5-53

a) $F_{X+Y}(z)=P(X+Y \leq z)=\int_{0}^{z} \int_{0}^{z-y} 2 d x d y=z^{2}, 0<z<1$.
b) First, we find $\operatorname{Var}(X+Y)$ directly using $\operatorname{Var}(X+Y)=E\left[(X+Y)^{2}\right]-[E(X+Y)]^{2}$.

$$
E\left[(X+Y)^{2}\right]=\int_{0}^{1} z^{2} f_{Z}(z) d z=\int_{0}^{1} z^{2}(2 x) d z=1 / 2
$$

and from 5 -43c, $E(X+Y)=2 / 3$, so

$$
\operatorname{Var}(X+Y)=1 / 2-(2 / 3)^{2}=1 / 2-4 / 9=\frac{1}{18} .
$$

Then, we show this equals $\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)$. Now $\operatorname{Var}(X)=\operatorname{Var}(Y)$ by symmetry, so to find the variances, we first find

$$
E X^{2}=\int_{0}^{1} 2 x^{2}(1-x) d x=1 / 6
$$

So $\operatorname{Var}(X)=\operatorname{Var}(Y)=1 / 6-(1 / 3)^{2}=1 / 18$. From 5-43b, $E X Y=1 / 12$, so $\operatorname{Cov}(X, Y)=$ $1 / 12-(1 / 3)^{2}=-1 / 36$. Thus

$$
\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X+Y)=\frac{1}{18}=\frac{1}{18}-\frac{2}{36}=\frac{1}{18} .
$$

c) $\rho=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}=\frac{-1 / 36}{1 / 18}=-\frac{1}{2}$.

5-59 We know a uniform $(0,1)$ has mean $1 / 2$ and variance $1 / 12$ (ex. 5.6a).
a) $E(X+Y+Z)=E X+E Y+E Z=1 / 2+1 / 2+1 / 2=3 / 2$.
b) Since they are independent, all covariances are 0 , so

$$
\operatorname{Var}(X+Y+Z)=\operatorname{Var}(X)+\operatorname{Var}(Y)+\operatorname{Var}(Z)=3 / 12=1 / 4
$$

c) $\operatorname{Var}(X-Y)=\operatorname{Var}(X)+\operatorname{Var}(-Y)+2 \operatorname{Cov}(X,-Y)=\operatorname{Var}(X)+(-1)^{2} \operatorname{Var}(Y)-2 \operatorname{Cov}(X, Y)=$ $2 / 12=1 / 6$.
d) Since they are independent, all covariances between different variables are 0 , so

$$
\begin{aligned}
\operatorname{Cov}(X+Y-Z, 2 X-Y+3 Z) & =\operatorname{Cov}(X, 2 X)+\operatorname{Cov}(Y,-Y)+\operatorname{Cov}(-Z, 3 Z) \\
& =2 \operatorname{Var}(X)-\operatorname{Var}(Y)-3 \operatorname{Var}(Z)=-2 / 12
\end{aligned}
$$

5-60

a) $\int_{0}^{\infty} 2 e^{-2 x} e^{-y} d y=2 e^{-2 x}, x>0, \quad \int_{0}^{\infty} 2 e^{-2 x} e^{-y} d x=e^{-y}, y>0$
b) They are independent, the product of the marginals equals to joint.
c) $E(X+Y)=E X+E Y=1 / 2+1=3 / 2$. Recognizing these as exponentials, we don't need to do any integration.
d) By independence, $\operatorname{Var}(X-Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)=1+1 / 4=5 / 4$.

