\right]=\frac{3}{4}\left(x-\frac{x^{3}}{3}+\frac{2}{3}\right)
\end{aligned}
$$

and

$$
F(x)= \begin{cases}0 & \text { for } x<-1 \\ \frac{3}{4}\left(x-\frac{x^{3}}{3}+\frac{2}{3}\right) & \text { for }-1<x<1 \\ 1 & \text { for } x>1\end{cases}
$$

(c) $P(X>0)=\int_{0}^{1} \frac{3}{4}\left(1-x^{2}\right) d x=\left.\frac{3}{4}\left(x-\frac{x^{3}}{3}\right)\right|_{0} ^{1}=\frac{3}{4}\left(1-\frac{1}{3}\right)=\frac{1}{2}$.
(d) $E\left(\frac{1}{1-x^{2}}\right)=\int_{-1}^{1}\left(\frac{1}{1-x^{2}}\right)\left(\frac{3}{4}\left(1-x^{2}\right)\right) d x=\int_{-1}^{1} \frac{3}{4} d x=\left.\frac{3}{4} x\right|_{-1} ^{1}=\frac{3}{4}(1+1)=\frac{3}{2}$.
2. a) 75.8% b) $0.5 / 0.758=0.660$ c) 81.75
3. (a) Write as $e^{3 t+\frac{1}{2} 4 t^{2}}$: Normal with mean 3, variance 2.
(b) $m_{Y}(t)=e^{-3 t} e^{3(t / 2)+2(t / 2)^{2}}=e^{-(3 / 2) t+t^{2} / 2}$
(c) Normal with mean $-3 / 2$, variance 1 .
4. (a) 0.18

(b) | x | 1 | 2 |
| :---: | :---: | :---: |
| $p(x)$ | 0.4 | 0.6 |

(c) | x | 1 | 2 |
| :---: | :---: | :---: |
| $p(x \mid Y=1)$ | $\frac{0.08}{0.2}=0.4$ | $\frac{0.12}{0.2}=0.6$ |

(d) $E(X \mid Y=1)=0.4(1)+0.6(2)=1.6$
(e) No. Even though $p(x)=p(x \mid Y=1), p_{X}(1) p_{Y}(2)=0.4 \cdot 0.3=0.12 \neq 0.1=p(1,2)$.
5. (a) $P(Y<1)=1-P(Y>1)=1$ - volume between $\mathrm{Y}=1$ and $\mathrm{Y}=2=1-\frac{1}{2} 1 \cdot 1 \cdot \frac{1}{2}=\frac{3}{4}$
(b) $P(Y<1 \mid X=1)=1$, as when $X=1, Y$ is only between 0 and 1 .
(c) $f_{X}(x)$ is the area above $X=x$, which is $\frac{1}{2}(2-x)$ for $0<x<2$.
(d) $Y \mid X$ is Uniform between 0 and $2-X$, so $f(y \mid x)=\frac{1}{2-x}$ for $0<y<2-x$.
(e) $E(Y \mid X)$ is therefore $\frac{2-x}{2}$.
(f) X and Y are not independent because the support is not rectangular.
6. (a) $f_{Y}(y)=\int_{0}^{1} c \frac{x}{y+1} d x=\left.\frac{c}{y+1} \frac{x^{2}}{2}\right|_{x=0} ^{x=1}=\frac{c}{2(y+1)}$ for $0<y<1$.
(b) $\left.f_{(} x \mid y\right)=\left(\frac{c x}{y+1}\right) /\left(\frac{c}{2(y+1)}\right)=2 x$ for $0<x<1$.
(c) $E(Y+1)=\int_{0}^{1} \int_{0}^{1}(y+1) \frac{c x}{y+1} d x d y=\left.\int_{0}^{1} \frac{c x^{2}}{2}\right|_{x=0} ^{x=1} d y=\left.\frac{c}{2} y\right|_{0} ^{1}=\frac{c}{2}$.
(d) $P(X<Y)=\int_{0}^{1} \int_{0}^{y} c \frac{x}{y+1} d x d y$
(e) Yes. The support is rectangular and the joint density can be factored: $(c x)\left(\frac{1}{y+1}\right)$.
7. (a) $\operatorname{Cor}(X, Y)=\operatorname{Cov}(X, Y) / \sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}=(E(X Y)-E X E Y) / \sqrt{4 \cdot 1}$ $=(16-5 \cdot 3) / 2=1 / 2$.
(b) $E(2 X-3 Y+4)=2 E X-3 E Y+4=2(5)+3(3)+4=5$
(c) $\operatorname{Var}(2 X-3 Y+4)=\operatorname{Var}(2 X)+\operatorname{Var}(-3 Y)+2 \operatorname{Cov}(2 X,-3 Y)$ $=4 \operatorname{Var}(X)+9 \operatorname{Var}(Y)+2(2)(-3) \operatorname{Cov}(X, Y)=4(4)+9(1)-12(1)=13$.
8. $E(X)=E(E(X \mid Y))=E(100 Y)=100 E Y=100 \frac{99}{99+1}=99$.

