$1 Y \sim \operatorname{Poi}(2)$, so $p(y)=\frac{2^{y}}{y!} e^{-2}$. Thus
a. $P(Y=4)=p(4)=\frac{2^{4}}{4!} e^{-4}=\frac{2}{3} e^{-2} \approx 0.09$
b. $P(Y<4)=p(0)+p(1)+p(2)+p(3)=\frac{2^{0}}{0!} e^{-2}+\frac{2^{1}}{1!} e^{-2}+\frac{2^{2}}{2!} e^{-2}+\frac{2^{3}}{3!} e^{-2} \approx 0.135+0.271+$ $0.271+0.180 \approx 0.857$
c. $P(Y \geq 4)=1-P(Y<4)=1-P(Y<4) \approx 1-0.857=0.143$.
d. $P(Y \geq 4>Y \geq 2)=\frac{P(Y \geq 4 \cap Y \geq 2)}{P(Y \geq 2)}=\frac{P(Y \geq 4)}{P(Y \geq 2}=\frac{0.143}{1-(p(0)+p(1))}=\frac{0.143}{1-(0.135+0.271)}=\frac{0.143}{0.593}=0.241$

2 Let X be the number of knots in the 10 -cubic-foot block of wood. Then $X \sim \operatorname{Poi}(1.5)$. We want to find $P(X \leq 1)=P(X=0)+P(X=1)=\frac{1.5^{0}}{0!} e^{-1.5}+\frac{1.5^{1}}{1!} e^{-1.5}=(1+1.5) e^{-1.5} \approx 0.558$.

3 Let X be the number of customers that arrive in the 1 -hour period. Then $X \sim \operatorname{Poi}(7)$, and $p(x)=\frac{7^{x}}{x!} e^{-7}$. Thus
a. $P(X \leq 3)=p(0)+p(1)+p(2)+p(3)=\frac{7^{0}}{0!} e^{-7}+\frac{7^{1}}{1!} e^{-7}+\frac{7^{2}}{2!} e^{-7}+\frac{7^{3}}{3!} e^{-7} \approx 0.0009+0.0064+$ $0.022+0.052=0.0818$
b. $P(X \geq 2)=1-P(X \leq 1) \approx 1-(0.0009+0.0064)=0.993$
c. $P(X=5)=p(5)=\frac{7^{5}}{5!} e^{-7} \approx 0.128$.
d. Letting $Y=10 X$ be the number of minutes servers spend serving customers, then $E Y=$ $E(10 X)=10 E X=10(7)=70$ and $V(Y)=V(10 X)=10^{2} V(X)=10^{2}(7)=700$.
e. Then the standard deviation is $\sigma=\sqrt{700} \approx 26$. Then 150 minutes is approximately $\mu+3 \sigma=$ $70+3 * 26=148$. Since by the empirical rule almost all the measurements are within 3 standard deviations of the mean, this is unlikely.
f. The mean number of customers to come in this two hour period is 14 , so the probability that exactly two come is $\frac{14^{2}}{2!} e^{-14}$.
g. Let X be the number that come in the first time period and Y be the number that come in the second time period. Both are $\operatorname{Poi}(7)$. We want to find $P(X+Y=2)$. There are three ways this can happen: $(X=0, Y=2),(X=1, Y=1)$, and $(X=2, Y=0)$. These are mutually exclusive so we'll add them up, and X and Y are independent so we can multiply probabilities. Then

$$
\begin{aligned}
P(X+Y=2) & =P((X=0 \cap Y=2) \cup(X=1 \cap Y=1) \cup(X=2, Y=0)) \\
& =P(X=0) P(Y=2)+P(X=1) P(Y=1)+P(X=2)(Y=0) \\
& =\left(\frac{7^{0}}{0!} e^{-7}\right)\left(\frac{7^{2}}{2!} e^{-7}\right)+\left(\frac{7^{1}}{1!} e^{-7}\right)\left(\frac{7^{1}}{1!} e^{-7}\right)+\left(\frac{7^{2}}{2!} e^{-7}\right)\left(\frac{7^{0}}{0!} e^{-7}\right) \\
& =\left(2 \frac{7^{2}}{2!}+\frac{7^{2}}{1!}\right) e^{-7-7} \\
& =2\left(7^{2}\right) e^{-14}
\end{aligned}
$$

h. Notice that $\left(14^{2} / 2!\right) e^{-14}=2\left(7^{2}\right) e^{-14}$, so they are equal. The general rule is that if X and Y are each Poi $\lambda, X+Y \sim \operatorname{Poi}(2 \lambda)$. We'll study that more in Chapter 6 .

