1a D, R, and I partition the set of Minnesotans, so by the law of total probability,

$$
P(A)=P(A \mid D) P(D)+P(A \mid R) P(R)+P(A \mid I) P(I)
$$

We know that $P(D)+P(R)+P(I)=1$. Let $p=P(D)$. Then

$$
P(R)=1-P(I)-P(D)=1-0.4-p=0.6-p
$$

so substituting this in, as well as all that we given, we have

$$
0.3=0.05 p+0.7(0.6-p)+0.25(0.4)
$$

Solving for p, we find that $p=0.338$. So $P(D)=p=0.338$ and $P(R)=0.6-p=0.262$.
1b By Bayes' Rule,

$$
P(D \mid A)=\frac{P(A \mid D) P(D)}{P(A)}=\frac{0.05(0.338)}{0.3}=0.056
$$

2a No. If they were mutually exclusive, $P(A \cup B)=P(A)+P(B)=1.1$, which is impossible.
2b By independence, $P(A \cap B)=P(A) P(B)=0.6 \cdot 0.5=0.3$.
2c $P(A \cup B)=P(A)+P(B)-P(A \cap B)=0.5+0.6-0.3=0.8$.
2d Now $P(A \cap B)=P(B \mid A) P(A)=0.3 \cdot 0.6=0.18$, so $P(A \cup B)=0.5+0.6-0.18=0.92$.
3a $E(X)=\sum_{x} x p(x)=-1(0.4)+0(0.4)+2(0.2)=0$
3b $E\left(X^{2}\right)=\sum_{x} x^{2} p(x)=(-1)^{2}(0.4)+0^{2}(0.4)+2^{2}(0.2)=0.4+0.8=1.2$, so $\operatorname{Var}(X)=$ $E\left(X^{2}\right)-(E X)^{2}=1.2-0^{2}=1.2$.

3c $E\left(X^{3}\right)=\sum_{x} x^{3} p(x)=(-1)^{3}(0.4)+0^{3}(0.4)+2^{3}(0.2)=-0.4+1.6=1.2$
3d $E\left(e^{t X}\right)=\sum_{x} e^{t x} p(x)=0.4 e^{-t}+0.4+0.2 e^{2 t}$
3e $m^{\prime}(t)=-0.4 e^{-t}+2 \cdot 0.2 e^{2 t}$
$m^{\prime \prime}(t)=0.4 e^{-t}+2^{2} \cdot 0.2 e^{2 t}$
$m^{\prime \prime \prime}(t)=-0.4 e^{-t}+2^{3} \cdot 0.2 e^{2 t}$
so $E\left(X^{3}\right)=m^{\prime \prime \prime}(0)=-0.4+8(0.2)=1.2$.
4a $E(2 X-1)=2 E X-1=2(3)-1=5$
4b $\operatorname{Var}(2 X-1)=2^{2} \operatorname{Var}(X)=2^{2}(9)=36$

4c $\operatorname{Var}(X)=E\left(X^{2}\right)-(E X)^{2}$, so $E\left(X^{2}\right)=\operatorname{Var}(X)+(E X)^{2}=9+3^{2}=18$.
Then $E\left(3 X-X^{2}\right)=3 E X-E\left(X^{2}\right)=3(3)-18=-9$.
5a $\binom{10}{5}\binom{8}{4}=252 \cdot 70=17640$
5b $\binom{2}{2}\binom{10}{5}\binom{6}{2}=252 \cdot 15=3780$
5c This means that both brothers are not together on the committee, so there are 17640 $3780=13860$ ways.

6 This is the complement of getting no threes, so the probability is $1-(5 / 6)^{6}$.
7a $X \sim \operatorname{NegBin}(100,0.9)$
7b $X \sim \operatorname{Bin}(10,0.1)$

7c This is a Poisson random variable, with an average of one event every five feet. So in fifty feet of rope, there are an average of ten events, thus $X \sim \operatorname{Poi}(10)$.

7d $X \sim \operatorname{Geo}(0.6)$
8a $P(Y<7)=P(Y \leq 6)=0.610$
8b $P(Y>4)=1-P(Y \leq 4)=1-0.217=0.793$
8c $P(Y>4 \mid Y<7)=\frac{P(4<Y<7)}{P(Y<7)}=\frac{P(Y<7)-P(Y \leq 4)}{P(Y<7)}=\frac{0.610-0.217}{0.610}=0.644$

