1. (a) Setting $P(0<X<2)=1$ and solving for $c, 1=\int_{0}^{2} c x^{2} d x=\left.\frac{c x^{3}}{3}\right|_{0} ^{2}=c\left(\frac{8}{3}\right)$, so $c=\frac{3}{8}$.
(b) For $0<x<2, F(x)=\int_{0}^{x} \frac{3}{8} x^{2} d x=\left.\frac{x^{3}}{8}\right|_{0} ^{x}=\frac{x^{3}}{8}$, so

$$
F(x)= \begin{cases}0 & \text { for } x \leq 0 \\ \frac{x^{3}}{8} & \text { for } 0<x<2 \\ 1 & \text { for } x \geq 2\end{cases}
$$

(c) $P(X>1)-1-F(1)=1-\frac{1^{3}}{8}=\frac{7}{8}$.
(d) $E\left(\frac{1}{x}\right)=\int_{0}^{2} \frac{1}{x}\left(\frac{3}{8} x^{2}\right) d x=\frac{3}{8} \int_{0}^{2} x d x=\left.\frac{3}{8} \frac{x^{2}}{2}\right|_{0} ^{2}=\frac{3}{4}$.
2. (a) $(120-100) / 20=1$; from the table this gives 15.87%.
(b) From the table, 25% of the scores are above 0.67 , so by symmetry, 75% of the scores are above -0.67 . Then the cutoff is $100+(-0.67) \times 20=86.6$.
(c) Letting X be the score, $P(X>100 \mid$ in school B$)=P(X>100) / P($ in school B$)=0.5 / 0.75=2 / 3$.
3. (a) $m_{X}(t)=(1-t)^{-1}$ corresponds to a Exponential with $\beta=1$.
(b) $a=0$ and $b=2$, so $m_{y}(t)=e^{0 t} m_{X}(2 t)=(1-2 t)^{-1}$.
(c) This is an Exponential with $\beta=2$.

4. (a) $P(Y=1)=0.2+0.1=0.3$, so | x | 0 | 1 |
| :---: | :---: | :---: |
| $p(x \mid Y=1)$ | $\frac{0.2}{0.3}=\frac{2}{3}$ | $\frac{0.1}{0.3}=\frac{1}{3}$ |

(b) $E(X \mid Y=1)=0\left(\frac{2}{3}\right)+1\left(\frac{1}{3}\right)=\frac{1}{3}$.
(c) X and Y are not independent: $p_{X}(0) p_{Y}(0)=(0.5)(0.7)=0.35 \neq 0.3=p(0,0)$. This would have to be true for all values of x and y; since we found one where it is not, they are not independent.
5. (a) Yes, X and Y are independent. The support is rectangular, and the density can be factored into a part that depends only on x and a part that depends only on y; in this it's a constant, so, for example, if $g(x)=1$ and $h(y)=\frac{1}{2}, f(x, y)=g(x) h(y)$.
(b) $P\left(X<0, Y<\frac{1}{2}\right)$ is the volume above that area. The area is $1 \times \frac{1}{2}=\frac{1}{2}$, and the height is $\frac{1}{2}$, so the volume is $\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$.
(c) To find $E(Y \mid X)$, we consider that we're on a line for any given x value; if that's true then y can be any value between 0 and 1 , and since the density is uniform, the expected value (the average) is $\frac{1}{2}$.
6. (a) X and Y are not independent, as the support is not rectangular.
(b) $f_{Y}(y)=\int_{x} f(x, y) d x=\int_{0}^{3-y} \frac{1}{2(3-y)} d y$. Evaluating this (which I didn't ask you to do) gives

$$
f_{Y}(y)=\left.\frac{x}{2(3-y)}\right|_{x=0} ^{x=3-y}=\frac{3-y}{2(3-y)}=\frac{1}{2} .
$$

(c) The support for the marginal of y is the range of possible values for y; it has nothing to do with x, so the support is $0<y<2$.
(d) $f(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}=\left(\frac{1}{2(3-y}\right) /\left(\frac{1}{2}\right)=\frac{1}{3-y}$, for $0<x<3-y$. The possible values for y (nice, but not required) are $0<y<2$.