4 From the table, the probabilities are $0.358,0.378,0.189$, and 0.059 .
Using the Poisson approximation, with $\lambda=n p=20(0.05)=1$, they are $\frac{1^{0}}{0!} e^{-1} \approx 0.368, \frac{1^{1}}{1!} e^{-1} \approx$ $0.368, \frac{1^{2}}{2!} e^{-1} \approx 0.184$, and $\frac{1^{3}}{3!} e^{-1} \approx 0.061$.

For the exact calculation, the probability of no sales is the probability of 100 no sales in a row, or 0.97^{100}, so the probability of at least one sale is $1-0.97^{100} \approx 0.9524$. The number of sales the salesperson makes is approximately Poisson with mean $100(0.03)=3$. The probability of no sales is then $\frac{3^{0}}{0!} e^{-3} \approx 0.0498$, so the probability of at least one sale is approximately 0.9502 .

5

$$
\begin{aligned}
E[Y(Y-1)] & =\sum_{y=0}^{\infty} y(y-1) \frac{\lambda^{y} e^{-\lambda}}{y!}=\sum_{y=2}^{\infty} y(y-1) \frac{\lambda^{y} e^{-\lambda}}{y!}=\sum_{y=2}^{\infty} \frac{\lambda^{y} e^{-\lambda}}{(y-2)!} \\
& =\sum_{z=0}^{\infty} \frac{\lambda^{(}(z+2) e^{-\lambda}}{z!}=\lambda^{2} \sum_{z=0}^{\infty} \frac{\lambda^{z} e^{-\lambda}}{z!}=\lambda^{2} \sum_{z=0}^{\infty} p(z)=\lambda^{2}
\end{aligned}
$$

So $V(Y)=E Y^{2}-(E Y)^{2}=\left(E Y^{2}-E Y\right)+E Y-(E Y)^{2}=\lambda^{2}+\lambda-\lambda^{2}=\lambda$.

6 To find the moments of a random variable and to prove that a random variable follows a particular distribution.
$7 \quad$ a. $m(t)=E\left(e^{t}\right)=\sum_{y=0}^{n} e^{t y}\binom{n}{y} p^{y} q^{n-y}=\sum_{y=0}^{n}\binom{n}{y}\left(p e^{t}\right)^{y} q^{n-y}=\left(p e^{t}+q\right)^{n}$
b. $m^{\prime}(t)=n\left(p e^{t}+q\right)^{n-1}\left(p e^{t}\right)$ and $m^{\prime \prime}(t)=n(n-1)\left(p e^{t}+q\right)^{n-2}\left(p e^{t}\right)^{2}+n\left(p e^{t}+q\right)^{n-1}\left(p e^{t}\right)$.

Thus for $t=0, p e^{t}+q=p+q=1$, so $E Y=m^{\prime}(0)=n p$ and $E Y^{2}=n(n-1) p^{2}+n p$.
So $V(Y)=E Y^{2}-(E Y)^{2}=n(n-1) p^{2}+n p-(n p)^{2}=-n p^{2}+n p=n p(1-p)$.
c. Since this moment-generating function looks exactly like that found in part a, with $p=0.5$ and $n=3$, it is a binomial distribution with $p=0.5$ and $n=3$.
$8 m^{\prime}(t)=(1 / 6) e^{t}+(2 / 3) e^{2 t}+(3 / 2) e^{3 t}$ and $m^{\prime \prime}(t)=(1 / 6) e^{t}+(4 / 3) e^{2 t}+(9 / 2) e^{3 t}$. Then
a. $E Y=m^{\prime}(0)=1 / 6+2 / 3+3 / 2=7 / 3$
b. $E Y^{2}=m^{\prime \prime}(0)=1 / 6+4 / 3+9 / 2=6$, so $V(Y)=E Y^{2}-(E Y)^{2}=6-(7 / 3)^{2}=5 / 9$.

c. Since $m(t)=\sum_{y} e^{t y} p(y)$, we see that the coefficient of $e^{t} y$ is the probability of y, for each term. So the probability function is | y | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: |
| $p(y)$ | $1 / 6$ | $1 / 3$ | $1 / 2$ | .

$9 P(6<Y<16)=P(|Y-11|<5)=P\left(|Y-\mu|<\frac{5}{3} \sigma\right) \geq 1-1 /(5 / 3)^{2}=1-9 / 25=16 / 25=0.64$.
Let $k=.3$

